LPtest HK FCR PER
sep | non | inc || sep | non | inc sep | non | inc
separable 452 272 | 31 149 || 449 0 3 428 0 24
nonseparable 392 0 1 391 0 4 388 0 0 392

Table 1: Conclusion on linear separability by each algorithm (entries are number of
problems; sep: separable, non: nonseparable, inc: inconclusive).

results that there is no known proof of convergence
for HK and FCR in a predictable number of steps,
and that linear programming has known, predictable
time bounds for convergence on both linearly sepa-
rable and nonseparable cases. The implementational
difficulties bring doubts on the practicality of these
adaptive algorithms.

The only reservation we have about this conclusion
is that for linear programming we used the MINOS
solver [13] through the AMPL interface [4], which was
highly optimized commercial code, whereas the adap-
tive procedures were run under the simplest imple-
mentation by ourselves in C, so affordable (elapsed)
time may not mean the same thing for the two groups.
Also, we have not tested the dependence of the run
time on the order in which the input vectors were
presented, and we have not investigated dual prob-
lems that can be formulated for a given problem and
solved by any of these procedures [15]. Nevertheless,
we advocate that linear programming methods deserve
more serious attention in classification studies. With-
out more sophisticated derivatives such as simultane-
ous primal-dual algorithms, the only apparent advan-
tages of the adaptive procedures such as HK and FCR
rules seem to be that (1) they can be implemented on
very simple machines; and (2) their adaptive nature
permits easier inclusion of new input that may be-
come available during the training process, and thus
they are better suited for on-line learning.

Acknowledgements

We thank Ken Clarkson, David Gay, Margaret Wright,
and George Nagy for helpful discussions and sugges-
tions of references. Mitra Basu thanks Bell Labs for
the summer support in 1998.

References

[1] Basu, M. and Liang, Q., The Fractional Correction Rule :
A New Perspective. Neural Network, 11, 1998, 1027-1039.
[2] Blake, C., Keogh, E. Merz, C.J. UCI Repository of ma-
chine learning databases
[http://www.ics.uci.edu/ “mlearn/MLRepository.html].
Irvine, CA: University of California, Department of In-
formation and Computer Science, 1998.
Bennett, K.P., Mangasarian, O.L., Robust Linear Pro-
gramming Discrimination of Two Linearly Inseparable
Sets, Optimization Methods and Software, 1, 1992, 23-24.

(11]
(12]

(13]

[14

[15

[4] Fourer, R., Gay, D.M., Kernighan, B.W., AMPL: A Mod-
eling Language for Mathematical Programming, The Sci-
entific Press, 1993.

Glover, F., Improved Linear Programming Models for Dis-
criminant Analysis, Decision Sciences, 21, 4, 1990, 771-
785.

Grinold, R.G., Comment on “Pattern Classification De-
sign by Linear Programming”, IEEE Transactions on
Computers, C-18, 4, April 1969, 378-379.

Grinold, R.G., Mathematical Programming Methods of
Pattern Classification, Management Science, 19, 3, 1972,
272-289.

Hassoun, M.H. and Song, J., Adaptive Ho-Kashyap Rules
for Perceptron Training. IEEE Trans. on Neural Net-
works, 3, 1992, 51-61.

Ho, Y.C. and Kashyap, R.L., An Algorithm for Linear In-
equalities and its Applications. IEEFE Trans. on Electronic
Computers, 14, 1965, 683-688.

Mangasarian, O.L., Linear and Nonlinear Separation of
Patterns by Linear Programming, Operations Research,
13, 1965, 444-452.

Mays, C.H., Adaptive Threshold Logic. Ph.D. thesis,
Stanford Electron. Labs., Stanford, CA., 1963.

, Minsky, M., Papert, S., Perceptrons, expanded edition,
the MIT press, 1988.

Murtagh, B.A., Saunders, M.A., Large-Scale Linearly
Constrained Optimization, Mathematical Programming,
14, 1978, 41-72.

Rosenblatt, F., Principles of Neurodynamics: Per-
ceptron and the Theory of Brain Mechanism.
‘Washington: Spartan Press, 1962.

Roychowdhury, V.P., Siu, K.Y., Kailath, T., Classification
of Linearly Nonseparable Patterns by Linear Threshold
Elements, IEEE Transactions on Neural Networks, 6, 2,
March 1995, 318-331.

Siu, K.Y., Roychowdhury, V. and Kailath, T., Discrete
Neural Computation. Englewood Cliffs, NJ: Prentice
Hall, 1995.

Smith, F.W., Pattern Classifier Design by Linear Pro-
gramming, IEEE Transactions on Computers, C-17, 4,
April 1968, 367-372.

Tou, J.T., Gonzalez, R.C., Pattern Recognition Princi-
ples, Addison-Wesley, 1974.

Widrow, B. and Hoff, M.E. Jr., Adaptive Switching
Circuits. Tech. Report 1553-1, Stanford Electron. Labs.
Stanford, CA., 1960.

Widrow, B. and Stearns, S.D., Adaptive Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice Hall, 1985.
Widrow, B. and Lehr, M.A., 30 Years of Adaptive Neural
Networks: Perceptron, Madeline, and Backpropagation.
Proceedings of the IEEE, 78, 1990, 1415-1442.

Wright, M.H., Interior Methods for Constrained Opti-
mization, in A. Iserles (ed.), Acta Numerica, 1992, 341-
407.

for large problems. So the adaptive algorithm (7) was
used instead. With LP, we used the simple formula-
tion (8) to test for linear separability (referred to as
LPtest), and also Smith’s formulation (9) to derive
a minimum error separating hyperplane (referred to
as LPme). We included the perceptron training rule
too for comparison purpose (PER), although it is un-
derstood that it does not converge for nonseparable
input.

The problems were discrimination between all pairs of
classes in 14 data sets from the UC-Irvine Machine
Learning Depository [2]. The data sets were so cho-
sen that each set has at least 500 input vectors and
no missing values in the features. The names of the
dataset are as follows: abalone, car, german, kr-vs-kp,
letter, Irs, nursery, pima, segmentation, splice, tic-tac-
toe, vehicle, wdbc, and yeast. For those sets contain-
ing categorical features, the values were numerically
coded. There are a total of 844 two-class discrimina-
tion problems. Outcomes from the algorithms may be
a conclusion of whether the problem is linearly sepa-
rable or not, or inconclusive after a chosen number of
iterations. We compared such outcomes from all the
three procedures and the relative time it took for them
to derive the results.

Table 1 shows the number of problems reported by
each algorithm as separable, nonseparable, or incon-
clusive. Since LPtest always gives a definite answer,
conclusions of other algorithms are compared to its
results.

We found that within similar, affordable run time lim-
its, linear programming always arrived at a definite
conclusion, while HK and FCR often ended the runs
inconclusively (100,000 iterations were used for HK,
FCR, and PER). Of the 844 problems, LPtest reported
that 452 are linearly separable and 392 are not. For
54% (453/844) of these problems, FCR arrived at a
conclusion but the fraction is only 36% (304/844) for
HK. For the separable problems, FCR arrived at the
conclusion generally sooner than HK. For the nonsep-
arable problems, both algorithms have problem ful-
filling the claims of giving an indication: within the
affordable time, only 1 problem was reported to be
nonseparable by HK, and only 4 by FCR.

We also found that the results were very sensitive
to the choices of the learning coeflicient and conver-
gence thresholds for the Ho-Kashyap rule. Other than
affecting the speed of convergence, they can change
the conclusion on separability: for 31 separable prob-
lems HK reported that they were nonseparable. An
improper learning coefficient may cause overly large
correction steps. The tolerance threshold determines
when a number is considered zero which leads to a
conclusion. Of those 31 problems falsely reported to

LPme | HK FCR PER
LPtest || 0.6974 | 0.0164 | 0.1930 | 0.1256
LPme -0.0275 | 0.1586 | 0.1341
HK 0.7306 | 0.5723
FCR 0.5421

Table 2: Correlation coefficients of number of iter-
ations for each pairs of algorithms to converge to a
separating hyperplane.

LPme | LPtest || HK FCR PER
n 0.1970 | 0.5749 -0.0928 | -0.0746 | -0.0555
m 0.8856 | 0.4056 -0.0067 | -0.0704 | -0.0768
nm || 0.4778 | 0.7636 -0.0429 | -0.0388 | -0.0287

Table 3: Correlation coefficients of problem size mea-
sures and number of iterations for each algorithm to
converge to a separating hyperplane. n: no. of dimen-
sions; m: no. of input vectors.

be nonseparable by HK, 26 contain only 1 vector in
the smaller class. The other 5 problems have 2 vec-
tors in the smaller class. With a change in the learning
coefficient (to 10% of original value), 6 were reported
separable, 9 remained nonseparable, and the other 16
became inconclusive.

Table 2 shows, for the separable problems, the correla-
tion coefficients of the number of iterations it took for
each pair of algorithms to converge to a hyperplane,
computed over only those cases where both algorithms
converged. In LP each iteration involves an input vec-
tor, but in the adaptive algorithm each iteration in-
volves a loop through all relevant vectors in the en-
tire set. For this reason, significant correlation exists
only between the adaptive algorithms or the two LP
formulations, but not between any of the adaptive al-
gorithms and LP. The correlation is stronger between
HK and FCR than between each of them and PER.
Correlation coefficients were also calculated between
measures of the problem size and the number of it-
erations before convergence for each algorithm. (Ta-
ble 3). For the adaptive procedures, the absence of
significant correlation suggests that the difficulty of a
problem does not necessarily depend on the problem
size.

5 Conclusions

Our experiments show that linear programming, al-
though long neglected in classification studies, gener-
ally yields more affordable and dependable results. On
the contrary, the Ho-Kashyap and the fractional cor-
rection rules frequently do not converge within afford-
able time limits. The Ho-Kashyap rule may even lead
to wrong conclusions. It is very difficult to choose the
learning coeflicients and tolerance thresholds to get all
the conclusions right. This reinforces the theoretical

e Suppose the error vector has no positive compo-
nent for some finite j then |e¢/| + ¢ = 0. In
that case the correction will cease and neither the
weight vector nor the margin vector will change
(see (6)). Thus an error vector with no positive
components conclusively points to the nonlinear
nature of the data?.

e Supposee;T = (€/+]|€?]) is never zero for finite j.
We can derive from Fact 2 that |e;111]? < |¢; 7|2
Therefore |e; 7| must converge to zero. However,
its distance from zero is unknown for any fixed j.

In summary, Ho-Kashyap algorithm indicates nonsep-
arability but there is no bound on the number of steps.
Hassoun and Song [8] propose a variation of the Ho-
Kashyap algorithm equipped to produce an optimal
separating surface for linearly nonseparable data. The
authors claim that it can identify and discard nonsepa-
rable samples to make the data linearly separable with
increased convergence speed. Again we notice similar-
ity with the heuristic approach proposed in [16]. How-
ever, the authors do not provide any theoretical basis
to their claim. The algorithm is only tested on simple
toy problems. We have no knowledge of any extensive
testing on real world problems.

3 Linear Programming

In searching for a linear classifier, the input vectors
give a system of linear inequalities constraining the
location and orientation of the optimal separating hy-
perplane. With a properly defined objective function,
a separating hyperplane can be obtained by solving a
linear programming problem. Several alternative for-
mulations have been proposed in the past ([3], [5], [10],
[15], [17]) employing different objective functions. An
early survey of these methods is given in [7]. Here we
mention a few representative formulations.

In a very simple formulation described in [15], the ob-
jective function is trivial, so that it is simply a test of
linear separability by finding a feasible solution to the
LP problem

minimize 0'w
subject to Ziw > 1 ()

where w is the weight vector of a separating hyper-
plane, Z = [z!,2?,...,2™] is a matrix of column vec-
tors z/ (j = 1,...,m), the m augmented input vectors
as defined before, 0 and 1 are vectors of zero’s and
one’s respectively.

21t can be shown that for linearly separable data, it is im-
possible for all components of the error vector to be negative at
any given iteration.

This formulation gives only a test for linear separa-
bility but does not lead to any useful solution if the
data are not linearly separable. Another formulation
suggested by Smith ([6], [17]) minimizes an error func-
tion:

minimize a’t

subject to Ziw+t>b

t>0 9)

where Z is the augmented data matrix as before, a
is a positive vector of weights, b is a positive margin
vector chosen arbitrarily (e.g. b = 1), and t and w
are the error and weight vectors which are also decision
variables for the LP problem. In [17] each component
of a was set to be 1/m.
More recently, Bennett and Mangasarian [3] modified
this formulation to use different weights for input vec-
tors belong to each of the two classes. Let m;, m_;
be the number of vectors belonging to the two classes
respectively, a = (a1, as,...,an)t, for j =1,...,m,
if d=1,
if &/ =-1.
It is argued that this formulation is more robust in
the sense that it can guarantee a nontrivial solution
w even if the centroids of the two classes happen to
coincide.
Though arguably algorithms for solving LP problems
are more sophisticated than the previously discussed
iterative procedures, an important advantage of find-
ing w by solving an LP problem is that if the feasible
region is nonempty, solution can be determined in a
finite number of steps.
The number of steps it takes to arrive at the solution,
however, is dependent on the geometrical configura-
tion of the data points. If the LP is solved by the
simplex method, in the worst case, the algorithm may
have to visit every vertex formed by the intersections
of the constraining hyperplanes before reaching an op-
timum. Empirical evidence shows that in practice this
rarely happens. More recently, interior-point methods
[22], such as Karmarkar’s, are shown to have better
worst case time complexity. Still, the comparative ad-
vantages of such methods for an arbitrary problem
remain unclear, partly because there has not been a
good way to characterize the structure of a particular
problem and relate that to the detailed operations of
the algorithms.

a; :1/m1
a; :1/m_1

4 Experimental Results

We applied the three procedures (HK, FCR, LP) that
are claimed to indicate linear nonseparability to a col-
lection of two-class discrimination problems. The orig-
inal Ho-Kashyap rule involves computing a pseudoin-
verse matrix which turned out to be overly expensive

Group B: Error minimization proce-
dures

The error correction procedure focuses on misclassified
samples. Other procedures modify the weight vector
using all samples at each iteration. Moreover, thus
far a weight vector w is sought such that wiz/ Vj
is positive. Next, we discuss attempts to reformulate
the problem of finding the solution to a set of linear
inequalities as a problem of finding solution to a set
of linear equations. Let us construct a matrix Z =
[z1,22,...,2™]. Let b = (b,?,...,b™)! be a column
vector. The decision equation (2) can be restated as

Ziw = b (4)

The solution vector w is overdetermined since Z! is
rectangular with more rows than columns, assuming
m > n. The idea is to search for a weight vector
that minimizes some function of the error between the
left and the right hand side of (4). Usual choice of a
function to be minimized is one that represents sum-
of-squared error

J = |Z'w —Db|*.

The central theme in both Widrow-Hoff and Ho-
Kashyap procedures is to minimize J. Though, the
difference in the details of the algorithms leads to dras-
tically different results.

The a-LMS algorithm or Widrow-Hoff delta rule em-
bodies the minimal disturbance principle '[19]. It is
designed to handle both linear and nonlinear input.
The criterion function is minimized with respect to the
weight vector w using gradient descent method. The
unknown vector b is chosen arbitrarily and held con-
stant throughout the computation. See [20] for deriva-
tion of the weight update equation using the gradient
descent method. The iterative version of the weight
update equation can be written as [20] :

w? arbitrary
. . J ity
with —wi 4 or e ()

It has been shown that this rule converges in the mean
square sense to the solution w* that corresponds to
the least mean square output error if all input vec-
tors are of same length in both linearly-separable as
well as linearly non-separable cases [20]. It is known
that in some cases this rule may fail to separate train-
ing vectors that are linearly separable [11]. This is not
surprising, since the mean square error (MSE) solution

IThe rule aims at making minimum possible change in the
weight vector during the update process such that the output
for as many of the previously correctly classified samples as
possible remain unperturbed.

depends on the margin vector b. Different choices for
b gives the solution different properties. Hence, when
one does not have any clue about the distribution of
the input data and arbitrarily fixes a margin vector
it is possible that the resulting weight vector may not
classify all vectors correctly even for a linearly sepa-
rable problem.

Group C: Constrained error minimiza-
tion procedures

Ho and Kashyap [9] modified the Widrow-Hoff proce-
dure to obtain a weight vector w as well as a mar-
gin vector b. They imposed the restriction that the
m-dimensional margin vector must be positive-valued,
ie, b > 0 (b > 0, V k). The problem is equivalent
to finding w and b > 0 such that J = |Z'w — b|? is
minimized with respect to both w and b. Note that
since both w and b (subject to imposed constraint)
are allowed to play a role in the minimization process,
the minimum value (i.e., 0) for J can be achieved in
this case. Hence the w that achieves that minimum
is the separating vector in the linearly separable case.
The weight updating rule is (for detailed derivation
see [9])

b® >0 otherwise arbitrary

WO — (Zt)tbO
e = Ztwi — bl
bi*! = b’ + a(|e?] + €)
with = wi 4+ a(Z)(|e7] + ¢) (6)

where (Z!)t = (ZZ')"'Z is the pseudoinverse of Z?.
Computation of the pseudoinverse may be avoided by
using the following alternate procedure [8]

Kkt

ei = zF'wi —bJ
b’ = b’ + p1/2(|e)| + €])
witl = wi =t -t ()

This algorithm yields a solution vector in case of lin-
early separable samples in finite number of steps if
0 < p1 < 2,and0 < pa < 2/||zF||2. Since the
focus of this paper is on data that are not separable,
let us examine the behavior of this algorithm under
nonseparable situation.

Note the following two facts for nonseparable case :
Fact 1. ¢/ # 0 for any j and Fact 2. |¢/t1|2 < |€7]?
i.e., the sequence |e! |2, |€?|?, ... is a strictly monoton-
ically decreasing sequence and must converge to the
limiting value |e|?, though the limiting value can not
be zero. It can be shown that (¢/ + |¢/]) converges to
zero suggesting a termination of the procedure. Now
consider the following two cases.

values {d*,...,d™}, d* € {1,—1}, find a weight vec-
tor w € R" such that & = ¢/ = sgn(w'x?) for
ji=1,..,m.

The goal is to determine a weight vector w such that
the following conditions are satisfied:

wix! >0 ifdl =+1
wixi <0 ifd =-1 (1)

The equation w*'x = 0 defines a hyperplane in R".

Therefore finding a solution vector w* to this equation
is equivalent to finding a separating hyperplane that
correctly classifies all vectors x7, j=1,2,...,m. In other
words, an algorithm must be designed to find a hyper-
plane w*'x = 0 that partitions the input space into
two distinct regions, one containing all vectors x’ for
which the desired output is +1 and the other region
containing all vectors x7 for which the desired output
is -1. We reformulate this condition (1) to adopt the
convention usually followed in the literature.
Remark 2: Define a vector z’:

7zl =+xI ifd =+1
2l =—xI ifd =-1

The output 37 for the modified input vector z7 is com-
puted as y/ = sgn(w'z’). The goal is to determine a
weight vector w such that the following condition is
satisfied:

wizl >0 ifd =+1lor —1 (2)

Note that this simplification aids only in theoretical
analysis. As far as the implementation is concerned,
this does not alter the actual computation in a signif-
icant manner.

Descent procedures are those that modify the weight
vector as the algorithms examine the input vectors
one by one. There are non-descent based methods
for obtaining linear classifiers such as Fisher’s linear
discriminant analysis. In this paper we focus on de-
scent procedures that are categorized broadly into four
groups, with the first three being adaptive procedures:

¢ Group A: Error correction procedures

¢ Group B: Error minimization procedures

e Group C: Constrained error minimization pro-
cedures, and

e Group D: Linear programming

It should be noted that the term “error” is defined
differently in each context. In Group A it refers to
misclassification, and in Groups B and C it refers to
a measure of distance of a point from a hyperplane.
The remainder of this section discusses Groups A, B,
and C, whereas Group D will be covered in the next
section.

Group A: Error correction procedures

Among the adaptive procedures, the fixed-increment
perceptron training rule is the most well known. It
can be shown that [14] if the input vectors are lin-
early separable this rule will produce a solution vector
w* in a finite number of steps. However, for input
vectors that are not linearly separable, the perceptron
algorithm does not converge. Since, if the input vec-
tors are nonseparable, then for any set of weights w,
there will exist at least one input vector, z, such that
w misclassifies z. In other words, the algorithm will
continue to make weight changes indefinitely. In the
cases where the input vectors are integer-valued, the
weight vectors cycle through a finite set of values [12].
An observation of such cycling is an indication of that
the input is linearly nonseparable. Though, there are
no known time bounds for this to become observable.
The projection learning rule [1] (more commonly
known as the fractional correction rule [18]), a vari-
ation of the perceptron rule, is also based on error
correcting principle. However, its behavior with non-
linear input is quite different from that of the percep-
tron rule. The weights are updated in the following
manner:

w' arbitrary

(wjizj)zj
e

witl —wi—qa if z7'wi < 0 (3)

It can be shown that this algorithm converges for lin-
early separable input. The result pertaining to non-
linear input can be stated as follows [1].

Proposition 2.2 If the input is not linearly separa-
ble then the projection learning rule converges to a 0
solution for 0 < a < 2.

Proof: Since no hyperplane can separate the input,
the weight vector has to be updated at least once in
each cycle. From 3 one can derive that

ala —2) (zjtwj)2
12712

Note that Va, 0 < a < 2, [[w/tt||2 < ||w7]||?. This
indicates that the sequence ||w?||, ||[w!]|, ... is a strictly
monotonically decreasing sequence with lower bound
0. Therefore ||w?|| approaches zero as j approaches
infinity. This proves that the projection learning rule
converges to the only solution (i.e., w = 0) in the
linearly nonseparable case for 0 < a < 2.

For one-dimensional linearly nonseparable input one
can show that ||w|| falls within a small distance e from
zero in a number of steps that can be expressed as
a function of the initial weight vector, «, €, and the
angles between the input vectors [1]. However, no sim-
ilar expression has been known for higher dimensional
input.

(w2 — [lw?[|* =

The Learning Behavior of Single Neuron Classifiers
on Linearly Separable or Nonseparable Input

Mitra Basu

Department of Electrical Engineering

The City College, CUNY
140th Street & Convent Ave.,
New York, NY 10031, USA
eemb@ee-mail.engr.ccny.cuny.edu

Abstract

Determining linear separability is an important way of
understanding structures present in data. We explore
the behavior of several classical descent procedures
for determining linear separability and training lin-
ear classifiers in the presence of linearly nonseparable
input. We compare the adaptive procedures to linear
programming methods using many pairwise discrim-
ination problems from a public database. We found
that the adaptive procedures have serious implementa-
tional problems which make them less preferable than
linear programming.

1 Introduction

Discovery and understanding of the structures in data
is crucial in constructing classifiers. In practice, a clas-
sification problem often begins with a finite training
set assumed to be representative of the expected input.
Important clues about the complexity of the problem
can be obtained by studying the geometrical struc-
tures present in such a training set. A geometrical
property that is of fundamental importance is linear
separability of the classes. Based on this, a number
of descriptors of the point set geometry can be con-
structed. Whether the input is linearly separable or
nonseparable, in constructing a classifier, deriving a
linear discriminant that is optimal in a certain sense
is a useful first step. Linear discriminants can serve
as building blocks for piecewise linear classifiers, or be
used to separate points projected to a higher dimen-
sional space where they may become linearly separa-
ble.

In this paper we study a set of learning algorithms
each of which yields a linear classifier: (1) fractional
correction rule (FCR), (2) Ho-Kashyap rule (HK), and
(3) linear programming (LP). If the classes are lin-

Tin Kam Ho

Bell Laboratories
Lucent Technologies
700 Mountain Avenue
Murray Hill, NJ 07974, USA
tkh@bell-labs.com

early separable then any of these algorithms will pro-
duce a correct classifier. However, if the classes are
linearly nonseparable, then each claims to give indica-
tion about the possible non-linear nature of the data.
We believe that a study of how these three linear-
discriminant functions with their simple yet elegant
procedures discover structures in the data that are not
necessarily linear will be a step forward in understand-
ing the data. Based on this we designed experiments
to test the theoretical claims and observe the behav-
ior of the algorithms on real world data which often
contain linearly nonseparable classes.

2 The Single-Neuron Adaptive
Classifiers

Consider a 2-class (w1, wo) problem. Let us assume
that there are m sets of training pairs namely, (x!, d'),
(x2,d?),..., where x/ € R" is the j* input vector and
d’ € {-1, +1}, j=1, 2, ..., m is the desired output for
the j** input vector. In a single unit neural network,
the output 9’ for an input vector x7/ is computed as
y? = sgn(wix? — 6). Such a network is referred to as
a single-layer perceptron or a linear classifier.

Remark 1: Without loss of generality we include the
threshold value 6 in the weight vector as its last ele-
ment and increase the dimension of every input vector
by augmenting it with an entry that equals 1. Thus

the weight vector is w¢ = [wy, ..., w,, 0] and the input
. t . .

vector is X7 = [z17,...,z,7,1].

Then the output of the perceptron can be written as

yl = sgn(X 1 wral) = sgn(wix?). Let us assume

that the input and the weight vectors are already aug-
mented, then the problem of learning a linear classifier
can be defined as follows

Proposition 2.1 Given a set of input wvectors
(xt,...,x™), x* € R", and a set of desired output

