
Data with Missing Attribute Values:
Generalization of Indiscernibility Relation

and Rule Induction

Jerzy W. Grzymala-Busse1,2

1 Department of Electrical Engineering and Computer Science, University of Kansas
Lawrence, KS 66045, USA

2 Institute of Computer Science, Polish Academy of Sciences, 01-237 Warsaw, Poland
Jerzy@ku.edu

http://lightning.eecs.ku.edu/index.html

Abstract. Data sets, described by decision tables, are incomplete when
for some cases (examples, objects) the corresponding attribute values are
missing, e.g., are lost or represent “do not care” conditions. This paper
shows an extremely useful technique to work with incomplete decision
tables using a block of an attribute-value pair. Incomplete decision ta-
bles are described by characteristic relations in the same way complete
decision tables are described by indiscernibility relations. These char-
acteristic relations are conveniently determined by blocks of attribute-
value pairs. Three different kinds of lower and upper approximations for
incomplete decision tables may be easily computed from characteristic
relations. All three definitions are reduced to the same definition of the
indiscernibility relation when the decision table is complete. This paper
shows how to induce certain and possible rules for incomplete decision
tables using MLEM2, an outgrow of the rule induction algorithm LEM2,
again, using blocks of attribute-value pairs. Additionally, the MLEM2
may induce rules from incomplete decision tables with numerical at-
tributes as well.

1 Introduction

We will assume that data sets are presented as decision tables. In such a table
columns are labeled by variables and rows by case names. In the simplest case
such case names, also called cases, are numbers. Variables are categorized as
either independent, also called attributes, or dependent, called decisions. Usually
only one decision is given in a decision table. The set of all cases that correspond
to the same decision value is called a concept (or a class).

In most articles on rough set theory it is assumed that for all variables and all
cases the corresponding values are specified. For such tables the indiscernibility
relation, one of the most fundamental ideas of rough set theory, describes cases
that can be distinguished from other cases.

However, in many real-life applications, data sets have missing attribute val-
ues, or, in other words, the corresponding decision tables are incompletely spec-

J.F. Peters et al. (Eds.): Transactions on Rough Sets I, LNCS 3100, pp. 78–95, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Data with Missing Attribute Values 79

ified. For simplicity, incompletely specified decision tables will be called incom-
plete decision tables.

In this paper we will assume that there are two reasons for decision tables
to be incomplete. The first reason is that an attribute value, for a specific case,
is lost. For example, originally the attribute value was known, however, due to
a variety of reasons, currently the value is not recorded. Maybe it was recorded
but is erased. The second possibility is that an attribute value was not relevant
– the case was decided to be a member of some concept, i.e., was classified, or
diagnosed, in spite of the fact that some attribute values were not known. For
example, it was feasible to diagnose a patient regardless of the fact that some test
results were not taken (here attributes correspond to tests, so attribute values
are test results). Since such missing attribute values do not matter for the final
outcome, we will call them “do not care” conditions. The main objective of this
paper is to study incomplete decision tables, i.e., incomplete data sets, or, yet
in different words, data sets with missing attribute values. We will assume that
in the same decision table some attribute values may be lost and some may be
“do not care” conditions. The first paper dealing with such decision tables was
[6].

For such incomplete decision tables there are two special cases: in the first
case, all missing attribute values are lost, in the second case, all missing attribute
values are “do not care” conditions. Incomplete decision tables in which all
attribute values are lost, from the viewpoint of rough set theory, were studied
for the first time in [8], where two algorithms for rule induction, modified to
handle lost attribute values, were presented. This approach was studied later
in [13–15], where the indiscernibility relation was generalized to describe such
incomplete decision tables.

On the other hand, incomplete decision tables in which all missing attribute
values are “do not care” conditions, from the view point of rough set theory,
were studied for the first time in [3], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being “do not care
conditions”, were extensively studied in [9], [10], including extending the idea of
the indiscernibility relation to describe such incomplete decision tables.

In general, incomplete decision tables are described by characteristic rela-
tions, in a similar way as complete decision tables are described by indiscerni-
bility relations [6].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and concept,
there are three different possibilities to define lower and upper approximations,

80 Jerzy W. Grzymala-Busse

called singleton, subset, and concept approximations [6]. Singleton lower and
upper approximations were studied in [9], [10], [13–15]. Note that similar three
definitions of lower and upper approximations, though not for incomplete deci-
sion tables, were studied in [16–18]. In this paper we further discuss applications
to data mining of all three kinds of approximations: singleton, subset and con-
cept. As it was observed in [6], singleton lower and upper approximations are
not applicable in data mining.

The next topic of this paper is demonstrating how certain and possible
rules may be computed from incomplete decision tables. An extension of the
well-known LEM2 algorithm [1], [4], MLEM2, was introduced in [5]. Originally,
MLEM2 induced certain rules from incomplete decision tables with missing at-
tribute values interpreted as lost and with numerical attributes. Using the idea
of lower and upper approximations for incomplete decision tables, MLEM2 was
further extended to induce both certain and possible rules from a decision table
with some missing attribute values being lost and some missing attribute values
being “do not care” conditions, while some attributes may be numerical.

2 Blocks of Attribute-Value Pairs
and Characteristic Relations

Let us reiterate that our basic assumption is that the input data sets are pre-
sented in the form of a decision table. An example of a decision table is shown
in Table 1.

Table 1. A complete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high yes no yes
2 very high yes yes yes
3 high no no no
4 high yes yes yes
5 high yes yes no
6 normal yes no no
7 normal no yes no
8 normal yes no yes

Rows of the decision table represent cases, while columns are labeled by
variables. The set of all cases will be denoted by U . In Table 1, U = {1, 2, ..., 8}.
Independent variables are called attributes and a dependent variable is called a
decision and is denoted by d. The set of all attributes will be denoted by A. In
Table 1, A = {Temperature, Headache, Nausea}. Any decision table defines a
function ρ that maps the direct product of U and A into the set of all values. For
example, in Table 1, ρ(1, T emperature) = high. Function ρ describing Table 1 is
completely specified (total). A decision table with completely specified function
ρ will be called completely specified, or, for the sake of simplicity, complete.

Data with Missing Attribute Values 81

Rough set theory [11], [12] is based on the idea of an indiscernibility relation,
defined for complete decision tables. Let B be a nonempty subset of the set A of
all attributes. The indiscernibility relation IND(B) is a relation on U defined
for x, y ∈ U as follows

(x, y) ∈ IND(B) if and only if ρ(x, a) = ρ(y, a) for all a ∈ B.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B . For
example, for Table 1, elementary sets of IND(A) are {1}, {2}, {3}, {4, 5}, {6,
8}, {7}. The indiscernibility relation IND(B) may be computed using the idea
of blocks of attribute-value pairs. Let a be an attribute, i.e., a ∈ A and let v
be a value of a for some case. For complete decision tables if t = (a, v) is an
attribute-value pair then a block of t, denoted [t], is a set of all cases from U
that for attribute a have value v. For Table 1,

[(Temperature, high)] = {1, 3, 4, 5},
[(Temperature, very high)] = {2},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {1, 2, 4, 5, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6},
[(Nausea, yes)] = {2, 4, 5, 7}.
The indiscernibility relation IND(B) is known when all elementary blocks

of IND(B) are known. Such elementary blocks of B are intersections of the
corresponding attribute-value pairs, i.e., for any case x ∈ U ,

[x]B = ∩{[(a, v)]|a ∈ B, ρ(x, a) = v}.

We will illustrate the idea how to compute elementary sets of B for Table 1
and B = A.

[1]A = [(Temperature, high)]∩ [(Headache, yes)] ∩ [(Nausea, no)] = {1},
[2]A = [(Temperature, very high)]∩ [(Headache, yes)]∩ [(Nausea, yes)] = {2},
[3]A = [(Temperature, high)]∩ [(Headache, no)] ∩ [(Nausea, no)] = {3},
[4]A = [5]A = [(Temperature, high)] ∩ [(Headache, yes)] ∩ [(Nausea, yes)] =
{4, 5},
[6]A = [8]A = [(Temperature, normal)] ∩ [(Headache, yes)] ∩ [(Nausea, no] =
{6, 8},
[7]A = [(Temperature, normal)] ∩ [(Headache, no] ∩ [(Nausea, yes)] = {7}.

In practice, input data for data mining are frequently affected by missing
attribute values. In other words, the corresponding function ρ is incompletely
specified (partial). A decision table with an incompletely specified function ρ
will be called incompletely specified, or incomplete.

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that all missing attribute values
are denoted either by “?” or by “*”, lost values will be denoted by “?”, “do not

82 Jerzy W. Grzymala-Busse

Table 2. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes
2 very high yes yes yes
3 ? no no no
4 high yes yes yes
5 high ? yes no
6 normal yes no no
7 normal no yes no
8 * yes * yes

care” conditions will be denoted by “*”. Additionally, we will assume that for
each case at least one attribute value is specified.

Incomplete decision tables are described by characteristic relations instead of
indiscernibility relations. Also, elementary blocks are replaced by characteristic
sets. An example of an incomplete table is presented in Table 2.

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified. If for an attribute a there exists a case x such that
ρ(x, a) =?, i.e., the corresponding value is lost, then the case x is not included in
the block [(a, v)] for any value v of attribute a. If for an attribute a there exists
a case x such that the corresponding value is a “do not care” condition, i.e.,
ρ(x, a) = ∗, then the corresponding case x should be included in blocks [(a, v)]
for all values v of attribute a. This modification of the definition of the block
of attribute-value pair is consistent with the interpretation of missing attribute
values, lost and “do not care” condition. Thus, for Table 2

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.
The characteristic set KB(x) is the intersection of blocks of attribute-value

pairs (a, v) for all attributes a from B for which ρ(x, a) is specified and ρ(x, a) =
v. For Table 2 and B = A,

KA(1) = {1, 4, 5, 8} ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = {2, 4, 6, 8}.

Data with Missing Attribute Values 83

Characteristic set KB(x) may be interpreted as the smallest set of cases
that are indistinguishable from x using all attributes from B, using a given
interpretation of missing attribute values. Thus, KA(x) is the set of all cases
that cannot be distinguished from x using all attributes.

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).

The characteristic relation R(B) is reflexive but – in general – does not need
to be symmetric or transitive. Also, the characteristic relation R(B) is known if
we know characteristic sets K(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7), (8,
2), (8, 4), (8, 6), (8, 8)}. The most convenient way is to define the characteristic
relation through the characteristic sets. Nevertheless, the characteristic relation
R(B) may be defined independently of characteristic sets in the following way:

(x, y) ∈ R(B) if and only if ρ(x, a) = ρ(y, a) or ρ(x, a) = ∗ orρ(y, a) = ∗
for all a ∈ B such that ρ(x, a)?.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined by J. Stefanowski and A. Tsoukias in [14], see
also, e.g., [13], [15]. In this paper that characteristic relation will be denoted by
LV (B), where B is a nonempty subset of the set A of all attributes. For x, y ∈ U
characteristic relation LV (B) is defined as follows:

(x, y) ∈ LV (B) if and only if ρ(x, a) = r(y, a)
for all a ∈ B such that ρ(x, a) �=?.

For any decision table in which all missing attribute values are lost, the
characteristic relation LV (B) is reflexive, but – in general – does not need to be
symmetric or transitive.

For decision tables where all missing attribute values are “do not care” con-
ditions a special characteristic relation, in this paper denoted by DCC(B), was
defined by M. Kryszkiewicz in [9], see also, e.g., [10]. For x, y ∈ U , the charac-
teristic relation DCC(B) is defined as follows:

(x, y) ∈ DCC(B) if and only if ρ(x, a) = ρ(y, a) orρ(x, a) = ∗ or ρ(y, a) = ∗
for all a ∈ B.

Relation DCC(B) is reflexive and symmetric but – in general – not transitive.
Obviously, characteristic relations LV (B) and DCC(B) are special cases of

the characteristic relation R(B). For a completely specified decision table, the
characteristic relation R(B) is reduced to IND(B).

84 Jerzy W. Grzymala-Busse

3 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation. Any finite union of elementary
sets, associated with B, will be called a B-definable set. Let X be any subset of
the set U of all cases. The set X is called a concept and is usually defined as
the set of all cases defined by a specific value of the decision. In general, X is
not a B-definable set. However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X , denoted by BX and
defined as follows

{x ∈ U |[x]B ⊆ X}.
The second set is called a B-upper approximation of X , denoted by BX and

defined as follows
{x ∈ U |[x]B ∩ X �= ∅.

The above shown way of computing lower and upper approximations, by con-
structing these approximations from singletons x, will be called the first method.
The B-lower approximation of X is the greatest B-definable set, contained in
X . The B-upper approximation of X is the smallest B-definable set containing
X .

As it was observed in [12], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B |x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may de defined, using the second method,
by

∪{[x]B|x ∈ U, [x]B ∩ X �= ∅).
For incompletely specified decision tables lower and upper approximations

may be defined in a few different ways. First, the definition of definability should
be modified. Any finite union of characteristic sets of B is called a B-definable
set. In this paper we suggest three different definitions of lower and upper ap-
proximations. Again, let X be a concept, let B be a subset of the set A of all
attributes, and let R(B) be the characteristic relation of the incomplete decision
table with characteristic sets K(x), where x ∈ U . Our first definition uses a
similar idea as in the previous articles on incompletely specified decision tables
[9], [10], [13], [14], [15], i.e., lower and upper approximations are sets of sin-
gletons from the universe U satisfying some properties. Thus, lower and upper
approximations are defined by analogy with the above first method, by con-
structing both sets from singletons. We will call these approximations singleton.
A singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U |KB(x) ⊆ X}.

A singleton B-upper approximation of X is

BX = {x ∈ U |KB(x) ∩ X �= ∅}.

Data with Missing Attribute Values 85

In our example of the decision table presented in Table 2 let us say that
B = A. Then the singleton A-lower and A-upper approximations of the two
concepts: {1, 2, 4, 8} and {3, 5, 6, 7} are:

A{1, 2, 4, 8} = {1, 2, 4},

A{3, 5, 6, 7} = {3, 7},
A{1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},
A{3, 5, 6, 7} = {3, 5, 6, 7, 8}.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x)|x ∈ U, KB(x) ⊆ X}.
A subset B-upper approximation of X is

BX = ∪{KB(x)|x ∈ U, KB(x) ∩ X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X , single-
ton B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively. For the same decision table, pre-
sented in Table 2, the subset A-lower and A-upper approximations are

A{1, 2, 4, 8} = {1, 2, 4, 8},

A{3, 5, 6, 7} = {3, 7},
A{1, 2, 4, 8} = {1, 2, 4, 5, 6, 8},

A{3, 5, 6, 7} = {2, 3, 4, 5, 6, 7, 8}.
The second possibility is to modify the subset definition of lower and up-

per approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ⊆ X}.
Obviously, the subset B-lower approximation of X is the same set as the

concept B-lower approximation of X . A concept B-upper approximation of the
concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ∩ X �= ∅} = ∪{KB(x)|x ∈ X}.

The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X . Besides, the concept B-upper approximations are truly the

86 Jerzy W. Grzymala-Busse

smallest B-definable sets containing X . For the decision table presented in Table
2, the concept A-lower and A-upper approximations are

A{1, 2, 4, 8} = {1, 2, 4, 8},

A{3, 5, 6, 7} = {3, 7},

A{1, 2, 4, 8} = {1, 2, 4, 6, 8},

A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

Note that for complete decision tables, all three definitions of lower approxi-
mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

4 Rule Induction

In the first step of processing the input data file, the data mining system LERS
(Learning from Examples based on Rough Sets) checks if the input data file
is consistent (i.e., if the file does not contain conflicting examples). Table 1 is
inconsistent because the fourth and the fifth examples are conflicting. For these
examples, the values of all three attributes are the same (high, yes, yes), but
the decision values are different, yes for the fourth example and no for the fifth
example. If the input data file is inconsistent, LERS computes lower and upper
approximations of all concepts. Rules induced from the lower approximation of
the concept certainly describe the concept, so they are called certain. On the
other hand, rules induced from the upper approximation of the concept describe
the concept only possibly (or plausibly), so they are called possible [2].

The same idea of blocks of attribute-value pairs is used in a rule induction
algorithm LEM2 (Learning from Examples Module, version 2), a component of
LERS. LEM2 learns discriminant description, i.e., the smallest set of minimal
rules, describing the concept. The option LEM2 of LERS is most frequently used
since – in most cases – it gives best results. LEM2 explores the search space of
attribute-value pairs. Its input data file is a lower or upper approximation of a
concept, so its input data file is always consistent. In general, LEM2 computes a
local covering and then converts it into a rule set. We will quote a few definitions
to describe the LEM2 algorithm.

Let B be a nonempty lower or upper approximation of a concept represented
by a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ �= [T] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection

Data with Missing Attribute Values 87

of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,
(2)

⋂
t∈T [T] = B, and

T is minimal, i.e., T has the smallest possible number of members.

The procedure LEM2 is presented below.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩ G �= ∅} ;
while T = ∅ or [T] �⊆ B

begin
select a pair t ∈ T (G) such that |[t] ∩ G|
is maximum; if a tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if another tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩ G ;
T (G) := {t|[t] ∩ G �= ∅};
T (G) := T (G) − T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B − ∪T∈T [T];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.

MLEM2 is a modified version of the algorithm LEM2. The original algorithm
LEM2 needs discretization, a preprocessing, to deal with numerical attributes.
The MLEM2 algorithm can induce rules from incomplete decision tables with
numerical attributes. Its previous version induced certain rules from incomplete
decision tables with missing attribute values interpreted as lost and with numer-
ical attributes. Recently, MLEM2 was further extended to induce both certain
and possible rules from a decision table with some missing attribute values be-
ing lost and some missing attribute values being “do not care” conditions, while

88 Jerzy W. Grzymala-Busse

some attributes may be numerical. Rule induction from decision tables with nu-
merical attributes will be described in the next section. In this section we will
describe a new way in which MLEM2 handles incomplete decision tables.

Since all characteristic sets KB(x), where x ∈ U , are intersections of attribute-
value pair blocks for attributes from B, and for subset and concept definitions
of B–lower and B–upper approximations are unions of sets of the type KB(x),
it is most natural to use an algorithm based on blocks of attribute-value pairs,
such as LEM2 [1], [4] for rule induction.

First of all let us examine rule induction usefulness for the three different
definition of lower and upper approximations: singleton, subset and concept.
The first observation is that singleton lower and upper approximations should
not be used for rule induction. Let us explain that on the basis of our example
of the decision table from Table 2. The singleton A-lower approximation of the
concept {1, 2, 4, 8} is the set {1, 2, 4}. Our expectation is that we should be
able to describe the set {1, 2, 4} using given interpretation of missing attribute
values, while in the rules we are allowed to use conditions being attribute-value
pairs. However, this is impossible, because, as follows from the list of all sets
KA(x) there is no way to describe case 1 not describing at the same time case
8, but {1, 8} �⊆ {1, 2, 4}. Similarly, there is no way to describe the singleton
A-upper approximation of the concept {3, 5, 6, 7}, i.e., the set {3, 5, 6, 7, 8},
since there is no way to describe case 5 not describing, at the same time, cases
4 and 8, however, {4, 5, 8} �⊆ {3, 5, 6, 7, 8}. On the other hand, both subset and
concept A-lower and A-upper approximations are unions of the characteristic
sets of the type KA(x), therefore, it is always possible to induce certain rules
from subset and concept A-lower approximations and possible rules from con-
cept and subset A-upper approximations. Subset A-lower approximations are
identical with concept A-lower approximations so it does not matter which ap-
proximations we are going to use. Since concept A-upper approximations are
subsets of the corresponding subset A-upper approximations, it is more feasible
to use concept A-upper approximations, since they are closer to the concept X ,
and rules will more precisely describe the concept X . Moreover, it better fits into
the idea that the upper approximation should be the smallest set containing the
concept. Therefore, we will use for rule induction only concept lower and upper
approximations.

In order to induce certain rules for our example of the decision table pre-
sented in Table 2, we have to compute concept A-lower approximations for both
concepts, {1, 2, 4, 8} and {3, 5, 6, 7}. The concept lower approximation of {1, 2,
4, 8} is the same set {1, 2, 4, 8}, so we are going to pass to the procedure LEM2
as the set B. Initially G = B. The set T (G) is the following set {(Temperature,
high), (Temperature, very high), (Temperature, normal), (Headache, yes), (Nau-
sea, no), Nausea, yes)}.

For three attribute-value pairs from T (G), namely, (Temperature, high),
(Headache, yes) and (Nausea, yes), the following value

[(attribute, value)]∩ G

Data with Missing Attribute Values 89

is maximum. The second criterion, the smallest cardinality of [(attribute, value)],
indicates (Temperature, high), (Headache, yes) (in both cases that cardinality
is equal to four). The last criterion, “first pair”, selects (Temperature, high).
Thus T = {(Temperature, high)}, G = {1, 4, 8}, and the new T (G) is equal to
{(Temperature, very high), (Temperature, normal), (Headache, yes), (Nausea,
no), Nausea, yes)}.

Since [(Temperature, high)] �⊆ B, we have to perform the next iteration of
the inner WHILE loop. This time (Headache, yes) will be selected, the new T
= {(Temperature, high), (Headache, yes)} and new G is equal to {4, 8}. Since
[T] = [(Temperature, high)]∩ [(Headache, yes)] = {4, 8} ⊆ B, the first minimal
complex is computed.

It is not difficult to see that we cannot drop any of these two attribute-value
pairs, so T = {T }, and the new G is equal to B − {4, 8} = {1, 2}.

During the second iteration of the outer WHILE loop, the next minimal
complex T is identified as {(Temperature, very high)}, so T = {{(Temperature,
high), (Headache, yes)}, {(Temperature, very high)}} and G = {1}.

We need one additional iteration of the outer WHILE loop, the next mini-
mal complex T is computed as {(Temperature, high), (Nausea, no)}, and T =
{{(Temperature, high), (Headache, yes)}, {(Temperature, very high)}, {(Tem-
perature, high), (Nausea, no)}} becomes the first local covering, since we cannot
drop any of minimal complexes from T . The set of certain rules, corresponding
to T and describing the concept {1, 2, 4, 8}, is

(Temperature, high) & (Headache, yes) -> (Flu, yes),
(Temperature, very high) -> (Flu, yes),
(Temperature, high) & (Nausea, no) -> (Flu, yes).

Remaining rule sets, certain for the second concept equal to {3, 5, 6, 7}, and
both sets of possible rules are compute in a similar manner. Eventually, rules in
the LERS format (every rule is equipped with three numbers, the total number
of attribute-value pairs on the left-hand side of the rule, the total number of
examples correctly classified by the rule during training, and the total number
of training cases matching the left-hand side of the rule) are:
certain rule set:

2, 2, 2
(Temperature, high) & (Headache, yes) -> (Flu, yes)
1, 2, 2
(Temperature, very high) -> (Flu, yes)
2, 2, 2
(Temperature, high) & (Nausea, no) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)

and possible rule set:

90 Jerzy W. Grzymala-Busse

1, 3, 4
(Headache, yes) -> (Flu, yes)
2, 2, 2
(Temperature, high) & (Nausea, no) -> (Flu, yes)
2, 1, 3
(Nausea, yes) & (Temperature, high) -> (Flu, no)
1, 2, 2
(Headache, no) -> (Flu, no)
1, 2, 3
(Temperature, normal) -> (Flu, no)

5 Other Approaches to Missing Attribute Values

So far we have used two approaches to missing attribute values, in the first one
a missing attribute value was interpreted as lost, in the second as a “do not
care” condition. There are many other possible approaches to missing attribute
values, for some discussion on this topic see [7]. Our belief is that for any possible
interpretation of a missing attribute vale, blocks of attribute-value pairs may
be re-defined, a new characteristic relation may be computed, corresponding
lower and upper approximations computed as well, and eventually, corresponding
certain and possible rules induced.

As an example we may consider another interpretation for “do not care”
conditions. So far, in computing the block for an attribute-value pair (a, v) we
added all cases with value “*” to such block [(a, v)]. Following [7], we may
consider another interpretation of “do not care conditions”: If for an attribute
a there exists a case x such that the corresponding value is a “do not care”
condition, i.e., ρ(x, a) = ∗, then the corresponding case x should be included in
blocks [(a, v)] for all values v of attribute a with the same decision value as for
x (i.e., we will add x only to members of the same concept to which x belongs).
With this new interpretation of “*”s, blocks of attribute-value pairs for Table 2
are:

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.
The characteristic set KB(x) for Table 2, a new interpretation of “*”s, and

B = A, are:

KA(1) = {1, 4, 5, 8} ∩ {1, 3, 6} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = {3, 7} ∩ {1, 3, 6} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},

Data with Missing Attribute Values 91

KA(5) = {1, 4, 5, 8} ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7} ∩ {2, 4, 6, 8} ∩ {1, 3, 6} = {6},
KA(7) = {6, 7} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = {2, 4, 6, 8}.
The characteristic relation R(B) is {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4,

4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}. Then
we may define lower and upper approximations and induce rules using a similar
technique as in the previous section.

6 Incomplete Decision Tables with Numerical Attributes

An example of an incomplete decision table with a numerical attribute is pre-
sented in Table 3.

Table 3. An incomplete decision table with a numerical attribute

Attributes Decision

Case Temperature Headache Nausea Flu

1 98 ? no yes
2 101 yes yes yes
3 ? no no no
4 99 yes yes yes
5 99 ? yes no
6 96 yes no no
7 96 no yes no
8 * yes * yes

Numerical attributes should be treated in a little bit different way as symbolic
attributes. First, for computing characteristic sets, numerical attributes should
be considered as symbolic. For example, for Table 3 the blocks of the numerical
attribute Temperature are:

[(Temperature, 96)] = {6, 7, 8},
[(Temperature, 98)] = {1, 8},
[(Temperature, 99)] = {4, 5, 8},
[(Temperature, 101)] = {2, 8}.
Remaining blocks of attribute-value pairs, for attributes Headache and Nau-

sea, are the same as for Table 2. The characteristic sets KB(x) for Table 3 and
B = A are:

KA(1) = {1, 8} ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {4, 5, 8} ∩ {2, 4, 5, 7, 8} = {4, 5, 8},

92 Jerzy W. Grzymala-Busse

KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = {2, 4, 6, 8}.
The characteristic relation R(B) is {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4,

4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7), (8, 2), (8, 4), (8, 6), (8,
8)}. For the decision presented in Table 3, the concept A-lower and A-upper
approximations are

A{1, 2, 4, 8} = {1, 2, 4, 8},
A{3, 5, 6, 7} = {3, 7},

A{1, 2, 4, 8} = {1, 2, 4, 6, 8},
A{3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

For inducing rules, blocks of attribute-value pairs are defined differently than
in computing characteristic sets. MLEM2 has an ability to recognize integer and
real numbers as values of attributes, and labels such attributes as numerical. For
numerical attributes MLEM2 computes blocks in a different way than for sym-
bolic attributes. First, it sorts all values of a numerical attribute, ignoring missing
attribute values. Then it computes cutpoints as averages for any two consecutive
values of the sorted list. For each cutpoint c MLEM2 creates two blocks, the first
block contains all cases for which values of the numerical attribute are smaller
than c, the second block contains remaining cases, i.e., all cases for which values
of the numerical attribute are larger than c. The search space of MLEM2 is the
set of all blocks computed this way, together with blocks defined by symbolic
attributes. Starting from that point, rule induction in MLEM2 is conducted the
same way as in LEM2. Note that if in a rule there are two attribute value pairs
with overlapping intervals, a new condition is computed with the intersection of
both intervals. Thus, the corresponding blocks for Temperature are:

[(Temperature, 96..97)] = {6, 7, 8},
[(Temperature, 97..101)] = {1, 2, 4, 5, 8},
[(Temperature, 96..98.5)] = {1, 6, 7, 8},
[(Temperature, 98.5..101)] = {2, 4, 5, 8},
[(Temperature, 96..100)] = {1, 4, 5, 6, 7, 8},
[(Temperature, 100..101)] = {2, 8}.
Remaining blocks of attribute-value pairs, for attributes Headache and Nau-

sea, are the same as for Table 2. Using the MLEM2 algorithm, the following
rules are induced from the concept approximations:

certain rule set:

2, 3, 3
(Temperature, 98.5..101) & (Headache, yes) -> (Flu, yes)
1, 2, 2
(Temperature, 97..98.5) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)

Data with Missing Attribute Values 93

possible rule set:

1, 3, 4
(Headache, yes) -> (Flu, yes)
2, 2, 3
(Temperature, 96..98.5) & (Nausea, no) -> (Flu, yes)
2, 2, 4
(Temperature, 96..100) & (Nausea, yes) -> (Flu, no)
1, 2, 3
(Temperature, 96..97) -> (Flu, no)
1, 2, 2
(Headache, no) -> (Flu, no)

7 Conclusions

It was shown in the paper that the idea of attribute-value pair blocks is an
extremely useful tool. That idea may be used for computing characteristic re-
lations for incomplete decision tables; in turn, characteristic sets are used for
determining lower and upper approximations. Furthermore, the same idea of

�

�

�

�

�

Inducing certain and possible rules

Computing additional blocks of attribute-value pairs for numerical attributes

Computing lower and upper approximations

Computing characteristic relations

Computing characteristic sets

Computing attribute-value pair blocks

Fig. 1. Using attribute-value pair blocks for rule induction from incomplete decision
tables

94 Jerzy W. Grzymala-Busse

attribute-value pair blocks may be used for rule induction, for example, using
the MLEM2 algorithm. The process is depicted in Figure 1.

Note that it is much more convenient to define the characteristic relations
through the two-stage process of determining blocks of attribute-value pairs and
then computing characteristic sets than to define characteristic relations, for
every interpretation of missing attribute values, separately.

For completely specified decision tables any characteristic relation is reduced
to an indiscernibility relation. Also, it is shown that the most useful way of
defining lower and upper approximations for incomplete decision tables is a new
idea of concept lower and upper approximations. Two new ways to define lower
and upper approximations for incomplete decision tables, called subset and con-
cept, and the third way, defined previously in a number of papers [9], [10], [13],
[14], [15] and called here singleton lower and upper approximations, are all re-
duced to respective well-known definitions of lower and upper approximations
for complete decision tables.

References

1. Chan, C.C. and Grzymala-Busse, J.W.: On the attribute redundancy and the
learning programs ID3, PRISM, and LEM2. Department of Computer Science,
University of Kansas, TR-91-14, December 1991, 20 pp.

2. Grzymala-Busse, J.W.: Knowledge acquisition under uncertainty – A rough set
approach. Journal of Intelligent & Robotic Systems 1 (1988), 3–16.

3. Grzymala-Busse, J.W.: On the unknown attribute values in learning from exam-
ples. Proc. of the ISMIS-91, 6th International Symposium on Methodologies for In-
telligent Systems, Charlotte, North Carolina, October 16–19, 1991. Lecture Notes
in Artificial Intelligence, vol. 542, Springer-Verlag, Berlin, Heidelberg, New York
(1991) 368–377.

4. Grzymala-Busse, J.W.: LERS – A system for learning from examples based on
rough sets. In Intelligent Decision Support. Handbook of Applications and Ad-
vances of the Rough Sets Theory, ed. by R. Slowinski, Kluwer Academic Publishers,
Dordrecht, Boston, London (1992) 3–18.

5. Grzymala-Busse., J.W.: MLEM2: A new algorithm for rule induction from im-
perfect data. Proceedings of the 9th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002,
July 1–5, Annecy, France, 243–250.

6. Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values.
Workshop Notes, Foundations and New Directions of Data Mining, the 3-rd In-
ternational Conference on Data Mining, Melbourne, FL, USA, November 19–22,
2003, 56–63.

7. Grzymala-Busse, J.W. and Hu, M.: A comparison of several approaches to missing
attribute values in data mining. Proceedings of the Second International Con-
ference on Rough Sets and Current Trends in Computing RSCTC’2000, Banff,
Canada, October 16–19, 2000, 340–347.

8. Grzymala-Busse, J.W. and A. Y. Wang A.Y.: Modified algorithms LEM1 and
LEM2 for rule induction from data with missing attribute values. Proc. of the
Fifth International Workshop on Rough Sets and Soft Computing (RSSC’97) at
the Third Joint Conference on Information Sciences (JCIS’97), Research Triangle
Park, NC, March 2–5, 1997, 69–72.

Data with Missing Attribute Values 95

9. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Proceed-
ings of the Second Annual Joint Conference on Information Sciences, Wrightsville
Beach, NC, September 28–October 1, 1995, 194–197.

10. Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences
113 (1999) 271–292.

11. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ences 11 (1982) 341–356.

12. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, Boston, London (1991).

13. Stefanowski, J.: Algorithms of Decision Rule Induction in Data Mining. Poznan
University of Technology Press, Poznan, Poland (2001).

14. Stefanowski, J. and Tsoukias, A.: On the extension of rough sets under incomplete
information. Proceedings of the 7th International Workshop on New Directions in
Rough Sets, Data Mining, and Granular-Soft Computing, RSFDGrC’1999, Ube,
Yamaguchi, Japan, November 8–10, 1999, 73–81.

15. Stefanowski, J. and Tsoukias, A.: Incomplete information tables and rough classi-
fication. Computational Intelligence 17 (2001) 545–566.

16. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International
J. of Approximate Reasoning 15 (1996) 291–317.

17. Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set
approximation operators. Information Sciences 111 (1998) 239–259.

18. Yao, Y.Y.: On the generalizing rough set theory. Proc. of the 9th Int. Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC’2003),
Chongqing, China, October 19–22, 2003, 44–51.

	1 Introduction
	2 Blocks of Attribute-Value Pairs and Characteristic Relations
	3 Lower and Upper Approximations
	4 Rule Induction
	5 Other Approaches to Missing Attribute Values
	6 Incomplete Decision Tables with Numerical Attributes
	7 Conclusions
	References

