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Abstract with a missing decision value, (i.e., not classified) is
useless, we will assume that only attribute values may be
In this paper we assume that a data set is presented imissing.

the form of the incompletely specified decision table, i.e., There are two main reasons why an attribute value is
some attribute values are missing. Our next basicmissing: either the value was lost (e.g., was erased) or the
assumption is that some of the missing attribute valuesvalue was not important. In the former case attribute
are lost (e.g., erased) and some are "do not care" conditionssalue was useful but currently we have no access to it. In
(i.e., they were redundant or not necessary to make ahe latter case the value does not matter, so such values are
decision or to classify a case). Incompletely specifiedalso called "do not care" conditions. In practice it means
decision tables are described by characteristic relations, that originally the case was classified (the decision value
which for completely specified decision tables are reducedwas assigned) in spite of the fact that the attribute value
to the indiscernibility relation. It is shown how to was not given, since the remaining attribute values were
compute characteristic relations using an idea of block of sufficient for such a classification or to make a decision.
attribute-value pairs, used in some rule induction For example, a test, represented by that attribute, was
algorithms, such as LEM2. Moreover, the set of all redundant.
characteristic relations for a class of congruent The first rough set approach to missing attribute
incompletely specified decision tables, defined in the paperyalues, when all missing values were lost, was described
is a lattice. Three definitions of lower and upper in 1997 in [7], where two algorithms for rule induction,
approximations are introduced. Finally, it is shown that LEM1 and LEM2, modified to deal with such missing
the presented approach to missing attribute values may battribute values, were presented. In 1999 this approach
used for other kind of missing attribute values than lostwas extensively described in [13], together with a

values and "do not care" conditions. modification of the original idea in the form of a valued
) tolerance based on a fuzzy set approach.
1. Introduction The second rough set approach to missing attribute

values, in which the missing attribute value is interpreted

Usually all ideas of rough set theory are explored usingas a "do not care" condition, was used for the first time in
decision tables as a starting point [10, 11]. The decisionl991 [4]. A method for rule induction was introduced in
table describes cases (also called examples or objectsyhich each missing attribute value was replaced by all
using attribute values and a decision. Attributes arepossible values. This idea was further developed and
independent variables while the decision is a dependenturnished with theoretical properties in 1995 [8].
variable. In the majority of papers on rough set theory it In this paper a more general rough set approach to
is assumed that the information is complete, i.e., that formissing attribute values is presented. In this approach, in
all cases all attribute values and decision values ardghe same decision table, some missing attribute values are
specified. Such a decision table is said to be completelyassumed to be lost and some are "do not care" conditions.
specified. A simple method for computing a characteristic relation

In practice, however, input data, presented as decisiordescribing the decision table with missing attribute values
tables, may have missing attribute and decision valuespf either of these two types is presented. The characteristic
i.e., decision tables are incompletely specified. Since ourrelation for a completely specified decision table is reduced
main concern is learning from examples, and an exampléo the ordinary indiscernibility relation. It is shown that



the set of all characteristic relations, defined by all possible Functionp describing Table 1 is completely specified
decision tables with missing attribute values being one of(total). In practice, input data for data mining are
the two types, together with two defined operations onfrequently affected by missing attribute values. In other
relations, forms a lattice. words, the corresponding functigm is incompletely
Furthermore, three different definitions of lower and specified (partial).
upper approximations are introduced. Some of these In the sequel we will assume that all decision values are
definitions are better suited for rule induction. Examples specified, i.e., are not missing. Also, we will assume that
of rules induced from incompletely specified decision all missing attribute values are denoted either by "?" or by
tables are provided. The paper ends up with a discussiott", lost values will be denoted by "?", "do not care"
of other approaches to missing attribute values. conditions will be denoted by "*". Additionally, we will
assume that for each case at least one attribute value is
specified.
Incompletely specified tables are described by
characteristic relations instead of indiscernibility relations.
In the sequel we will assume that information about An example of an incompletely specified table is presented
any phenomena are presentedibygision tables Rows of in Table 2, where all missing attribute values are lost.
the table are labeled lasesand columns by variables.
The set of all cases will be denoted By Independent Table 2. An example of an incompletely
variables are calledttributesand a dependent variable is specified decision table, in which all
called adecisionand is denoted bg. The set of all missing attribute values are lost
attributes will be denoted b#&. An example of such a

2. Missing attribute values and
characteristic relations

decision table is presented in Table 1. Attributes Decision
TabI(.e. L An example of a completely Location | Basement Fireplace] Value
specified decision table
. - 1 ood es es high
Attributes Decision 2 gbad y? 3:10 s?nall
. . 3 good no ? medium
Location | Basement Fireplace] Value 4 bad yes no medium
5 ? ? yes medium
1 good yes yes high
g badd no no s(;rjall For decision tables, in which all missing attribute
4 gt()) % no no me 'cljj.m values are lost, a special characteristic relation was defined
5 ad yes no mg um by J. Stefanowski and A. Tsoukias in [13], see also [12,
goo no yes medium 14]. In this paper that characteristic relation will be

denoted by LVB), whereB is a nonempty subset of the set

Obviously, any decision table defines a functothat A of all attributes. Fox,y [0 U characteristic relation
maps the set of ordered pairs (case, attribute) into the set dfV(B) is defined as follows:
all values. For example(1, Location) = good. ; ; _

Rough set theory is based on the idea of an *y) f%rLe\l/”(E)leélr;iij&n{%;&(é,;);g(y, 3
indiscernibility relation. LeB be a nonempty subset of
the setA of all attributes. The indiscernibility relation
IND(B) is a relation otJ defined forx,y O U as follows

For any case, the characteristic relation LBJ may be
presented by theharacteristic setg(x), where

(x,y) O IND(B) if and only ifp(x, @) = p(y, a)

for allad B.

IB0) ={y | & y) O LV(B)}.
For Table 2, characteristic séjgx), wherex 0 U, are

For completely specified decision tables the the following sets:

indiscernibility relation INDB) is an equivalence relation. Ia(1) = {1},
Equivalence classes of INBY are callecelementary setsf 1A(2) = {2, 4},
For example, for Table 1, elementary sets of 1) = {3}

IND({Location, Basement}) are {1}, {2}, {3, 5} and {4}.

Ia(4) = {4}, and



Ia(5) = {1, 5}.

For any decision table in which all missing attribute
values are lost, characteristic relation BY(s reflexive,
but—in general—does not need to be symmetric or
transitive.

Another example of a decision table with all missing
attribute values, this time with only "do not care"
conditions, is presented in Table 3.

Table 3. An example of an incompletely
specified decision table, in which all
missing attribute values are "do not care"
conditions

Attributes Decision
Location | Basement Fireplace] Value
1 good yes yes high
2 bad * no small
3 good no * medium
4 bad yes no medium
5 * * yes medium
Table 4. An example of an incompletely

specified decision table, in which some
missing attribute values are lost and some
are "do not care" conditions

Attributes Decision
Location | Basement Fireplace] Value
1 good yes yes high
2 bad ? no small
3 good no ? medium
4 bad yes no medium
5 * * yes medium

For decision tables where all missing attribute values

are "do not care" conditions a special characteristic relation

in this paper denoted by DCB), was defined by M.
Kryszkiewicz in [8], see also, e.g., [9]. FeryO U
characteristic relation DC@J is defined as follows:

(x,y) O DCC@) if and only ifp(x, a) = p(y, a) or
p(x,a) =*orp(y,a) = *forallal B.

Similarly, for a casex, the characteristic relation
DCC(B) may be presented by the characteristiclgét),

where

I8 ={y| x y) 0 DCC@®)}.

For Table 3, characteristic sekg(x), wherex [0 U, are
the following sets:

Ja(1) ={1, 5},
IA(2) = {2, 4},
JA(3) = {3, 5},

Ja(4) ={2, 4}, and
Jad) ={1, 3, 5}.

Relation DCCB) is reflexive and symmetric but—in
general—not transitive.

Table 4 presents a more general case, a decision table
with missing attribute values of both types: lost values
and "do not care" conditions.

In a similar way we may define a characteristic relation
R(B) onU for an incompletely specified decision table
with both types of missing attribute values: lost values
and "do not care" conditions:

(x,y) O R(B) if and only ifp(x, a) = p(y, &) orp(x,a) = *
or p(y, a) = * for all a0 B such thap(x, a) # ?,
wherex,y 0 U andB is a nonempty subset of the gebf

all attributes. For a casethe characteristic relatidr(B)
may be also presented by its characteristic kggtx),

where
Ke(x) ={y | & y) OR(B)}.
For Table 4, characteristic ség(x), wherex 0 U, are
the following sets:

Ka(1) ={1, 5},
Ka(2) = {2, 4},
Ka(3) = {3, 5},
Ka(4) = {4}, and
Ka(5) = {1, 5}.

Obviously, characteristic relations LB) and DCCB)
are special cases of the characteristic reld®&@). For a
completely specified decision table, the characteristic
relation R(B) is reduced to INCH). The characteristic
relationR(B) is reflexive but—in general—does not need
to be symmetric or transitive.

3. Computing characteristic relations

The characteristic relatioR(B) is known if we know
characteristic set&(x) for allx O U. Thus we may
concentrate on computing characteristic défs). We
need a few definitions. For completely specified decision
tables ift = (a, v) is an attribute-value pair therbéock of
t, denotedt], is a set of all cases frol that for attribute
a have valuer [1, 5]. For incompletely specified decision



tables the definition of a block of an attribute-value pair  Two decision tables with the same &kbf all cases,
must be modified. If an attribue there exists a case the same attribute sAt the same decisiath and the same
such thaip(x, a) = ?, i.e., the corresponding value is lost, specified attribute values will be calledngruent Thus,
then the casr is not included in the blockd( v)] for any two congruent decision tables may differ only by missing
valuev of attributea. If for an attributea there exists a  attribute values * and ?. Decision tables from Tables 2, 3,
casex such that the corresponding value is a "do not care"and 4 are all pairwise congruent.
condition, i.e.,p(x, a) = *, then the corresponding case Two congruent decision tables that have the same
should be included in blocksd(v)] for all valuesv of characteristic relations will be calleddistinguishable
attributea. The characteristic s&g(x) is the intersection  For example, decision tables, presented in Tables 5 and 6
of blocks of attribute-value pairs,(v) for all attributesa are indistinguishable, both have the same characteristic
from B for whichp(x, a) is specified ang(x, a) = v. relation with the following characteristic sets:

For decision table from Table 4,

K(1) = {1},
[(Location, good)] = {1, 3, 5}, K(2) = {2, 4},
[(Location, bad)] = {2, 4, 5}, K(@3) = {3},
[(Basement, yes)] = {1, 4, 5}, K(4) = {2, 4}, and
K(5) ={1, 3, 5}.

[(Basement, no)] = {3, 5},
[(Fireplace, yes)] = {1, 5}, and
[(Fireplace, no)] ={2, 4}.

Table 6. Decision table indistinguishable
from decision table presented in Table 5

Thus
Ka(l) =1{1, 3,5} n {1, 4,5} n {1, 5} = {1, 5}, Attributes Decision
Ka(2) =1{2, 4, 5}n {2, 4} = {2, 4}, Location | Basement Fireplace] Value
Ka@3) =11, 3,5}n {3,5} =13, 5},
Ka(4) ={2,4,5}n {1, 4, 5} n {2, 4} = {4}, and 11 good yes yes high
B 2 bad * no small
Ka(®) =11, 5}. 3 good no * medium
Table 5. Decision table indistinguishable 4 bf‘d yes no medium
from decision table presented in Table 6 5 ? yes medium
Attributes Decision On the other hand, if the characteristic relations for two
congruent decision tables are different, the decision tables
Location | Basement Fireplace Value will be calleddistinguishable Obviously, there is?
congruent decision tables, wharas the total number of
1 o0od s s high all missing attribute values in a decision table.
> gb g y* y 9 I Let D1 andD> be two congruent decision tables, Rt
3 a q n:) sr;_a andR> be their characteristic relations, andHa{(x) and
4 gt?c; no me '(;j.m K2(x) be their characteristic sets for somel U,
5 2 y*es no m%_mm respectively. We say th& < Ry if and only ifK1(x) O
' yes medium Ko(x) for allx 0 U. We will use also notation thét; <

Do.

For two congruent decision tablBg andDy, D1 < D>
if for every missing attribute value "?" Dy, saypa(x, a),
the missing attribute value fdd4 is also "?", i.e.p1(X,
a), wherepq andp, are functions defined b1 andD»,
respectively.

Two subsets of the set of all congruent decision tables
are special: seE of n decision tables such that every
decision table fronE has exactly one missing attribute

4. Lattice of characteristic relations

For the sake of simplicity, in this section all
characteristic relations will be defined for the entire/set
of attributes instead of its subggtand we will writeR
instead ofR(A). By the same token, in characteristic sets
Ka(x), the subscripA will be omitted.



value "?" and all remaining attribute values equal to "™*"* Let D andD' be two congruent decision tables with
and the seF of n decision tables such that every decision characteristic relationR andR’, and with characteristic
table fromE has exactly one missing attribute value "*" setskK(x) andK'(x), respectively, wherg [0 U. We define
and all remaining attribute values equal to "?". In our a characteristic relatioR + R' asdefined by characteristic
example, decision tables presented in Tables 5 and 6etsK(x) O K'(x), for x 0 U, and a characteristic relation
belong to the sek. RR' as defined by characteristic s&&) n K'(x). The

DCC set of all characteristic relations for the set of all congruent
tables, together with operations + aies a latticel (i.e.,
operations + and[Jsatisfy the four postulates of
idempotent, commutativity, associativity, and absorption
laws [2]).

Each characteristic relation fromcan be represented
(using the lattice operations + andl in terms of
characteristic relations fron® (and, similarly forH).
ThusG andH are sets of generatorslaf In our example,
set G, together with the operation/, generates all
characteristic relations frorh, except for DCC, which
may be computed aR; + Rp, for any two distinct
characteristic relationR1 andRy from G. Similarly, set
H = {R1[Ry, R1[R3, RoR3}, together with the operation
+, generates all characteristic relations friopexcept for
LV, which may be computed aR1[R>, for any two
distinct characteristic relatio® andRy from H.

A characteristic relatioRq covers another characteristic
relation Ry if and only ifR; # Ry, R1 = Ry, and there is
no R with R{ Z R# Ry andR1 2 R= Ry. A diagram of

LV the latticeL represents elements &f by circles; the

characteristic relatiof1 will be placed higher thaRy if

Figure 1. Diagram of the lattice of all char- and only ifRy = Ry, the circles represented By andRp
acteristic relations are connected by a straight line if and onlyRif covers

Ro. The diagram of the lattice of all characteristic

Let G be the set of all characteristic relations associatedelations for our example is presented by Figure 1.
with the setE and letH be the set of all characteristic . .
relations associated with the $et In our example, the set ©- Lower and upper approximations
G has three elements, sRy, Ro, andR3, defined by the

following family of characteristic set&1, Ko, andKz, For completely specified decision tables lower and
respectively: upper approximations are defined on the basis of the
indiscernibility relation. An equivalence class of INE)(
Ky(1) = {1}, Ko(1) = {1, 5}, Kz(1) = {1, 5}, containing x is denoted byX]g. Any finite union of
K1(2) = {2, 4}, Ko(2) = {2, 4}, Ks(2) = {2, 4}, elementary sets @ is called aB-definable set LetU be

the set of all cases, called amiverse LetX be any

K1(3) = {3}, K23)={3.5},  Ka(3) =13, 5} subset ofu. The seX is calledconceptand is usually
K1(4) = {2, 4}, Ko(4) = {4}, K3(4) = {2, 4}, defined as the set of all cases defined by specific value of
Ki1(5) ={1, 3, 5}, Ko(5)={1, 3,5}, Kgz(5)={1, 5}, the decision.  In generaX is not aB-definable set.

However, seX may be approximated by tvwB-definable
whereR; is the characteristic relation of the decision table sets, the first one is calledBalower approximation of X
D1 from Table 5Ry is the characteristic relation of the denoted by8X and defined as follows
decision tableD2 congruenF \./vithD.l gnd withpz(z, {(xOU | g 0X}.
Basement) = ? and all remaining missing attribute values
equal to "*", andRgz is the characteristic relation of the The second set is calledBaupper approximation of X
decision tableD3 congruent withD1 and withp3(3,
Fireplace) = ? and all remaining missing attribute values
equal to "*". {xOU|Xlgn X3 }.

denoted b)EX and defined as follows



The B-lower approximation ofX is the greatesB-

definable set, contained ¥ TheB-upper approximation BX=0{Kp() [x DU, Kg() L X}.

of X is the leasB-definable set containing. A subsetB-upper approximation of is
For incompletely specified decision tables lower and
upper apprgximations may be defined _in a few d_iff.e.rent BX=0{Kg(X) |xO U, Kg(X) n X% @ }.
ways. In this paper we suggest three different definitions.
Again, letX be a concept, & be a subset of the s&tof In our example of the decision table presented in Table

all attributes, and IeR(B) be the characteristic relation of 2 andR(A) = LV(A), the subseA-lower andA-upper
the incompletely specified decision table with characteristicapproximations are
setsK(x), wherex 00 U. Our first definition uses a similar

idea as in the previous articles on incompletely specified A} = {1},
decision tables [8, 9, 12-14], i.e., lower and upper A2} =2,
approximations are sets of singletons from the univierse A3, 4, 5} = {3, 4},
satisfying some properties. We will call these definitions T

singleton A singletonB-lower approximation ofX is A{1}={1, 5},

defined as follows:

BX={xOU |Kg(x) OX} A2} =1{2, 4},

A singletonB-upper approximation oX is A3, 4, 51=11,2,3, 4,5 =U.
_ In our example of the decision table presented in Table
BX={xOU|Kg(X)n X£J}. 3 andR(A) = DCCQ), the subseA-lower andA-upper

In our example of the decision presented in Table 2 Ietapproxmaﬂons are

us say thaB = A, henceR(A) = LV(A). Then the A1} =9,
singletonA-lower andA-upper approximations are: A2} =0,
A3, 4, 5} = {3, 5}
A1} ={1}, -
A2} =2, A{1}={1, 3, 5},
A3, 4,5} =13, 4}, A{2} = {2, 4},
A1} ={1, 5} A3, 4,5}={1, 2,3, 4,5} =U.
A2} =1{2},

The next possibility is to modify the subset definition
A3, 4,5} = {2, 3, 4, 5}. of upper approximation by replacing the univetsé&rom
the previous definition by a conceyt A conceptB-lower
In our example of the decision presented in Table 3 letapproximation of the conceptis defined as follows:
us say thaB = A, henceR(A) = DQC(A). Then the BX = O{Kg(X) |x O X, Kg(x) O X }.
singletonA-lower andA-upper approximations are: -
Obviously, the subsa®-lower approximation of

A1} =0, X'is the same set as the cond@power approximation of
A2} = @, X. A conceptB-upper approximation of the conceytis
6{3_,4, 5) = {3} defined as follows:
A{1} = {1, 5}, BX=0{Kp(X) |[XxOX,Kg(X) n X£@}.
,K{z} ={2, 4}, In our example of the decision presented in Table 2 and
_ R(A) = LV(A), the concepA-upper approximations are
A{3, 4,5} =11, 2, 3, 4, 5} =U. _
A1} ={1},

The second definition uses another idea: lower and upper K{Z} -2, 4)
approximations are unions of characteristic sets, subsets of Y
U. We will call these definitionsubset A subsetB- A3, 4,5} ={1, 3, 4, 5}.
lower approximation oK is defined as follows:



while for the subset definition &-lower approximation,
In our example of the decision presented in Table 3 andX = {3, 4, 5}, and the characteristic relation D@ (see
R(A) = DCC), the concepf-upper approximations are  Table 3)

A{1} =11, 5}, 0{Js(¥) [Ig() O X} = {3, 5},

A2} =1{2, 4}, so neither the former set is a subset of the latter nor vice

A{3, 4,5} =1{1, 2, 3, 4, 5} =U. versa.
Note that for completely specified decision tables, all 6. Rule induction
three definitions of lower approximations coalesce to the
same definition. Also, for completely specified decision
::?)kz);xlliss,c : Iltotrl;]eee siﬂlg Ittljg?i?]it(i);n%jp?r?]ri Saipsprnoo? Tritéo?;r attributes fronB, and for sub_set a_nd concept definitions of
incompletely specified decision tables, as the exampleIOWer _and_ upper approxmaﬂons, lower and_ upper
shows. Since any characteristic relatR(B) is reflexive, approximations are unions of sets of the _tmx), Itis
singleton lower and upper approximations are subsets o atural for “_“e induction t_o use an algorithm based on
subset lower and upper approximations, respectively. locks of attribute-value pairs, $UCh as LEM2 [1, 5]. L
Also, note that using characteristic relation IAY( qu example, for Tabl_e 2, i.e., for_ the characteristic
even if we are going to use all three attributes to describefelatIon LV@A), the Ce_”a'F‘ rules [3], induced from the
case 2, we cannot describe this case not describing, at gHePneept loweA-approximations are
same time, case 4. Thus, the set of rules describing only
{2} is the empty set. In some rule induction systems the
expectation is that the set of all possible rules, induced
from an upper approximation cannot be the empty set, so
such a system may encounter an infinite loop. This

Since all characteristic set§(x), wherex 00 U, are
intersections of blocks of attribute-value pairs, for

(Location, good) & (Basement, yes) -> (Value, high),
(Basement, no) -> (Value, medium),
(Location, bad) & (Basement, yes) -> (value, medium).

The possible rules [3], induced from the concept upper

S'“%a_“_O” cannot happen_ to_the sut_Jset or concep -approximations, for the same characteristic relation
definitions of upper approximation. Besides, the conceptLV(A) are

definition of upper approximation is a subset of the subset

definition of upper approximation, so the concept (| ocation, good) & (Basement, yes) -> (Value, high),

_defmlt!on of upper app_rOX|mat|0|_1 is better s_uned for rule (Location, bad) -> (Value, small),

induction. Moreover, it better fits into the idea that the _ .

upper approximation should be thmallestset containing (Location, good) -> (Value, medium),

the concept. (Basement, yes) -> (Value, medium),
Furthermore, some properties that hold for singleton (Fireplace, yes) -> (Value, medium).

lower and upper approximations do not hold—in general— L. .

for subset lower and upper approximations and for concept - Other approaches to missing attribute

lower and upper approximations. For example, as noted iy alues

[13], for singleton lower and upper approximations ] ) o ]
In this paper two basic approaches to missing attribute

{(xOU [Igx)OX} O {xOU|Ip(x)OX} values, based on interpretation of a missing attribute value

and as lost or a "do not care" condition were discussed. Even
though the suggested definitions cover the situation in

{(XOU|IgX) n Xz2@} 0 {xOU |Ig(X) n Xz D}, which in the same decision table some missing attribute

values are considered to be lost and other are "do not care"
wherelg(x) is a characteristic set of LBJ andJg(X) is a conditions, there exist many other possibilities to interpret

characteristic set of DC8J. missing attribute values. _

In our example, for the subset definition Aflower For example, for the attributBasementfrom our
approximation, X = {3, 4, 5}, and the characteristic €xample, we may introduce a special, new value, say
relation LV(A) (see Table 2) maybe for case 2 and we may consider that the missing

attribute value for case 5 should be Neither of these
O{Ig(X¥) | Ig(¥) O X} =43, 4} two cases falls into the category of lost values or "do not

care" conditions. Nevertheless, such approaches may be



studied using the same idea of blocks of attribute-value
pairs. More specifically, for attributBasementthe
blocks will be
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