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Abstract— Data mining is most commonly used in attempts to
induce association rules from transaction data. Most previous
studies focused on binary-valued transaction data. Transaction
data in real-world applications, however, usually consists of
quantitative values. In the last years, the fuzzy set theory has
been applied to data mining for finding interesting association
rules in quantitative transactions.

Recently, a new rule representation model was presented
to perform a genetic lateral tuning of membership functions.
It is based on the 2-tuples linguistic representation model
allowing us to adjust the context associated to the linguistic
label membership functions.

Based on the 2-tuples linguistic representation model, we
present a new fuzzy data-mining algorithm for extracting both
association rules and membership functions by means of an
evolutionary learning of the membership functions, using a
basic method for mining fuzzy association rules.

I. INTRODUCTION

Data Mining (DM) is the process for automatic discovery
of high level knowledge by obtaining information from real
data. Some important problems that DM deal with are: rule
extraction, identification of associations, feature analysis,
linguistic summarization, clustering, classifier design and
novelty/anomaly detection [1].

Association rules are used to represent and identify depen-
dencies between attributes in a database [2]. Most previous
studies focused on database with binary values [3], however
the data in real-world applications usually consist of quan-
titative values. Designing sophisticated DM algorithms, able
to deal with various types of data, presents a challenge to
workers in this research field.

Lately, fuzzy set theory has been used more and more
frequently in intelligent systems because of its simplicity
and similarity to human reasoning [4]. The use of fuzzy sets
to describe association between data extends the types of
relationships that may be represented, facilitates the inter-
pretation of rules in linguistic terms, and avoids unnatural
boundaries in the partitioning of the attribute domains [5],
[6].

Many researchers have proposed methods for mining fuzzy
association rules from quantitative data [7], [8], [9], where
the membership functions (MFs) were assumed to be known
in advance. The given MFs may have a critical influence on
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the final mining results. For this reason, some approaches
have also achieved a learning or tuning of the MFs [10],
[11], [12], [13], [14].

Recently, a new linguistic rule representation model was
proposed to perform a genetic lateral tuning of MFs [15].
This new approach was based on the 2-tuples linguistic
representation [16], that allows the symbolic translation of
a linguistic term by considering only one parameter per lin-
guistic term. In this way, two main objectives were achieved:

• to obtain MFs with a more adequate context by main-
taining a high covering degree of the data, and

• to reduce the search space respect to the classic learn-
ing [17], [18], [19] (usually considering three parame-
ters in the case of triangular MFs), in order to easily
obtain optimal models.

Based on the 2-tuples linguistic representation model, in
this work, we present a new fuzzy data-mining algorithm for
extracting both association rules and MFs from quantitative
transactions by means of an evolutionary learning of the MFs
and the use of the method presented in [8] for mining the
fuzzy association rules. In this way, the search space reduc-
tion provided by the 2-tuples linguistic representation helps
the evolutionary search technique to obtain more suitable
MFs.

The paper is arranged as follows. The next section de-
scribes the linguistic rule representation model based on the
linguistic 2-tuples. Section III introduces the mining scheme
considered in this work. Section IV details the evolutionary
learning algorithm proposed to obtain the MFs. Section V
describes the proposed mining algorithm. Section VI shows
the results of the proposed mining algorithm applied over
a real-world problem. Finally, Section VII points out some
conclusions.

II. PRELIMINARIES: THE 2-TUPLES LINGUISTIC
REPRESENTATION

The 2-tuples linguistic representation scheme presented
in [16], introduces a new model for rule representation
based on the concept of symbolic translation (the lateral
displacement of a linguistic term).

The symbolic translation of a linguistic term is a number
within the interval [-0.5, 0.5) that expresses the domain of
a linguistic term when it is moving between its two lateral
linguistic term. Let us consider a set of linguistic terms S
representing a fuzzy partition. Formally, we have the pair,

(si, αi), si ∈ S, αi ∈ [−0.5, 0.5).

1-4244-1210-2/07/$25.00 ©2007 IEEE.
1538



Figure 1 depicts the symbolic translation of a linguistic
term represented by the pair (S2, −0.3), considering a set S
with five linguistic terms represented by their ordinal values
({0, 1, 2, 3, 4}).
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Fig. 1. Symbolic translation of a linguistic term and lateral displacement
of the involved MF

In [16], both the 2-tuples linguistic representation model
and the needed elements for linguistic information compari-
son and aggregation are presented and applied to the Decision
Making framework. In [15], a new rule representation model
has been presented based on these concepts to perform a
tuning of complex linguistic fuzzy models. Now, we are
going to extend its use for association rule representation.
Below we present this approach considering a simple mining
problem.

Let us consider a simple problem with two items (age and
weight) and tree linguistic terms with their associated MFs
(see Figure 2).

Weight

Low Middle High Low Middle High

Age

Fig. 2. Items and linguistic terms in a simple problem

Based on this definition, an example of classic association
rule and 2-tuples linguistic represented rule is:

Classic Association Rule,
If the Age is Middle then the Weight is High.

Rule with 2-Tuples Representation,
If the Age is (Middle,0.3) then the Weight is (High,-0.1).

Analyzed from the rule interpretability point of view, we
could interpret the 2-tuples linguistic represented rule in the
following way:

If the Age is “higher than Middle”
then the Weight is “a bit smaller than High”.

This proposal decreases the tuning problem complexity,
since the three parameters usually considered per linguistic
term [17], [18], [19] are reduced to only one symbolic
translation parameter. Moreover, from the point of view of
interpretability:

• the original shapes of the MFs are maintained (in our
case triangular and symmetrical), by laterally changing
the location of their supports,

• the lateral variation of the involved MFs is restricted
to a short interval, ensuring overlapping between two
adjacent MFs to some degree but preventing their vertex
points from crossing, and

• the 2-tuples represented linguistic terms can be inter-
preted with respect to the initial ones.

III. THE MINING SCHEME

An efficient way to generate the fuzzy association rules
consists of learning the MFs a priori and then use the final
best set of MFs to mine fuzzy association rules [11], [13],
[14]. This way to work allows us to learn the most adequate
context [20] for each fuzzy partition, which is necessary in
different contextual situations (different applications).

The scheme considered for discovering both useful fuzzy
association rules and suitable MFs from quantitative values
is comprised of two main stages (see Figure 3):

1) An evolutionary process to learn the MFs.
2) A method to mine fuzzy association rules. The method

presented in [8] will be considered for this task as a
first approach.

Definitive
    MFs     Learning
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Predefined
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MFs

Evaluation
   Module
  (Fitness)

Transaction
  Database

      Fuzzy
      Mining

         Fuzzy 
Association Rules

Transaction
  Database

Mining Fuzzy Association RulesLearning Membership Functions

Fig. 3. Scheme for discovering both useful fuzzy association rules and
suitable MFs
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IV. EVOLUTIONARY LEARNING ALGORITHM

The automatic definition of fuzzy systems can be con-
sidered as an optimization or search process and nowadays
Evolutionary Algorithms, particularly Genetic Algorithms
(GAs), are considered as the more known and used global
search technique. Moreover, the genetic coding that they use
allow them to include prior knowledge and to use it leading
the search up. For this reason, Evolutionary Algorithms have
been successfully applied to learn and to tune fuzzy systems
in the last years.

In this work, we will consider the use of GAs to de-
sign the proposed learning method of the MFs. A good
evolution model is the CHC evolutionary model [21]. The
CHC algorithm is a GA that presents a good trade-off
between exploration and exploitation, being a good choice
in problems with complex search spaces.

In the following, the components needed to design this
process are explained. They are:

• CHC Evolutionary model.
• MFs codification and initial gene pool.
• Chromosome evaluation.
• Genetic operators.

A. CHC Evolutionary Model

We will consider a population-based selection approach,
by using the CHC evolutionary model [21] in order to
perform an adequate global search. The genetic model of
CHC makes use of a “Population-based Selection” approach.
N parents and their corresponding offspring are combined to
select the best N individuals to take part of the next popula-
tion. The CHC approach makes use of an incest prevention
mechanism and a restarting process to provoke diversity in
the population, instead of the well known mutation operator.

This incest prevention mechanism will be considered in
order to apply the crossover operator, i.e., two parents are
crossed if their hamming distance divided by 2 is over
a predetermined threshold, LT . Since, we will consider
a real coding scheme, we have to transform each gene
considering a Gray Code with a fixed number of bits per
gene (BITSGENE) determined by the system expert. In
this way, the threshold value is initialized as:

LT = (#Genes ∗ BITSGENE)/4.0,

where #Genes is the number of genes in the chromosome.
Following the original CHC scheme, LT is decremented by
one when there is no new individuals in the population in
one generation. In order to make this procedure independent
of #Genes and BITSGENE, in our case, LT will be
decremented by a ϕ% of its initial value (being ϕ determined
by the user, usually 10%). The algorithm restarts when LT

is below zero.
A scheme of this algorithm is shown in Figure 4.

B. MFs Codification and Initial Gene Pool

A real coding scheme is considered, i.e., the real param-
eters are the GA representation units (genes). Each chromo-
some is a vector of real numbers with size n∗m (n items with

Initialize population
and THRESHOLD

Crossover of
N parents

Evaluation of the
New individuals

THRESHOLD < 0.0Restart the population
and THRESHOLD

yes

no

Selection of the
best N individuals

If NO new  individuals,
decrement THRESHOLD

Fig. 4. Scheme of CHC

m linguistic terms per item) in which the displacements of
the different linguistic terms are coded for each item. Then,
a chromosome has the following form (where each gene is
the tuning value of the corresponding linguistic term),

(c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm)

Figure 5 graphically depicts an example of correspondence
between a chromosome and its associated MFs. Notice that,
the three parameters usually considered per linguistic term
(in the case of triangular MFs) are reduced to only one
parameter.
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Fig. 5. Example of coding scheme

To make use of the available information, the initial
MFs obtained from expert knowledge are included in the
population as an initial solution. To do so, the initial pool is
obtained with the first individual having all genes with value
‘0.0’, and the remaining individuals generated at random in
[-0.5, 0.5).

C. Chromosome Evaluation

To evaluate a determined chromosome we will use the
fitness functions defined in [14]. Before the fitness of each
set of MFs is formally described, several related terms are
explained below.
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The overlap ratio of two MFs Ri and Rj (i < j) is defined
as the overlap length divided by half the minimum span of
the two functions. If the overlap length is larger than half the
span, then these two MFs are thought of as a little redundant.
Appropriate punishment must then be considered in this case.
Thus, the overlap factor of the MFs for an item Ik in the
chromosome Cq is defined as

m∑
i=1

m∑
j=i+1

[max(
overlap(Ri, Rj)

min(spanRi, spanRj)
, 1)− 1]

where overlap(Ri, Rj) is the overlap length of Ri and
Rj , and m is the number of MFs for Ik. Notice that the
span of the two MFs is the same because in our case the
original shapes of the MFs are maintained (triangular and
symmetrical).

The coverage ratio of MFs for an item Ik is defined as the
coverage range of the functions divided by the maximum
quantity of that item in the transactions. The more the
coverage ratio is, the better the derived MFs are. Thus, the
coverage factor of the MFs for an item Ik in the chromosome
Cq is defined as:

1
range(R1,...,Rm)

max(Ik)

where range(R1, R2, ..., Rm) is the coverage range of the
MFs and max(Ik) is the maximum quantity of Ik in the
transactions. Notice that the coverage factor is always 1
because in our case the 2-tuples linguistic representation
ensures the coverage in all the dominion, reducing the
computation time. The suitability of the set of MFs in a
chromosome Cq, is therefore defined as:

n∑
i=1

[overlap factor(Cqi) + 1]

where n is number of items. The fitness value of a chromo-
some Cq is then defined as

fitness(Cq) =
| L1 |

suitability(Cq)

where | L1 | is the number of large 1-itemsets obtained
by using the set of MFs in Cq. The suitability factor can
reduce the occurrence of the two bad kinds of MFs shown in
Figure 6, where the first one is too redundant, and the second
one is too separate. The overlap factor in suitable(Cq) is
used for avoiding the first bad case, and the 2-tuples linguistic
representation prevents the second one.

b) Separate membership functionsa) Redundant membership functions

Fig. 6. Two bad kinds of membership functions

D. Genetic Operator

The genetic operators considered in CHC are crossover
and restart approach (no mutation is considered). A descrip-
tion of these operators is presented in the following:

• Crossover. The crossover operator is based on the con-
cept of neighborhood. These kinds of operators show
a good behavior as is shown in [22]. Particularly, we
consider the PBLX operator (an operator based on the
BLX-α). This operator presents a good cooperation
when it is introduced within models forcing the conver-
gence by pressure on the offspring. Figure 7 shows the
performance of these kinds of operators, which allow
the offspring genes to be around the genes of one parent
(PCBLX) or around a wide zone determined by both
parent genes (BLX).

x yi i

PCBLX BLX

Fig. 7. Diagram of the performance of the crossover operators based on
environments

The PCBLX is described as follows. Let us assume
that X = (x1 · · ·xn) and Y = (y1 · · · yn), (xi, yi ∈
[ai, bi] ⊂ <, i = 1 · · ·n), are two real-coded chro-
mosomes that are going to be crossed. The PCBLX
operator generates the two following offspring:

– O1 = (o11 · · · o1n), where o1i is a randomly (uni-
formly) chosen number from the interval [l1i , u

1
i ],

with l1i = max{ai, xi−Ii}, u1
i = min{bi, xi+Ii},

and Ii =| xi − yi |.
– O2 = (o21 · · · o2n), where o2i is a randomly (uni-

formly) chosen number from the interval [l2i , u
2
i ],

with l2i = max{ai, yi−Ii} and u2
i = min{bi, yi +

Ii}.
• Restart approach. To get away from local optima, this

algorithm uses a restart approach [21]. In this case,
the best chromosome is maintained and the remain-
ing are generated at random within the corresponding
variation intervals [-0.5, 0.5). It follows the principles
of CHC [21], performing the restart procedure when
a threshold value is reached or all the individuals
coexisting in the population are very similar.

V. PROPOSED MINING ALGORITHM

According to the above description, the proposed
algorithm for mining both MFs and fuzzy association rules
is described below.

INPUT: T quantitative transaction data, a set of n items,
each with m predefined linguistic terms, a support threshold
α, a confidence threshold λ and a population size N .
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OUTPUT: A set of fuzzy association rules with its
associated set of MFs.

Stage 1. Evolutionary learning of the MFs.

Step 1: Generate the initial population with N chromosomes.
Step 2: Evaluate the population. For each chromosome:

• For each transaction datum Di, i=l to T , and for each
item Ij , j=l to n, transfer the quantitative value v

(i)
j (Di

= (v(i)
1 ,...,v(i)

n )) into a fuzzy set f
(i)
j represented as:

f
(i)
j = (

f
(i)
j1

Rj1
+ ... +

f
(i)
jm

Rjm
)

using the corresponding MFs represented by the chro-
mosome, where Rjk, is the k − th linguistic term of
item Ij , f

(i)
jk is v

(i)
j ’s fuzzy membership value in region

Rjk, and m is the number of linguistic terms for Ij .
• For each linguistic term Rjk, calculate its count on the

transactions as follows:

countjk =
T∑

i=1

f
(i)
jk

• For each Rjk, 1 < j < n and 1 < k < m, check
whether its countjk larger than or equal to the minimum
support threshold α. If Rjk satisfies the above condition,
put it in the set of large 1-itemsets (L1). That is:

L1 = {Rjk | countjk ≥ α, 1 ≤ j ≤ n and 1 ≤ k ≤ m}

• Set the fitness value of the chromosome as the number
of linguistic terms in L1 divided by suitability(Cq).
That is:

fitness(Cq) =
| L1 |

suitability(Cq)

Step 3: Initialize the threshold value L.
Step 4: Generate the next population:

• Shuffle the population.
• Select the parents two by two. Each pair is crossed

(PCBLX) if the hamming distance between the parent
Gray codings divided by 2 is over L.

• Evaluate the new individuals.
• Join the parents with their offspring and select the best

N individuals to take part of the next population.
Step 5: If the best chromosome does not change or there are
no new individuals in the population, L = L−(Linitial∗0.1).
Step 6: If L < 0, restart the population.
Step 7: If the maximum number of evaluations is not
reached, go to Step 4.

Stage 2. Basic method for mining fuzzy association rules.

Step 8: The set of the best MFs is then used to mine fuzzy
association rules from the given quantitative database. The
fuzzy mining algorithm proposed in [8] is then adopted to
achieve this purpose.

VI. EXPERIMENTAL RESULTS

To illustrate the proposed mining algorithm, a study of the
atherosclerosis is considered. It is a study of the risk factors
of atherosclerosis in a population of 1417 middle-aged men 1.
Here, we extract five quantitative attributes out of a total of
64. The selected attributes are height, weight, systolic blood
pressure, diastolic blood pressure, and cholesterol level.

The values considered for the parameters of the proposed
method are:

• Evolutionary process: 50 individuals, 10,000 evaluations
and 0.6 as crossover probability for PBLX.

• Method for mining fuzzy association rules: 0.7 for the
confidence threshold.

Figure 8 shows the relationship between the numbers of
large 1-itemsets and several values for the minimum support
with one uniform fuzzy partition and the proposed method.
We can see that the learning of the MFs achieves larger a
number of large 1-itemsets than the one with uniform fuzzy
partitions considering different values of minimum support.

Fig. 8. Relationship between numbers of large 1-itemsets and the minimum
supports

Figure 9 depicts the MFs obtained by the proposed method
from one of the runs performed in this problem with 3
linguistic terms by attribute. This figure shows how small
displacements in the MFs lead to important improvements
in the number of obtained rules. The MFs are more or less
well distributed which allows us to easily give a meaning to
the corresponding linguistic terms.

One rule mined out with factor of confidence 0.94 is shown
as an example:

1The study (STULONG) was performed at the 2nd Department of
Medicine, 1st Faculty of Medicine of Charles University and Charles Uni-
versity Hospital, under the supervision of Prof. F. Boudk with collaboration
of M. Tomeckov and Ass. Prof. J. Bultas. The data were transferred to
electronic form by the European Centre of Medical Informatics, Statistics
and Epidemiology of Charles University and Academy of Sciences. The
data resource is on the web page http://euromise.vse.cz/challenge2004. At
present, the data analysis is supported by the grant of the Ministry of
Education CR Nr LN 00B 107
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Fig. 9. MFs with/without lateral displacements (black/gray)

If the systolic blood pressure is (Low,-0.12) and
the diastolic blood is (Low,-0.05)
then the cholesterol level is (Middle,0.03)

VII. CONCLUSIONS

In this work, a new rule representation scheme by using
the 2-tuples linguistic representation model has been con-
sidered to extracting both MFs and fuzzy association rules
from quantitative transactions by means of an evolutionary
learning of the MFs and a later basic method to mine
fuzzy association rules. Here, we present our conclusions
and further considerations:

• The 2-tuples linguistic representation model allows an
important reduction of the search space from the opti-
mization point of view.

• The used learning scheme together with the 2-tuples
linguistic representation model and the used fitness
function offers a good mechanism to obtain interpretable
association rules, since the shapes of the initial MFs
are preserved, the MFs are maintained symmetrical and
more or less well distributed, ensuring full coverage and
the bad kinds of MFs are avoided in the mining process.

In the future, we will attempt to enhance the proposed
method for more complex problems.
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