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Abstract. Web recommender systems anticipate the needs of web users
and provide them with recommendations to personalize their navigation.
Such systems had been expected to have a bright future, especially in e-
commerce and e-learning environments. However, although they have
been intensively explored in the Web Mining and Machine Learning
fields, and there have been some commercialized systems, the quality
of the recommendation and the user satisfaction of such systems are still
not optimal. In this paper, we investigate a novel web recommender sys-
tem, which combines usage data, content data, and structure data in a
web site to generate user navigational models. These models are then fed
back into the system to recommend users shortcuts or page resources.
We also propose an evaluation mechanism to measure the quality of rec-
ommender systems. Preliminary experiments show that our system can
significantly improve the quality of web site recommendation.

1 Introduction

A web recommender system is a web-based interactive software agent. A WRS
attempts to predict user preferences from user data and/or user access data
for the purpose of facilitating and personalizing users’ experience on-line by
providing them with recommendation lists of suggested items. The recommended
items could be products, such as books, movies, and music CDs, or on-line
resources, such as web pages or on-line activities (Path Prediction) [JFM97].
Generally speaking, a web recommender system is composed of two modules: an
off-line module and an on-line module. The off-line module pre-processes data
to generate user models, while the on-line module uses and updates the models
on-the-fly to recognize user goals and predict a recommendation list.

In this paper, we investigate the design of a web recommender system to
recommend on-line resources using content, structure, as well as the usage of web
pages for a web site to model users and user needs. Our preliminary goals are to
recommend on-line learning activities in an e-learning web site, or recommend
shortcuts to users in a given web site after predicting their information needs.

One of the earliest and widely used technologies for building recommender
systems is Collaborative Filtering (CF) [SM95] [JLH99]. CF-based recommender
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systems aggregate explicit user ratings or product preferences in order to gen-
erate user profiles, which recognize users’ interests. A product is recommended
to the current user if it is highly rated by other users who have similar inter-
ests. The CF-based techniques suffer from several problems [SKKR00]. They
rely heavily on explicit user input (e.g., previous customers’ rating/ranking of
products), which is either unavailable or considered intrusive. With sparsity of
such user input, the recommendation precision and quality drop significantly.
The second challenge is related to the system scalability and efficiency. Indeed,
user profile matching has to be performed as an on-line process. For very large
datasets, this may lead to unacceptable latency for providing recommendations.

In recent years there has been increasing interest in applying web usage min-
ing techniques to build web recommender systems. Web usage recommender
systems take web server logs as input, and make use of data mining techniques
such as association rules and clustering to extract navigational patterns, which
are then used to provide recommendations. Web server logs record user browsing
history, which contains much hidden information regarding users and their navi-
gation. They could, therefore, be a good alternative to the explicit user rating or
feedback in deriving user models. In web usage recommender systems, naviga-
tional patterns are generally derived as an off-line process. The most commonly
used approach for web usage recommender systems is using association rules
to associate page hits [SCDT00] [FBH00] [LAR00] [YHW01]. We will test our
approach againt this general technique.

However, a web usage recommender system which focuses solely on web server
logs has its own problems:

– Incomplete or Limited Information Problem: A number of heuristic assump-
tions are typically made before applying any data mining algorithm; as a
result, some patterns generated may not be proper or even correct.

– Incorrect Information Problem: When a web site visitor is lost, the clicks
made by this visitor are recorded in the log, and may mislead future rec-
ommendations. This becomes more problematic when a web site is badly
designed and more people end up visiting unsolicited pages, making them
seem popular.

– Persistence Problem: When new pages are added to a web site, because they
have not been visited yet, the recommender system may not recommend
them, even though they could be relevant. Moreover, the more a page is
recommended, the more it may be visited, thus making it look popular and
boost its candidacy for future recommendation.

To address these problems, we propose an improved web usage recommender
system. Our system attempts to use web server logs to model user navigational
behaviour, as other web usage recommender systems do. However, our approach
differs from other such systems in that we also combine textual content and
connectivity information of web pages, which also do not require user input. We
demonstrate that this approach improves the quality of web site recommenda-
tion. The page textual content is used to pre-process log data to model con-
tent coherent visit sub-sessions, which are then used to generate more accurate



users’ navigational patterns. Structure data, i.e., links between pages, are used
to expand navigational patterns with a rich relevant content. The connectivity
information is also used to compute the importance of pages for the purpose of
ranking recommendations.

A few hybrid web recommender systems have been proposed in the litera-
ture [MDL+00] [NM03]. [MDL+00] adopts a clustering technique to obtain both
site usage and site content profiles in the off-line phase. In the on-line phase,
a recommendation set is generated by matching the current active session and
all usage profiles. Similarly, another recommendation set is generated by match-
ing the current active session and all content profiles. Finally, a set of pages
with the maximum recommendation value across the two recommendation sets
is presented as recommendation. This is called a weighted hybridization method
[Bur02]. In [NM03], the authors use association rule mining, sequential pattern
mining, and contiguous sequential mining to generate three kinds of naviga-
tional patterns in the off-line phase. In the on-line phase, recommendation sets
are selected from the different navigational models, based on a localized degree
of hyperlink connectivity with respect to a user’s current location within the
site. This is called a switching hybridization method [Bur02]. Whether using the
weighted method or the switching method, the combination in these systems
happens only in the on-line phase. Our approach combines usage data and con-
tent data in the off-line phase to generate content coherent navigational models,
which could be a better model for users’ information needs. Still in the off-line
phase, we further combine structure data to improve the models. Also in the off-
line process, we use hyperlinks to attach a rating to web resources. This rating
is used during the on-line phase for ranking recommendations.

The contributions of this paper are as follows: First, we propose a novel web
recommender system, which combines and makes full use of all three available
channels: usage, content, and structure data. This combination is done off-line to
improve efficiency, i.e, low latency. Second, we propose a novel users’ navigational
model. Rather than representing the information need as a sequence of visitation
clicks in a visit, our model assumes different information needs in the same visit;
third, we address all three problems mentioned above by combing all available
information channels.

This paper is organized as follows: Section 2 presents the off-line module of
our system, which pre-processes available usage and web site data, as well as
our on-line module, which generates the recommendation list. Section 3 presents
experimental results assessing the performance of our system.

2 Architecture of a Hybrid Recommender System

As most web usage recommender systems, our system is composed of two mod-
ules: an off-line component, which pre-processes data to generate users’ naviga-
tional models, and an on-line component which is a real-time recommendation
engine. Figure 1 depicts the general architecture of our system. Entries in a
web server log are used to identify users and visit sessions, while web pages or
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resources in the site are clustered based on their content. These clusters are
used to scrutinize the discovered web sessions in order to identify what we call
missions. A mission is a sub-session with a consistent goal. These missions are
in turn clustered to generate navigational patterns, and augmented with their
linked neighbourhood and ranked based on resource connectivity, using the hub
and authority idea [Kle99]. These new clusters (i.e., augmented navigational pat-
terns) are provided to the recommendation engine. When a visitor starts a new
session, the session is matched with these clusters to generate a recommendation
list. The details of the whole process are given below.

2.1 User and Visit Session Identification

A web log is a text file which records information regarding users’ requests to
a web server. A typical web log entry contains a client address, the requested
date address, a timestamp, and other related information. We use similar pre-
processing techniques as in [CMS99] to identify individual users and sessions.
For sessionizing, we chose an idle time of 30 minutes.

2.2 Visit Mission Identification

The last data pre-processing step proposed in [CMS99] is transaction identifica-
tion, which divides individual visit sessions into transactions. In [CMS99], two
transaction identification approaches are proposed: Reference Length approach
and Maximal Forward Reference approach, both of which have been widely ap-
plied in web mining techniques. Rather than dividing sessions into arbitrary
transactions, we identify sub-sessions with coherent information needs. We call
these sub-sessions missions. We assume that a visitor may have different infor-
mation needs to fulfill during a visit, but we make no assumption on the sequence
in which these needs are fulfilled. In the case of transactions in [CMS99] it is
assumed that one information need is fulfilled after the other. A mission would
model a sub-session related to one of these information needs, and would allow



overlap between missions, which would represent a concurrent search in the site.
While in the transaction-based model, pages are labeled as content pages and
auxiliary pages, and a transaction is simply a sequence of auxiliary pages that
ends with a content page, in our mission-based model, the identified sequence is
based on the real content of pages. Indeed, a content page in the transaction-
based model is identified simply based on the time spent on that page, or on
backtracking in the visitor’s navigation. We argue that missions could better
model users’ navigational behavior than transaction. In the model we propose,
users visit a web site with concurrent goals, i.e., different information needs. For
example, a user could fulfill two goals in a visit session: a, b, c, d, in which pages
a and c contribute to one goal, while pages b and d contribute to the other.
Since pages related to a given goal in a visit session are supposed to be content
coherent, whether they are neighbouring each other or not, we use page content
to identify missions within a visit session.

All web site pages are clustered based on their content, and these clusters
are used to identify content coherent clicks in a session. Let us give an example
to illustrate this point. Suppose the text clustering algorithm groups web pages
a, b, c, and e, web pages a, b, c, and f, and web pages a, c and d into three
different content clusters (please note that our text clustering algorithm is a soft
clustering one, which allows a web page to be clustered into several clusters).
Then for a visit session: a, b, c, d, e, f, our system identifies three missions
as follows: mission 1: (a, b, c, e) ; mission 2: (a, b, c, f); and mission 3: (a, c, d).
As seen in this example, mission identification in our system is different from
transaction identification in that we can group web pages into one mission even if
they are not sequential in a visit session. We can see that our mission-based model
generates the transaction-based model, since missions could become transactions
if visitors fulfill their information needs sequentially.

To cluster web pages based on their content, we use a modified version of the
DC-tree algorithm [WF00]. Originally, the DC-tree algorithm was a hard cluster-
ing approach, prohibiting overlap of clusters. We modified the algorithm to allow
web pages to belong to different clusters. Indeed, some web pages could cover
different topics at the same time. In the algorithm, each web page is represented
as a keyword vector, and organized in a tree structure called the DC-tree. The
algorithm does not require the number of clusters to discover as a constraint,
but allows the definition of cluster sizes. This was the appealing property which
made us select the algorithm. Indeed, we do not want either too large or too small
content cluster sizes. Very large clusters cannot help capture missions from ses-
sions, while very small clusters may break potentially useful relations between
pages in sessions.

2.3 Content Coherent Navigational Pattern Discovery

Navigational patterns are sets of web pages that are frequently visited together
and that have related content. These patterns are used by the recommender
system to recommend web pages, if they were not already visited. To discover
these navigational patterns, we simply group the missions we uncovered from the



web server logs into clusters of sub-sessions having commonly visited pages. Each
of the resulting clusters could be viewed as a user’s navigation pattern. Note that
the patterns discovered from missions possess two characteristics: usage cohesive
and content coherent. Usage cohesiveness means the pages in a cluster tend to
be visited together, while content coherence means pages in a cluster tend to be
related to a topic or concept. This is because missions are grouped according
to content information. Since each cluster is related to a topic, and each page
is represented in a keyword vector, we are able to easily compute the topic
vector of each cluster, in which the value of a keyword is the average of the
corresponding values of all pages in the cluster. The cluster topic is widely used
in our system, in both the off-line and on-line phases (see below for details). The
clustering algorithm we adopted for grouping missions is PageGather [PE98].
This algorithm is a soft clustering approach allowing overlap of clusters. Instead
of attempting to partition the entire space of items, it attempts to identify a
small number of high quality clusters based on the clique clustering technique.

2.4 Navigational Pattern Improved with Connectivity

The missions we extracted and clustered to generate navigational patterns are
primarily based on the sessions from the web server logs. These sessions ex-
clusively represent web pages or resources that were visited. It is conceivable
that there are other resources not yet visited, even though they are relevant and
could be interesting to have in the recommendation list. Such resources could
be, for instance, newly added web pages or pages that have links to them not
evidently presented due to bad design. Thus, these pages or resources are never
presented in the missions previously discovered. Since the navigational patterns,
represented by the clusters of pages in the missions, are used by the recom-
mendation engine, we need to provide an opportunity for these rarely visited or
newly added pages to be included in the clusters. Otherwise, they would never
be recommended. To alleviate this problem, we expand our clusters to include
the connected neighbourhood of every page in a mission cluster. The neighbour-
hood of a page p is the set of all the pages directly linked from p and all the
pages that directly link to p. Figure 3(B) illustrates the concept of neighbour-
hood expansion. This approach of expanding the neighbourhood is performed as
follows: we consider each previously discovered navigational pattern as a set of
seeds. Each seed is supplemented with pages it links to and pages from the web
site that link to it. The result is what is called a connectivity graph which now
represents our augmented navigational pattern. This process of obtaining the
connectivity graph is similar to the process used by the HITS algorithm [Kle99]
to find the authority and hub pages for a given topic. The difference is that we
do not consider a given topic, but start from a mission cluster as our set of seeds.
We also consider only internal links, i.e., links within the same web site. After
expanding the clusters representing the navigational patterns, we also augment
the keyword vectors that label the clusters. The new keyword vectors that rep-
resent the augmented navigational patterns have also the terms extracted from
the content of augmented pages.



We take advantage of the built connectivity graph by cluster to apply the
HITS algorithm in order to identify the authority and hub pages within a given
cluster. These measures of authority and hub allow us to rank the pages within
the cluster. This is important because at real time during the recommendation,
it is crucial to rank recommendations, especially when the recommendation list
is long. Authority and hub are mutually reinforcing [Kle99] concepts. Indeed, a
good authority is a page pointed to by many good hub pages, and a good hub is
a page that points to many good authority pages. Since we would like to be able
to recommend pages newly added to the site, in our framework, we consider only
the hub measure. This is because a newly added page would be unlikely to be a
good authoritative page, since not many pages are linked to it. However, a good
new page would probably link to many authority pages; it would, therefore, have
the chance to be a good hub page. Consequently, we use the hub value to rank
the candidate recommendation pages in the on-line module.

2.5 The Recommendation Engine

The previously described process consists of pre-processing done exclusively off-
line. When a visitor starts a new session in the web site, we identify the naviga-
tion pattern after a few clicks and try to match on-the-fly with already captured
navigational patterns. If they were matched, we recommend the most relevant
pages in the matched cluster. Identifying the navigational pattern of the current
visitor consists of recognizing the current focused topic of interest to the user.
A study in [CDG+98] shows that looking on either side of an anchor (i.e., text
encapsulated in a href tag) for a window of 50 bytes would capture the topic
of the linked pages. Based on this study, we consider the anchor clicked by the
current user and its neighbourhood on either side as the contextual topic of in-
terest. The captured topics are also represented by a keyword vector which is
matched with the keyword vectors of the clusters representing the augmented
navigational patterns. From the best match, we get the pages with the best hub
value and provide them in a recommendation list, ranked by the hub values.
To avoid supplying a very large list of recommendations, the number of recom-
mendations is adjusted according to the number of links in the current page:
we simply make this number proportional to the number of links in the current
page. Our goal is to have a different recommendation strategy for different pages
based on how many links the page already contains. Our general strategy is to
give

√
n best recommendations (n is the number of links), with a maximum of

10. The limit of 10 is to prevent adding noise and providing too many options.
The relevance and importance of recommendations is measured with the hub
value already computed off-line.

3 Experimental Evaluation

To evaluate our recommendation framework, we tested the approach on a generic
web site. We report herein results with the web server log and web site of the



Computing Science Department of the University of Alberta, Canada. Data was
collected for 8 months (Sept. 2002 – Apr. 2003), and partitioned the data into
months. On average, each monthly partition contains more than 40,000 pages,
resulting in on average 150,000 links between them. The log of each month av-
eraged more than 200,000 visit sessions, which generated an average of 800,000
missions per month. The modified DC-tree content clustering algorithm gener-
ated about 1500 content clusters, which we used to identify the missions per
month.

3.1 Methodology

Given the data partitioned per month as described above, we adopt the fol-
lowing empirical evaluation: one or more months data is used for building our
models (i. e., training the recommender system), and the following month or
months for evaluation. The idea is that given a session s from a month m, if the
recommender system, based on data from month m − 1 and some prefix of the
session s, can recommend a set of pages pi that contain some of the pages in
the suffix of s, then the recommendation is considered accurate. Moreover, the
distance in the number of clicks between the suffix of s and the recommended
page pi is considered a gain (i.e., a shortcut). More precisely, we measure the
Recommendation Accuracy and the Shortcut Gain as described below.

Recommendation Accuracy is the ratio of correct recommendations among
all recommendations, and the correct recommendation is the one that appears
in the suffix of a session from which the prefix triggers the recommendation. As
an example, consider that we have S visit sessions in the test log. For each visit
session s, we take each page p and generate a recommendation list R(p). R(p) is
then compared with the remaining portion of s (i.e., the suffix of s). We denote
this portion T(p) (T stands for Tail). The recommendation accuracy for a given
session would be how often T(p) and R(p) intersect. The general formula for
recommendation accuracy is defined as:

RecommendationAccuracy =

∑
s

∣
∣⋃

p
(T (p)

⋂
R(p))

∣
∣

∣
∣⋃

p
R(p)

∣
∣

S

The Shortcut Gain measures how many clicks the recommendation allows
users to save if the recommendation is followed. Suppose we have a session
a, b, c, d, e, and at page b, the system recommends page e; then if we follow
this advice, we would save two hops (i.e., pages c and d). There is an issue in
measuring this shortcut gain when the recommendation list contains more than
one page in the suffix of the session. Should we consider the shortest gain or the
longest gain? To solve this problem, we opted to distinguish between key pages
and auxiliary pages. A key page is a page that may contain relevant information
and in which a user may spend some time. An auxiliary page is an intermediary
page used for linkage and in which a user would spend a relatively short time. In
our experiment, we use a threshold of 30 seconds as this distinction. Given these



two types of pages, a shortcut gain is measured as being the smallest jump gain
towards a key page that has been recommended. If no key page is recommended,
then it is the longest jump towards an auxiliary page. The set of pages in the
session we go through with the assistance of the recommender system is called
the shortened session s’. For the total S visit sessions in the test log, Shortcut
Gain can be computed as:

ShortcutGain =

∑
s

|s|−|s′|
|s|

S

In addition, we would like to compute the Coverage of a recommender system,
which measure the ability of a system to produce all pages that are likely to be
visited by users. The concept is similar to what is called recall in information
retrieval. Coverage is defined as:

RecommendationCoverage =

∑
s
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p
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p
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3.2 Results

Our first experiment varies the Coverage to see the tendency of the Recommen-
dation Accuracy, as depicted in Figure 2(A). For the purpose of comparison,
we also implement an Association Rule Recommender System, the most com-
monly used approach for web mining based recommender systems, and record
its performance in the same figure. As expected, the accuracy decreases when
the we increase coverage. However, our system was consistently superior to the
Association Rule system by at least 30%.
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Fig. 2. Performance Comparison: our system vs. Association Rule Recommender Sys-
tem. (A): Recommendation Accuracy (B): Shortcut Gain

We next varied the coverage to test the Shortcut Gain, both with our system
and with the Association Rule System, as illustrated in Figure 2(B).



From Figure 2(B), we can see that in the low boundary where the Coverage
is lower than 8%, the Shortcut Gain of our system is close to that of the AR
system. With the increase of the Coverage, however, our system can achieve an
increasingly superior Shortcut Gain than the latter, although the performance
of both systems continues to improve.
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Fig. 3. (A) Accuracy vs. Shortcut Gain. (B) Navigational Patterns(NPs) and Aug-
mented Navigational Patterns(ANPs)

Figure 3(A) depicts the relationship of Recommendation Accuracy and Short-
cut Gain in our system. It shows that Recommendation Accuracy is inversely
proportional to the Shortcut Gain. Our study draws the same conclusion from
the Association Rule recommender system. We argue this is an important prop-
erty of a usage-based web recommender system, and therefore, how to adjust
and balance between the Accuracy and Shortcut Gain for a web recommender
system to achieve the maximum benefit is a question that should be investigated.
Some web sites, e.g., those with high link density, may favour a recommender
system with high Accuracy, while some others may favor a system with high
Shortcut Gain.

4 Conclusion

In this paper, we present a framework for a combined web recommender system,
in which users’ navigational patterns are automatically learned from web usage
data and content data. These navigational patterns are then used to generate
recommendations based on a user’s current status. The items in a recommen-
dation list are ranked according to their importance, which is in turn computed
based on web structure information. Our prelimary experiments show that the
combination of usage, content, and structure of data in a web recommender sys-
tem has the potential to improve the quality of the system, as well as to keep
the recommendation up-to-date. However, there are various ways to combine
these different channels. Our future work in this area will include investigating
different methods of combination.
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