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Abstract

In this paper we assume that a data set is presented in
the form of the incompletely specified decision table, i.e.,
some attribute values are missing.  Our next basic
assumption is that some of the missing attribute values
are lost (e.g., erased) and some are "do not care" conditions
(i.e., they were redundant or not necessary to make a
decision or to classify a case).  Incompletely specified
decision tables are described by characteristic relations,
which for completely specified decision tables are reduced
to the indiscernibility relation.  It is shown how to
compute characteristic relations using an idea of block of
attribute-value pairs, used in some rule induction
algorithms, such as LEM2.  Moreover, the set of all
characteristic relations for a class of congruent
incompletely specified decision tables, defined in the paper,
is a lattice.  Three definitions of lower and upper
approximations are introduced.  Finally, it is shown that
the presented approach to missing attribute values may be
used for other kind of missing attribute values than lost
values and "do not care" conditions.

1. Introduction

Usually all ideas of rough set theory are explored using
decision tables as a starting point [10, 11].  The decision
table describes cases (also called examples or objects)
using attribute values and a decision.  Attributes are
independent variables while the decision is a dependent
variable.  In the majority of papers on rough set theory it
is assumed that the information is complete, i.e., that for
all cases all attribute values and decision values are
specified.  Such a decision table is said to be completely
specified.

In practice, however, input data, presented as decision
tables, may have missing attribute and decision values,
i.e., decision tables are incompletely specified.  Since our
main concern is learning from examples, and an example

with a missing decision value, (i.e., not classified) is
useless, we will assume that only attribute values may be
missing.

There are two main reasons why an attribute value is
missing: either the value was lost (e.g., was erased) or the
value was not important.  In the former case attribute
value was useful but currently we have no access to it.  In
the latter case the value does not matter, so such values are
also called "do not care" conditions.  In practice it means
that originally the case was classified (the decision value
was assigned) in spite of the fact that the attribute value
was not given, since the remaining attribute values were
sufficient for such a classification or to make a decision.
For example, a test, represented by that attribute, was
redundant.

The first rough set approach to missing attribute
values, when all missing values were lost, was described
in 1997 in [7], where two algorithms for rule induction,
LEM1 and LEM2, modified to deal with such missing
attribute values, were presented.  In 1999 this approach
was extensively described in [13], together with a
modification of the original idea in the form of a valued
tolerance based on a fuzzy set approach.

The second rough set approach to missing attribute
values, in which the missing attribute value is interpreted
as a "do not care" condition, was used for the first time in
1991 [4].  A method for rule induction was introduced in
which each missing attribute value was replaced by all
possible values.  This idea was further developed and
furnished with theoretical properties in 1995 [8].

In this paper a more general rough set approach to
missing attribute values is presented.  In this approach, in
the same decision table, some missing attribute values are
assumed to be lost and some are "do not care" conditions.
A simple method for computing a characteristic relation
describing the decision table with missing attribute values
of either of these two types is presented.  The characteristic
relation for a completely specified decision table is reduced
to the ordinary indiscernibility relation.  It is shown that



the set of all characteristic relations, defined by all possible
decision tables with missing attribute values being one of
the two types, together with two defined operations on
relations, forms a lattice.

Furthermore, three different definitions of lower and
upper approximations are introduced.  Some of these
definitions are better suited for rule induction.  Examples
of rules induced from incompletely specified decision
tables are provided.  The paper ends up with a discussion
of other approaches to missing attribute values.

2. Missing attribute values and
characteristic relations

In the sequel we will assume that information about
any phenomena are presented by decision tables.  Rows of
the table are labeled by cases and columns by variables.
The set of all cases will be denoted by U.  Independent
variables are called attributes and a dependent variable is
called a decision and is denoted by d.  The set of all
attributes will be denoted by A.  An example of such a
decision table is presented in Table 1.

Table 1.  An example of a completely
specified decision table

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad no no small
3 good no no medium
4 bad yes no medium
5 good no yes medium

Obviously, any decision table defines a function ρ that
maps the set of ordered pairs (case, attribute) into the set of
all values.  For example, ρ(1, Location) = good.

Rough set theory is based on the idea of an
indiscernibility relation.  Let B be a nonempty subset of
the set A of all attributes.  The indiscernibility relation
IND(B) is a relation on U defined for x, y ∈  U as follows

(x, y) ∈  IND(B) if and only if ρ(x, a) = ρ(y, a)
for all a ∈  B.

For completely specified decision tables the
indiscernibility relation IND(B) is an equivalence relation.
Equivalence classes of IND(B) are called elementary sets of
B.  For example,  for Table 1, elementary sets of
IND({Location, Basement}) are {1}, {2}, {3, 5} and {4}.

Function ρ describing Table 1 is completely specified
(total).  In practice, input data for data mining are
frequently affected by missing attribute values.  In other
words, the corresponding function ρ is incompletely
specified (partial).

In the sequel we will assume that all decision values are
specified, i.e., are not missing.  Also, we will assume that
all missing attribute values are denoted either by "?" or by
"*", lost values will be denoted by "?", "do not care"
conditions will be denoted by "*".  Additionally, we will
assume that for each case at least one attribute value is
specified.

Incompletely specified tables are described by
characteristic relations instead of indiscernibility relations.
An example of an incompletely specified table is presented
in Table 2, where all missing attribute values are lost.

Table 2.  An example of an incompletely
specified decision table, in which all
missing attribute values are lost

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad ? no small
3 good no ? medium
4 bad yes no medium
5 ? ? yes medium

For decision tables, in which all missing attribute
values are lost, a special characteristic relation was defined
by J. Stefanowski and A. Tsoukias in [13], see also [12,
14].  In this paper that characteristic relation will be
denoted by LV(B), where B is a nonempty subset of the set
A of all attributes.  For x, y ∈  U characteristic relation
LV(B) is defined as follows:

(x, y) ∈  LV(B) if and only if ρ(x, a) = ρ(y, a)
for all a ∈  B such that ρ(x, a) ≠ ?.

For any case x, the characteristic relation LV(B) may be
presented by the characteristic set IB(x), where

IB(x) = {y | (x, y) ∈  LV(B)}.

For Table 2, characteristic sets IA(x), where x ∈  U, are
the following sets:

IA(1) = {1},

IA(2) = {2, 4},

IA(3) = {3},

IA(4) = {4}, and



IA(5) = {1, 5}.

For any decision table in which all missing attribute
values are lost, characteristic relation LV(B) is reflexive,
but—in general—does not need to be symmetric or
transitive.

Another example of a decision table with all missing
attribute values, this time with only "do not care"
conditions, is presented in Table 3.

Table 3.  An example of an incompletely
specified decision table, in which all
missing attribute values are "do not care"
conditions

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad * no small
3 good no * medium
4 bad yes no medium
5 * * yes medium

Table 4.  An example of an incompletely
specified decision table, in which some
missing attribute values are lost and some
are "do not care" conditions

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad ? no small
3 good no ? medium
4 bad yes no medium
5 * * yes medium

For decision tables where all missing attribute values
are "do not care" conditions a special characteristic relation,
in this paper denoted by DCC(B), was defined by M.
Kryszkiewicz in [8], see also, e.g., [9].  For x, y ∈  U
characteristic relation DCC(B) is defined as follows:

(x, y) ∈  DCC(B) if and only if ρ(x, a) = ρ(y, a) or
ρ(x, a) = * or ρ(y, a) = * for all a ∈  B.

Similarly, for a case x, the characteristic relation
DCC(B) may be presented by the characteristic set JB(x),
where

JB(x) = {y | (x, y) ∈  DCC(B)}.

For Table 3, characteristic sets JA(x), where x ∈  U, are
the following sets:

JA(1) = {1, 5},

JA(2) = {2, 4},

JA(3) = {3, 5},

JA(4) = {2, 4}, and

JA(5) = {1, 3, 5}.

Relation DCC(B) is reflexive and symmetric but—in
general—not transitive.

Table 4 presents a more general case, a decision table
with missing attribute values of both types: lost values
and "do not care" conditions.

In a similar way we may define a characteristic relation
R(B) on U for an incompletely specified decision table
with both types of missing attribute values: lost values
and "do not care" conditions:

(x, y) ∈  R(B) if and only if ρ(x, a) = ρ(y, a) or ρ(x, a) = *
or ρ(y, a) = * for all a ∈  B such that ρ(x, a) ≠ ?,

where x, y ∈  U and B is a nonempty subset of the set A of
all attributes.  For a case x, the characteristic relation R(B)
may be also presented by its characteristic set KB(x),
where

KB(x) = {y | (x, y)  ∈  R(B)}.

For Table 4, characteristic sets KA(x), where x ∈  U, are
the following sets:

KA(1) = {1, 5},

KA(2) = {2, 4},

KA(3) = {3, 5},

KA(4) = {4}, and

KA(5) = {1, 5}.

Obviously, characteristic relations LV(B) and DCC(B)
are special cases of the characteristic relation R(B).  For a
completely specified decision table, the characteristic
relation R(B) is reduced to IND(B).  The characteristic
relation R(B) is reflexive but—in general—does not need
to be symmetric or transitive.

3. Computing characteristic relations

The characteristic relation R(B) is known if we know
characteristic sets K(x) for all x ∈  U .  Thus we may
concentrate on computing characteristic sets K(x).  We
need a few definitions.  For completely specified decision
tables if t = (a, v) is an attribute-value pair then a block of
t, denoted [t], is a set of all cases from U that for attribute
a have value v [1, 5].  For incompletely specified decision



tables the definition of a block of an attribute-value pair
must be modified.  If an attribute a there exists a case x
such that ρ(x, a) = ?, i.e., the corresponding value is lost,
then the case x is not included in the block [(a, v)] for any
value v of attribute a.  If for an attribute a there exists a
case x such that the corresponding value is a "do not care"
condition, i.e., ρ(x, a) = *, then the corresponding case x
should be included in blocks [(a, v)] for all values v of
attribute a.  The characteristic set KB(x) is the intersection
of blocks of attribute-value pairs (a, v) for all attributes a
from B for which ρ(x, a) is specified and ρ(x, a) = v.

For decision table from Table 4,

[(Location, good)] = {1, 3, 5},

[(Location, bad)] = {2, 4, 5},

[(Basement, yes)] = {1, 4, 5},

[(Basement, no)] = {3, 5},

[(Fireplace, yes)] = {1, 5}, and

[(Fireplace, no)] = {2, 4}.
Thus

KA(1) = {1, 3, 5} ∩ {1, 4, 5} ∩ {1, 5} = {1, 5},

KA(2) = {2, 4, 5} ∩ {2, 4} = {2, 4},

KA(3) = {1, 3, 5} ∩ {3, 5} = {3, 5},

KA(4) = {2, 4, 5} ∩ {1, 4, 5} ∩ {2, 4} = {4}, and

KA(5) = {1, 5}.

Table 5.  Decision table indistinguishable
from decision table presented in Table 6

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad * no small
3 good no * medium
4 bad yes no medium
5 ? * yes medium

4. Lattice of characteristic relations

For the sake of simplicity, in this section all
characteristic relations will be defined for the entire set A
of attributes instead of its subset B and we will write R
instead of R(A).  By the same token, in characteristic sets
KA(x), the subscript A will be omitted.

Two decision tables with the same set U of all cases,
the same attribute set A, the same decision d, and the same
specified attribute values will be called congruent.  Thus,
two congruent decision tables may differ only by missing
attribute values * and ?.  Decision tables from Tables 2, 3,
and 4 are all pairwise congruent.

Two congruent decision tables that have the same
characteristic relations will be called indistinguishable.
For example, decision tables, presented in Tables 5 and 6
are indistinguishable, both have the same characteristic
relation with the following characteristic sets:

K(1) = {1},

K(2) = {2, 4},

K(3) = {3},

K(4) = {2, 4}, and

K(5) = {1, 3, 5}.

Table 6.  Decision table indistinguishable
from decision table presented in Table 5

Attributes Decision

Location Basement Fireplace Value

1 good yes yes high
2 bad * no small
3 good no * medium
4 bad yes no medium
5 * ? yes medium

On the other hand, if the characteristic relations for two
congruent decision tables are different, the decision tables

will be called distinguishable.  Obviously, there is 2n

congruent decision tables, where n is the total number of
all missing attribute values in a decision table.

Let D1 and D2 be two congruent decision tables, let R1
and R2 be their characteristic relations, and let K1(x) and
K 2(x) be their characteristic sets for some x ∈  U ,
respectively.  We say that R1 ≤ R2 if and only if K1(x) ⊆
K2(x) for all x ∈  U.  We will use also notation that D1 ≤
D2.

For two congruent decision tables D1 and D2, D1 ≤ D2
if for every missing attribute value "?" in D2, say ρ2(x, a),
the missing attribute value for D1 is also "?", i.e., ρ1(x,
a), where ρ1 and ρ2 are functions defined by D1 and D2,
respectively.

Two subsets of the set of all congruent decision tables
are special: set E of n decision tables such that every
decision table from E has exactly one missing attribute



value "?" and all remaining attribute values equal to "*"
and the set F of n decision tables such that every decision
table from E has exactly one missing attribute value "*"
and all remaining attribute values equal to "?".  In our
example, decision tables presented in Tables 5 and 6
belong to the set E.

DCC

R1
R2

R3

R1R2

R1R3
R2R3

LV

Figure 1.  Diagram of the lattice of all char-
acteristic relations

Let G be the set of all characteristic relations associated
with the set E and let H be the set of all characteristic
relations associated with the set F.  In our example, the set
G has three elements, say R1, R2, and R3, defined by the
following family of characteristic sets K1, K2, and K3,
respectively:

K1(1) = {1}, K2(1) = {1, 5}, K3(1) = {1, 5},

K1(2) = {2, 4}, K2(2) = {2, 4}, K3(2) = {2, 4},

K1(3) = {3}, K2(3) = {3, 5}, K3(3) = {3, 5},

K1(4) = {2, 4}, K2(4) = {4}, K3(4) = {2, 4},

K1(5) = {1, 3, 5}, K2(5) = {1, 3, 5}, K3(5) = {1, 5},

where R1 is the characteristic relation of the decision table
D1 from Table 5, R2 is the characteristic relation of the
decision table D2 congruent with D1 and with ρ2(2,
Basement) = ? and all remaining missing attribute values
equal to "*", and R3 is the characteristic relation of the
decision table D3 congruent with D1 and with ρ3(3,
Fireplace) = ? and all remaining missing attribute values
equal to "*".

Let D and D' be two congruent decision tables with
characteristic relations R and R', and with characteristic
sets K(x) and K'(x), respectively, where x ∈  U.  We define
a characteristic relation R + R' as defined by characteristic
sets K(x) ∪  K'(x), for x ∈  U, and a characteristic relation
R⋅R' as defined by characteristic sets K(x) ∩ K'(x).  The
set of all characteristic relations for the set of all congruent
tables, together with operations + and ⋅, is a lattice L (i.e.,
operations + and ⋅ satisfy the four postulates of
idempotent, commutativity, associativity, and absorption
laws [2]).

Each characteristic relation from L can be represented
(using the lattice operations + and ⋅) in terms of
characteristic relations from G (and, similarly for H).
Thus G and H are sets of generators of L.  In our example,
set G , together with the operation ⋅ , generates all
characteristic relations from L, except for DCC, which
may be computed as R1 + R2, for any two distinct
characteristic relations R1 and R2 from G.  Similarly, set
H = {R1⋅R2, R1⋅R3, R2⋅R3}, together with the operation
+, generates all characteristic relations from L, except for
LV, which may be computed as R1⋅ R2, for any two
distinct characteristic relations R1 and R2 from H.

A characteristic relation R1 covers another characteristic
relation R2 if and only if R1 ≠ R2, R1 ≥ R2, and there is
no R with R1 ≠ R ≠ R2 and R1 ≥ R ≥ R2.  A diagram of
the lattice L represents elements of L by circles; the
characteristic relation R1 will be placed higher than R2 if
and only if R1 ≥ R2, the circles represented by R1 and R2
are connected by a straight line if and only if R1 covers
R2.  The diagram of the lattice of all characteristic
relations for our example is presented by Figure 1.

5. Lower and upper approximations

For completely specified decision tables lower and
upper approximations are defined on the basis of the
indiscernibility relation.  An equivalence class of IND(B)
containing x is denoted by [x]B.  Any finite union of
elementary sets of B is called a B-definable set.  Let U be
the set of all cases, called an universe.  Let X be any
subset of U.  The set X is called concept and is usually
defined as the set of all cases defined by specific value of
the decision.    In general, X is not a B-definable set.
However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X,
denoted by _BX and defined as follows

{ x ∈  U | [x]B ⊆ X }.

The second set is called a B-upper approximation of X,

denoted by 
_
BX and defined as follows

{ x ∈  U | [x]B ∩ X ≠ Ø }.



The B-lower approximation of X is the greatest B-
definable set, contained in X.  The B-upper approximation
of X is the least B-definable set containing X.

For incompletely specified decision tables lower and
upper approximations may be defined in a few different
ways.  In this paper we suggest three different definitions.
Again, let X be a concept, let B be a subset of the set A of
all attributes, and let R(B) be the characteristic relation of
the incompletely specified decision table with characteristic
sets K(x), where x ∈  U.  Our first definition uses a similar
idea as in the previous articles on incompletely specified
decision tables [8, 9, 12–14], i.e., lower and upper
approximations are sets of singletons from the universe U
satisfying some properties.  We will call these definitions
singleton.  A singleton B-lower approximation of X is
defined as follows:

_BX = {x ∈  U | KB(x) ⊆ X }.

 A singleton B-upper approximation of X is

_
BX = {x ∈  U | KB(x) ∩ X ≠ Ø }.

In our example of the decision presented in Table 2 let
us say that B = A, hence R(A) = LV(A).  Then the
singleton A-lower and A-upper approximations are:

_A{1} = {1},

_A{2} = Ø,

_A{3, 4, 5} = {3, 4},
_
A{1} = {1, 5},

_
A{2} = {2},

_
A{3, 4, 5} = {2, 3, 4, 5}.

In our example of the decision presented in Table 3 let
us say that B = A, hence R(A) = DCC(A).  Then the
singleton A-lower and A-upper approximations are:

_A{1} = Ø,

_A{2} = Ø,

_A{3, 4, 5} = {3}
_
A{1} = {1, 5},
_
A{2} = {2, 4},

_
A{3, 4, 5} = {1, 2, 3, 4, 5} = U.

The second definition uses another idea: lower and upper
approximations are unions of characteristic sets, subsets of
U.  We will call these definitions subset.  A subset B-
lower approximation of X is defined as follows:

_BX = ∪ { KB(x) | x ∈  U, KB(x) ⊆ X }.

A subset B-upper approximation of X is

_
BX = ∪ { KB(x) | x ∈  U, KB(x) ∩ X ≠ Ø }.

In our example of the decision table presented in Table
2 and R(A) = LV(A), the subset A-lower and A-upper
approximations are

_A{1} = {1},

_A{2} = Ø,

_A{3, 4, 5} = {3, 4},
_
A{1} = {1, 5},
_
A{2} = {2, 4},

_
A{3, 4, 5} = {1, 2, 3, 4, 5} = U.

In our example of the decision table presented in Table
3 and R(A) = DCC(A), the subset A-lower and A-upper
approximations are

_A{1} = Ø,

_A{2} = Ø,

_A{3, 4, 5} = {3, 5}
_
A{1} = {1, 3, 5},

_
A{2} = {2, 4},

_
A{3, 4, 5} = {1, 2, 3, 4, 5} = U.

The next possibility is to modify the subset definition
of upper approximation by replacing the universe U from
the previous definition by a concept X.  A concept B-lower
approximation of the concept X is defined as follows:

_BX = ∪ { KB(x) | x ∈  X, KB(x) ⊆ X }.

Obviously, the subset B-lower approximation of
X is the same set as the concept B-lower approximation of
X.  A concept B-upper approximation of the concept X is
defined as follows:

_
BX = ∪ { KB(x) | x ∈  X, KB(x) ∩  X ≠ Ø }.

In our example of the decision presented in Table 2 and
R(A) = LV(A), the concept A-upper approximations are

_
A{1} = {1},

_
A{2} = {2, 4},

_
A{3, 4, 5} = {1, 3, 4, 5}.



In our example of the decision presented in Table 3 and
R(A) = DCC(A), the concept A-upper approximations are

_
A{1} = {1, 5},
_
A{2} = {2, 4},

_
A{3, 4, 5} = {1, 2, 3, 4, 5} = U.

Note that for completely specified decision tables, all
three definitions of lower approximations coalesce to the
same definition.  Also, for completely specified decision
tables, all three definitions of upper approximations
coalesce to the same definition.  This is not true for
incompletely specified decision tables, as the example
shows.  Since any characteristic relation R(B) is reflexive,
singleton lower and upper approximations are subsets of
subset lower and upper approximations, respectively.

Also, note that using characteristic relation LV(A),
even if we are going to use all three attributes to describe
case 2, we cannot describe this case not describing, at the
same time, case 4.  Thus, the set of rules describing only
{2} is the empty set.  In some rule induction systems the
expectation is that the set of all possible rules, induced
from an upper approximation cannot be the empty set, so
such a system may encounter an infinite loop.  This
situation cannot happen to the subset or concept
definitions of upper approximation.  Besides, the concept
definition of upper approximation is a subset of the subset
definition of upper approximation, so the concept
definition of upper approximation is better suited for rule
induction.  Moreover, it better fits into the idea that the
upper approximation should be the smallest set containing
the concept.

Furthermore, some properties that hold for singleton
lower and upper approximations do not hold—in general—
for subset lower and upper approximations and for concept
lower and upper approximations.  For example, as noted in
[13], for singleton lower and upper approximations

{ x ∈  U | IB(x) ⊆ X } ⊇   {x ∈  U | JB(x) ⊆ X }
and

{ x ∈  U | IB(x) ∩ X ≠ Ø } ⊆   {x ∈  U | JB(x) ∩ X ≠ Ø },

where IB(x) is a characteristic set of LV(B) and JB(X) is a
characteristic set of DCC(B).

In our example, for the subset definition of A-lower
approximation, X = {3, 4, 5}, and the characteristic
relation LV(A) (see Table 2)

∪ { IB(x) | IB(x) ⊆ X } = {3, 4}

while for the subset definition of A-lower approximation,
X = {3, 4, 5}, and the characteristic relation DCC(A) (see
Table 3)

∪ { JB(x) | JB(x) ⊆ X } = {3, 5},

so neither the former set is a subset of the latter nor vice
versa.

6. Rule induction

Since all characteristic sets K(x), where x ∈  U, are
intersections of blocks of attribute-value pairs, for
attributes from B, and for subset and concept definitions of
lower and upper approximations, lower and upper
approximations are unions of sets of the type K(x), it is
natural for rule induction to use an algorithm based on
blocks of attribute-value pairs, such as LEM2 [1, 5].

For example, for Table 2, i.e., for the characteristic
relation LV(A), the certain rules [3], induced from the
concept lower A-approximations are

(Location, good) & (Basement, yes) -> (Value, high),
(Basement, no) -> (Value, medium),

(Location, bad) & (Basement, yes) -> (value, medium).

The possible rules [3], induced from the concept upper
A-approximations, for the same characteristic relation
LV(A) are

(Location, good) & (Basement, yes) -> (Value, high),

(Location, bad) -> (Value, small),

(Location, good) -> (Value, medium),

(Basement, yes) -> (Value, medium),

(Fireplace, yes) -> (Value, medium).

7. Other approaches to missing attribute
values

In this paper two basic approaches to missing attribute
values, based on interpretation of a missing attribute value
as lost or a "do not care" condition were discussed.  Even
though the suggested definitions cover the situation in
which in the same decision table some missing attribute
values are considered to be lost and other are "do not care"
conditions, there exist many other possibilities to interpret
missing attribute values.

For example, for the attribute Basement from our
example, we may introduce a special, new value, say
maybe, for case 2 and we may consider that the missing
attribute value for case 5 should be no.  Neither of these
two cases falls into the category of lost values or "do not
care" conditions.  Nevertheless, such approaches may be



studied using the same idea of blocks of attribute-value
pairs.  More specifically, for attribute Basement, the
blocks will be

[(Basement, maybe)] = {2},

[(Basement, yes)] = {1, 3}, and

[(Basement, no)} = {3, 5}.

Then we may compute a new characteristic relation,
using the technique from Section 3 and define lower and
upper approximations using one of the possibilities of
Section 5, preferable concept lower and upper
approximations, and, eventually, induce certain and
possible rules.

8. Conclusions

This paper discussed data with missing attribute values
using rough set theory as the main research tool.  The
existing two approaches to missing attribute values,
interpreted as a lost value or as a "do not care" condition
are generalized by interpreting every missing attribute
value separately as a lost value or as a "do not care"
condition.  Characteristic relations are introduced to
describe incompletely specified decision tables.  For
completely specified decision tables any characteristic
relation is reduced to an indiscernibility relation.  It is
shown that the basic rough set idea of lower and upper
approximations for incompletely specified decision tables
may be defined in a variety of different ways.  Some of
these definitions should have preference of use for rule
induction because there is a guarantee that all necessary
cases will be described by rules.  Again, for completely
specified decision tables, all of these definitions of lower
and upper approximations  are reduced to the standard
definition of lower and upper approximations.
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