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ABSTRACT:  In real-life data, in general, many attribute values are missing.
Therefore, rule induction requires preprocessing, where missing attribute
values are replaced by appropriate values.  The rule induction method used in
our research is based on rough set theory.

In this paper we present our results on a new approach to missing attribute
values called a closest fit.  The main idea of the closest fit is based on
searching through the set of all cases, considered as vectors of attribute
values, for a case that is the most similar to the given case with missing
attribute values. There are two possible ways to look for the closest case: we
may restrict our attention to the given concept or to the set of all cases.
These methods are compared with a special case of the closest fit principle:
replacing missing attribute values by the most common value from the
concept.  All algorithms were implemented in system OOMIS.  Our
experiments were performed on preterm birth data sets collected at the Duke
University Medical Center.

K E Y W O R D S :  Missing attribute values, closest fit, data mining, rule
induction, classification of unseen cases,  system OOMIS, rough set theory.

1  Introduction

Recently data mining, i.e., discovering knowledge from raw data, is receiving a
lot of attention.  Such data are, as a rule, imperfect. In this paper our main focus is on
missing attribute values, a special kind of imperfection.  Another form of
imperfection is inconsistency—the data set may contain conflicting cases (examples),
having the same values of all attributes yet belonging to different concepts (classes).

Knowledge considered in this paper is expressed in the form of rules, also called
production rules.  Rules are induced from given input data sets by algorithms based on
rough set theory.  For each concept lower and upper approximations are computed, as
defined in rough set theory [4, 6, 12, 13].

Often in real-life data some attribute values are missing (or unknown).  There are
many approaches to handle missing attribute values [3, 5, 7].  In this paper we will
discuss an approach based on the closest fit idea.  The closest fit algorithm for
missing attribute values is based on replacing a missing attribute value by existing
values of the same attribute in another case that resembles as much as possible the
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case with the missing attribute values.  In searching for the closest fit case, we need
to compare two vectors of attribute values of the given case with missing attribute
values and of a searched case.

There are many possible variations of the idea of the closest fit.  First, for a
given case with a missing attribute value, we may look for the closest fitting cases
within the same concept, as defined by the case with missing attribute value, or in all
concepts, i.e., among all cases.  The former algorithm is called concept closest fit, the
latter is called global closest fit.

Secondly, we may look at the closest fitting case that has all the same values,
including missing attribute values, as the case with a missing attribute value, or we
may restrict the search to cases with no missing attribute values.  In other words, the
search is performed on cases with missing attribute values or among cases without
missing attribute values.

During the search, the entire training set is scanned, for each case a proximity
measure is computed, the case for which the proximity measure is the largest is the
closest fitting case that is used to determine the missing attribute values.  The
proximity measure between two cases e and e' is the Manhattan distance between e and
e', i.e.,

Σ 
i= 1  

n

 distance (ei, ei'),

where

distance (ei, ei') =  

 

 0  if ei and ei'  are symbolic and ei ≠ ei' ,

1  if  e i = e i' ,

1 – 
|e i – e i' |
|ai – bi|

  if e i and e i'  are numbers and ei ≠ ei' ,

where ai  is the maximum of values of Ai, bi is the minimum of values of Ai, and Ai
is an attribute.

In a special case of the closest fit algorithm, called the most common value
algorithm, instead of comparing entire vectors of attribute values, the search is reduced
to just one attribute, the attribute for which the case has a missing value.  The
missing value is replaced by the most frequent value within the same concept to
which belongs the case with a missing attribute value.

2  Rule Induction and Classification of Unseen Cases

In our experiments we used LERS (Learning from Examples based on Rough Set
theory) for rule induction.  LERS has four options for rule induction; only one, called
LEM2 [4, 6] was used for our experiments.  Rules induced from the lower
approximation of the class certainly describe the class, so they are called certain.  On
the other hand, rules induced from the upper approximation of the class describe only
possibly (or plausibly) cases, so they are called possible [8].  Examples of other data
mining systems based on rough sets are presented in [14, 16].

For classification of unseen cases system LERS uses a modified "bucket brigade
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algorithm" [2, 10].  The decision to which class a case belongs is made on the basis
of two parameters: strength and support.  They are defined as follows: Strength is the
total number of cases correctly classified by the rule during training.  The second
parameter, support, is defined as the sum of scores of all matching rules from the
class.  The class C for which the support, i.e., the value of the following expression

Σ
matching rules R describing C

 Strength(R)

is the largest is a winner and the case is classified as being a member of C.  The
above scheme reminds non-democratic voting in which voters vote with their
strengths.

If a case is not completely matched by any rule, some classification systems use
partial matching.  During partial matching, system AQ15 uses the probabilistic sum
of all measures of fit for rules [11].  Another approach to partial matching is presented
in [14].  Holland et al. [10] do not consider partial matching as a viable alternative of
complete matching and thus rely on a default hierarchy instead.  In LERS partial
matching does not rely on the input of the user.  If complete matching is impossible,
all partially matching rules are identified.  These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case.

For any partially matching rule R, the additional factor, called Matching_factor
(R), is computed.    Matching_factor is defined as the ratio of the number of matched
attribute-value pairs of a rule with a case to the total number of attribute-value pairs
of the rule.  In partial matching, the class C for which the value of the following
expression

Σ
partially matching rules R describing C

 Matching_factor(R) ∗ Strength (R)

is the largest is the winner and the case is classified as being a member of C.
During classification of unseen (testing) cases with missing attribute values,

missing attribute values do not participate in any attempt to match a rule during
complete or partial matching.  A case can match rules using only actual attribute
values.

3  Description of Data Sets and Experiments

Data sets used for our experiments come from the Duke University Medical Center.
First, a large data set, with 1,229 attributes and 19,970 cases was partitioned into two
parts: training (with 14,977 cases) and testing (with 4,993 cases).  We selected two
mutually disjoint subsets of the set of all 1,229 attributes, the first set containing 52
attributes and the second with 54 attributes and called the new data sets Duke-1 and
Duke-2, respectively.  The Duke-1 data set contains laboratory test results.  The
Duke-2 test represents the most essential remaining attributes that, according to
experts, should be used in diagnosis of preterm birth.  Both data sets were unbalanced
because only 3,103 cases were preterm, all remaining 11,874 cases were fullterm.
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Table 1.  Missing attribute values

Number of missing attribute values in data sets processed by

Global closest fit Concept closest fit Most common value

Duke-1 1,1641 505,329 0
Duke-2 615 1,449 0

Table 2.  Training data sets
Global Concept Most

closest fit closest fit common value
Number of
conflicting cases 8,691 – 10,028

Duke-1
Number of
unique cases 6,314 – 4,994
Number of
conflicting cases 7,839 0 8,687

Duke-2
Number of
unique cases 7,511 9,489 6,295

Similarly, in the testing data set, there were only 1,023 preterm cases while the
number of fullterm cases was 3,970.

Both data sets, Duke-1 and Duke-2, have many missing attribute values (Duke-1
has 505,329 missing attribute values, i.e., 64.9% of the total number of attribute
values; Duke-2 has 291,796 missing attribute values, i.e., 36.1% of the total number
of attribute values).

First, missing attribute values were replaced by actual values.  Both data sets
were processed by the previously described five algorithms of the OOMIS system:
global closest fit and concept closest fit, among all cases with and without missing
attribute values, and most common value.

Since the number of missing attribute values in Duke-1 or Duke-2 is so large, we
were successful in using only three algorithms.  The version of looking for the
closest fit among all cases without missing attribute values returned the unchanged,
original data sets.  Therefore, in the sequel we will use names global closest fit and
concept closest fit for algorithms that search among all cases with missing attribute
values.  For Duke-1 the concept closest fit algorithm was too restrictive: All missing
attribute values were unchanged, so we ignored the Duke-1 data set processed by the
concept closest fit algorithm.  Moreover, global closest fit or concept closest fit
algorithms returned data sets with only reduced number of missing attribute values.
The results are presented in Table 1.

Since using both closest fit options result in some remaining missing attribute
values, for the output files the option most common value was used to replace all
remaining missing attribute values by the actual attribute values.  Thus, finally we
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Table 3.  Rule sets
Global Concept Most

closest fit closest fit common value
Number of Preterm 734 – 618
rules Fullterm 710 – 775

Duke-1
Average
strength Preterm 4.87 – 8.97
of rule set Fullterm 39.08 – 44.73
Number of Preterm 1,202 483 1,022
rules Fullterm 1,250 583 1,642

Duke-2
Average
strength Preterm 2.71 9.69 4.60
of rule set Fullterm 15.8 43.99 11.37

obtained five pre-processed data sets without any missing attribute values.
To reduce error rate during classification we used a very special discretization.

First, in  the training data set, for any numerical attribute, values were sorted.  Every
value v was replaced by the interval [v, w), where w was the next bigger values than v
in the sorted list.  Our approach to discretization is the most cautious since, in the
training data set, we put only one attribute value in each interval.  For testing data
sets, values were replaced by the corresponding intervals taken from the training data
set.  It could happen that a few values come into the same interval.

Surprisingly, four out of five training data sets, after replacing missing attribute
values by actual attribute values and by applying our cautious discretization, were
inconsistent.  The training data sets are described by Table 2.

For inconsistent training data sets only possible rule sets were used for
classification.  Certain rules, as follows from [8], usually provide a greater error rate.
Rule induction was a time-consuming process.  On a DEC Alpha 21164 computer,
with 512 MB of RAM, 533 MHz clock speed, rule sets were induced in elapsed real
time between 21 (for Duke-2 processed by the concept closest fit algorithm) and 133
hours (for Duke-2 processed by the global concept fit algorithm).  Some statistics
about rule sets are presented in Table 3.

As follows from Table 3, as a result of unbalanced data sets, the average rule
strength for rules describing fullterm birth is much greater than the corresponding rule
strength for preterm birth.  Consequently, the error rate on the original rule sets is not
a good indicator of the quality of a rule set, as follows from [9].

Our basic concept is the class of preterm cases.  Hence the set of all correctly
predicted preterm cases are called true-positives, incorrectly predicted preterm cases
(i.e., predicted as fullterm) are called false-negatives, correctly predicted fullterm cases
are called true-negatives, and incorrectly predicted fullterm cases are called false-
positives.

Sensitivity is the conditional probability of true-positives given actual preterm
birth, i.e., the ratio of the number of true-positives to the sum of the number of true-
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Fig. 1.  P(TP) – P(FP) versus rule strength multiplier for Duke-2 data set and most
common value method used for replacing missing attribute values

positives and false-negatives.  It will be denoted by P(TP), following notation from
[15].  Specificity is the conditional probability of true-negatives given fullterm birth,
i.e., the ratio of the number of true-negatives to the sum of the number of true-
negatives and false-positives.  It will be denoted by P(TN).  Similarly, the conditional
probability of false-negatives, given actual preterm birth, and equal to 1 – P(TP), will
be denoted by P(FN) and the conditional probability of false-positives, given actual
fullterm birth, and equal to 1 – P(TN), will be denoted by P(FP).  Obviously,

Sensitivity + Specificity = P(TP) – P(FP) + 1,

so all conclusions drawn from the observations of the sum of sensitivity and
specificity can be drawn from observations of P(TP) – P(FP).  Another study of the
sum of sensitivity and specificity was presented in [1].

Following [9], we computed the maximum of the difference between the
conditional probabilities for true-positives given actual preterm birth and false-
positives given actual fullterm birth as a function of the rule strength multiplier for
the preterm rule set.  A representative chart is presented in Fig. 1.  For completeness,
a typical chart (Fig. 2) shows how the true-positive, true-negative and total error rate
change as a function of the rule strength multiplier.  The total error rate is defined as
the ratio of the number of true-positives and true-negatives to the total number of
testing cases.

410 Jerzy W. Grzymala-Busse et al.



0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 2 4 6 8 1 0
Rule strength multiplier

Series1
Series2
Series3

Fig. 2.  Sensitivity (series 1), specificity (series 2), and total error rate (series 3)
versus rule strength multiplier for Duke-2 data set and most common value method
used for replacing missing attribute values

Again, following the idea from [9], in our experiments we were increasing the
strength multiplier for each five rules describing preterm birth and observed P(TP) –
P(FP).  For each rule set, there exists some value of the rule strength multiplier,
called critical, for which the values of P(TP) – P(FP) jumps from the minimal value
to the maximal value.  The respective values of true positives, true negatives, etc.,
and the total error rate, are also called critical.  The results are summarized in Table 4.
The total error rate, corresponding to the rule strength multiplier equal to one, is
called initial.

The corresponding values of P(TP) – P(FP) are presented in Table 4.  The critical
total error rate from Table 4 is computed as the total error rate for the maximum of
P(TP) – P(FP).

4  Conclusions

In our experiments the only difference between the five rule sets used for
diagnosis of preterm birth is handling the missing attribute values.  The maximum of
the sum of sensitivity and specificity (or the maximum of P(TP) – P(FP)) is a good
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Table 4.  Results of experiments

Global Concept Most
closest fit closest fit common value

Duke-1 Duke-2 Duke-2 Duke-1 Duke-2
Initial total
error rate 21.67 21.93 20.75 22.15 22.27

Critical total
error rate 68.48 64.09 54.30 42.40 45.88

Maximum of
P(TP) – P(FP) 3.65 5.97 11.69 17.07 14.43

Minimum of
P(TP) – P(FP) –15.96 –11.28 –5.37 –3.52 –2.67

Critical number of
true-positives 882 838 747 615 639

Critical number
of true-negatives 692 955 1535 2261 2063

Critical rule
strength multiplier 8.548 6.982 6.1983 6.1855 3.478

indicator of usefulness of the rule set for diagnosis of preterm birth.  It is the most
important criterion of quality of the rule set.  In terms of the maximum of the sum of
sensitivity and specificity (or, equivalently, the maximum of P(TP) – P(FP)), the best
data sets were processed by the most common value algorithm for missing attribute
values.  Note that the name of the algorithm is somewhat misleading because, in our
experiments, we used this algorithm to compute the most common attribute value for
each concept separately.  The next best method is the concept closest fit algorithm.
The worst results were obtained by the global closest fit.

The above ranking could be discovered not only by using the criterion of the
maximum of the sum of sensitivity and specificity but also by using other criteria,
for example, the minimum of the sum of sensitivity and specificity, the number of
critical true-positive cases, critical false-positive cases, etc.

The initial total error rate is a poor indicator of the performance of an algorithm
for handling missing attribute values.  Similarly, the number of conflicting cases in
the input data is a poor indicator.

Finally, it can be observed that the smaller values of the minimum of P(TP) –
P(FP) correspond to the smaller values of the maximum of P(TP) – P(FP), so that
the sum of the absolute values of these two numbers is roughly speaking constant.
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