
Scalable Representative Instance Selection and Ranking
Xingquan Zhu and Xindong Wu

Department of Computer Science, University of Vermont, VT 05405

Abstract
Finding a small set of representative instances for large datasets
can bring various benefits to data mining practitioners so they
can (1) build a learner superior to the one constructed from the
whole massive data; and (2) avoid working on the whole original
dataset all the time. We propose in this paper a Scalable
Representative Instance Selection And Ranking (SRISTAR
pronounced 3STAR) mechanism, which carries two unique
features: (1) it provides a representative instance ranking list, so
that users can always select instances from the top to the bottom,
based on the number of examples they prefer; and (2) it
investigates the behaviors of the underlying examples for
instance selection, and the selection procedure tries to optimize
the expected future error. Given a dataset, we first cluster
instances into small data cells, each of which consists of
instances with similar behaviors. Then we progressively evaluate
data cells and their combinations, and order them into a list such
that the learners built from the top cells are more accurate.

1. Introduction
Having massive amounts of data does not necessarily mean that
we have to use them all, even if all the data are collected from
quality sources. Real-world applications often raise at least two
concerns in this regard: (1) the efficiency of an algorithm on a
large dataset could be unbearably low, which requires the
algorithm to be conducted on a small set to reduce the
computational complexity; and (2) the usefulness of some data in
the dataset is questionable, even if the data are collected from
trustworthy sources. Existing endeavors from data mining and
machine learning have provided many solutions to resolve the
first concern. E.g., using bagging [1], boosting [2], incremental
learning [3], and sampling [4-5] to compromise the accuracy and
efficiency in general for better performances. These methods are
efficient from their own perspectives, but users still have to work
on the whole original dataset all the time:

(1) Extra data usage efforts. Large datasets are often stored
in a data repository or a warehouse, which imposes extra
efforts on users to get familiar with these facilities. It often
turns out to be infeasible without help from an expert.

(2) Data accessibility and privacy. When it comes to process
the whole original data, privacy and accessibility issues
become a major concern.

(3) Flexibility. Within the context of a massive data volume, it
is difficult for users to try different mining mechanisms.

The above three issues are often solved in reality by sampling
a small set of examples, which is manageable for general users.
Then, preliminary mining results from this set are used to guide
the subsequent procedures. On the other hand, to resolve the
second real-world concern, existing research efforts, e.g.,
Instance Based Learning (IBL) [6], have suggested that it is very
possible to refine the training set in such a way that a better
learner can be constructed from the refined set.

The above observations motivate our work of selecting a
representative instance subset S from a given data set D, where
the instance selection procedure should carry three important
features: (1) Algorithm complexity is reasonable for real-world
usages; (2) The selected subset S has minimal information loss

and the model built from S should be close to, if cannot
outperform, the theory from D as much as possible; and (3) good
scalability to fit different users’ needs in instance selection. To
consider the scalability of the instance selection, we adopt the
concept of a ranking list for all instances in D, with D={n1, …,
nN} for a dataset with N instances, where ni is an ordered
instance. Whenever the user requests for a subset S of K
instances, the instance selection procedure will directly select
examples from the rank ordered list with S={n1,…nK}. There are
several challenges regarding this procedure, if we consider the
above three features as a whole.
1. What is an efficient ranking schedule to sort the instances

based on their representation ability?

2. Given a request of K instances, how to guarantee that the
top K instances selected from the ranking list can provide
better performances than other selections?

3. When several distributed branches collaborate with each
other to select representative instances, how to guarantee
that the selected subset is globally optimal?

This paper addresses these three challenges in a novel manner.
The motivation behind is simple. Assume a user wants to select
K most representative instances from D. A possible solution, not
necessarily the best one, motivated by the Monte Carlo sampling
[7] works as follows. It continuously builds learners from a
subset consisting of any K instances from D, and selects the one
with the minimal error rate. This method, however, if
implemented naively, would become hopelessly inefficient,

because there are
K

iN
K

iK
N

∏ −

=
−

=
1

0
)(

)(combinations to form a

K-instance subset. In addition, if the user changes the value of K,
the algorithm must repeat to search for an optimal combination
again. If we can merge similar instances into groups, then the
representative instance selection can be regarded as a procedure
of selecting the combination of the groups with the lowest
expected future error. The above motivations have guided us to
design 3STAR to solve the problem in an efficient way.

2. Data Cell Construction
Because instance selection crucially depends on the underlying
learner, we use Naïve Bayes due to its efficiency, simplicity and
popularity in handling many real-world problems.

3.1 Naïve Bayes Classification
In classification learning, each instance is described by a vector
of attribute values and a class label. A set of instances with their
classes, the training data, is provided. The learner is asked to
predict a test instance’s class according to the evidence provided
by the training data. We define:
• X <A1, A2, .., Ak> as a vector of random variables denoting

the observed attribute values (an instance).
• x <a1, a2, …, ak> as a particular observed attribute value

vector (a particular instance).
• X=x as shorthand for X1=x1 ∧ X2=x2 ∧..∧ Xk=xk.
• Y as a random variable denoting the class of an instance.
• y as a particular class label, and yx is the class label of x.
Suppose that P(Y=yj| x) denotes the probability that example x

belongs to class yj, the Bayes theorem can be used to optimally

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00 © 2006

predict the class label of a previously unseen example x, given a
set of training examples in advance. With the Bayes theorem, the
expected classification error can be minimized by choosing

)}|({maxarg xyYP jj = . Given an example x, the Bayes

theorem provides a method to compute P(Y=yj| x) with Eq. (1)

)(

)|()(
)|(

xXP

yYxXPyYP
xyYP jj

j =
==⋅=

==
 (1)

Assuming that the attributes are independent given the class,
P(X=x| Y=yj) can be decomposed into the product P(x1|yj) × P(x2|
yj) ×…× P(xa| yj). Then the probability that an example belongs
to class yj is given by Eq. (2).

)(

)|()(
)|(

xXP

yYxXPyYP
xyYP a jaj

j =
==⋅=

== ∏ (2)

Which can be rewritten as Eq. (3).

))|(log())(log()|(∑ ==+=∝=
a jajj yYxXPyYPxyYP (3)

3.2 Instance Behavior Assessment
Let P(y| x) be an unknown conditional distribution over the input,
x, and output class, y, and P(x) be the marginal “input”
distribution. The learner is given a labeled training set, E,
consisting of IID input/output pairs drawn from P(x)P(y| x), and
estimates a classification that given an input x, produces an
estimated output distribution)|(ˆ xyPE

. To measure the degree of

our disappointment in any difference between the true
distribution, P(y| x), and the learner’s prediction)|(ˆ xyPE

, the

log loss function in Eq. (4) is usually introduced. With the class
label of x, we can produce P(yi| x) without bias, and then estimate
the prediction loss for each instance x. However, existing studies
often complain that the absolute class distribution values
estimated by NB are likely poor. So we modify Eq. (4) slightly to
consider the relative class distribution of each prediction, instead
of relying on the absolute prediction values, as defined by Eq. (5).

∑ =
−= ||

1
))|(ˆlog()|(

Y

j jEjx xyPxyPL (4)

∑ =
−= ||

1
))|(ˆlog()|(ˆˆ Y

j jEjEx xyPxyPL (5)

With the entropy based loss function in Eq. (5), we can
quantitatively assess the loss of a single instance x from an
underlying classifier, but it is inadequate to evaluate the instance
behavior because the loss function does not take the class label of
instance x into consideration, and is therefore not able to
differentiate the loss of a correct or incorrect classification. Then
we modify Eq. (5) by taking the class label into consideration to
measure instance behaviors, as defined by Eq. (6)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==∧≠∞−

=≠∧≠−

=≠∧=

==∧=∞+

=

)}|(maxarg|0ˆ{

)}|(maxarg|0ˆ{ˆ
1

)}|(maxarg|0ˆ{ˆ
1

)}|(maxarg|0ˆ{

xyPjLyyif

xyPjLyyif
L

xyPjLyyif
L

xyPjLyyif

Bh

llxxj

llxxj
x

llxxj
x

llxxj

x

 (6)

3.3 Instance Behavior Study and DC Construction
Eq. (6) has provided a quantitative measure to study each
separate instance. Although well motivated, two pieces of
evidence are needed before we can use this measure to guide the
instance selection: (1) whether Eq. (6) can indeed characterize
instances with similar behaviors; and (2) whether instances with
similar behaviors can contribute similarly to build a learner. We
refer to an empirical study in this section to resolve these two
concerns. For this purpose, we design a toy problem as shown in
Fig. 1. It is a two class problem with a discriminant plane at y=x.

Instances above and below y=x are positive and negative
examples respectively (denoted by rectangle and triangle boxes
in Fig. 1). Examples on line y=x are equally separated into two
classes. Although this problem can be easily solved by Linear
Discriminant Analysis [8], it turns out to be a hard task for
learners like NB or C4.5, especially when the number of training
examples is inadequate. Our first objective is to study whether
Eq. (6) can indeed characterize instances with similar behaviors.
For this purpose, we adopt a cross-validation oriented approach
to group all instances in D into n Data Cells (DC), based on their
behavior values, as described in Algorithm 1.
 In this experiment, we construct 10 cells for the toy dataset,
with all cells and their members showing in Fig. 2 (we
intentionally make each cell reserve the same class distribution
as the original dataset D, so each cell has exactly five positive
and five negative examples). In Fig. 2, from Cell0 to Cell9, the
members in each cell should have lower and lower behavior
values, because all instances are ranked by their behavior values
in descending order. Among all instances in D, the farther the
instance from y=x, the easier the instance can be classified. The
most difficult instances are those around the y=x line. As we can
see from Fig. 2, the proposed measure does cluster well instances
with similar behaviors, with DC0 to DC9 containing examples
more and more difficult to classify.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Positive

Negative

Fig. 1: A two-class toy problem

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Cell0

Cell1

Cell2

Cell3

Cell4

Cell5

Cell6

Cell7

Cell8

Cell9

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7 8 9
Cell ID

A
cc

ur
ac

y
Test

ALL

 Fig. 2: Constructed data cells Fig. 3: Cell performances

However, having instances with similar behaviors in cells does
not necessarily tell us which cell is better in constructing a
learner? Shall we select instances from DC0 or from DC9, if a
user requests for a subset of 10 instances? As there is no clear
answer at this stage, we build a learner DTi from each cell DCi,
and then evaluate its performance. We repeat the same procedure
for all learners DT0, …, DT9, and provide their accuracies in Fig.
3. Where “Test” and “ALL” mean the accuracy of the learner
tested on a testing set (randomly selected 10 examples) and all
the data (100 examples) respectively. As shown in Fig. 3, the
overall trend of the accuracy is that cells in the middle are better
than those at both ends. A simple analysis can explain why.
Intuitively, instances in DC0 comply well with the existing model
(the model built from the whole dataset). But complying with the
data model well does not necessarily contribute significantly to
build the current learner. It is often the case that models built
from these quality data are over simplified and cannot generalize
well for other instances [5]. On the other hand, instances in DC9

are highly untrustworthy and confusing for the existing model. It

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00 © 2006

consists of two types of instances: noisy instances and truly
confusing examples. Since no noise exists in the toy problem, all
examples in DC9 belong to the later case. It is worth noting that
uncertainty sampling based approaches actually believe that
instances like those in DC9 are more important than others in
instance selection, but it turns out to be not the case for even this
toy problem. Therefore, selecting instances from confusing
examples will result in a low quality learner, and it is still not an
option for representative instance selection. Cross-validation is
an effective tool to determine which cell is better than others, and
this procedure discards any prior knowledge in instance selection
and directly refers to instances’ behaviors for answers.

Procedure: Data_Cell_Construction()
Input: original dataset D; Output: n data cells DCi of D.
Parameter: p (# of subsets for cross-validation, typically 10); n
(# of data cells)

(1) Form p disjoint equal-size subsets Ei, where ∪i Ei =D.
(2) For i=1, …, p
(3) Form Ey ← D \ Ei

(4) Induce a Classifier Hy based on examples in Ey.
(5) For every x ∈ Ei

(6) Calculate its behavior value Bhx with Eq. (6)
(7) Rank all instances in D based on their Bhx values in

descending order.
(8) For i=1, .., n
(9) Construct DCi by selecting instances continuously

from the top to the bottom of the list, with each cell
having the same instance numbers and class
distributions.

(10) Return

Algorithm 1: Data cell construction

3.4 Progressive Estimation of Error Reduction
To enhance the scalability of the algorithm for general situations,
we propose a progressive estimation of error reduction to
progressively reorder data cells and optimize the expected further
error, as shown in Algorithm 2. Denote)(

~
* DE

D
 by the error rate

of a learner built from dataset D* and was tested on dataset D.
Progressive error reduction is a greedy search mechanism thus
aims to select a data cell, DC*, such that when the instances of
the cell are put into the existing dataset, the learner trained on the
resulting set (D*+DC*) has a lower error rate than any others.

Procedure: Progressive_Estimation_of_Error_Reduction ()
Input: Original data cells (DC0, DC1,…, DCn-1);
Output: L Ranking list of data cells.
Parameter: n (# of data cells)

(1) D=DC1 ∪ DC2 ∪..∪ DCn-1; D* ← ∅; L ← ∅
(2) For i=1, .., n
(3) D* ← D* ∪ DCk | {k = argmin l { *),(

~
* DDCDE lDCD l

⊄+
}}

(4) L ← L ∪ k
(5) Return L

Algorithm 2: Progressive Estimation of Error Reduction

)(
~

)(
~

)(*** DEDEDC
iDCDDCDi ++ <∀ (7)

The algorithm details are shown in Algorithm 2. It first selects
a cell with the minimal expected error on D. Then we put
instances to D*, and progressively assess other cells one at a
time. Each time a data cell DC* is selected, it should guarantee
that the learner built from the aggregation of the previous
selected data D* and DC*, e.g., D*+DC*, can minimize the error
rate of the learner on D.

The proposed progressive error reduction is actually a
suboptimal mechanism, because it does not test all possible
combinations to select the one with the minimal prediction error.
The reason of taking this approach is twofold (1) Efficiency,
testing all possible combinations of data cells is expensive; and
(2) Scalability, the optimal solution does not accommodate well
the scalability of instance selection. Changing the query requires
the whole system to repeat again.

In Fig. 4, we show the first two selected cells (which are Cell2

and Cell1 in Fig. 2) with Algorithm 2, where items with different
colors (and shapes) mean the members of different cells (the blue
circles denote the members of the first selected cell, and the pink
squares mean the members of the second selected cell). For
comparison, the optimal solution of a representative instance set
with 20 instances is shown in Fig. 5. Understanding the average
classification accuracy (from the NB perspective) of the learner
built from this cell is easy. Since the priori probability of all
classes is equal, at each data point (i, j) we sum up the training
examples horizontally and vertically (based on the discriminant
function in Eq. (3)). If the number of positive examples is more
than negative examples, the learner will classify the instance at
(i, j) as a positive instance, and vice versa. In the case that the
numbers of positive and negative examples are the same, the
learner will have to do a random guess. The average accuracy
from the learner built from Fig. 4 is about 84% which is very
close to the learner from the optimal approach in Fig. 5 (88%),
and far better than a random approach, which is about 70.8%.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Fig. 4: Members of the first Fig. 5: Members of the optimal
 two selected cells solution with 20 examples

The final result (ranking list) of the progressive estimation of
error reduction on the toy problem is: Cell2, Cell1, Cell4, Cell5,
Cell6, Cell0, Cell9, Cell7, Cell3, and Cell8.

5. Experimental Evaluations
The majority of our experiments use NB, and for comparison
purposes we also use C4.5 [9] decision trees. For each
experiment, we perform 10 times 10-fold cross-validation. We
evaluate our approach on 30 benchmark datasets from the UCI
data repository [10-11]. In Table 1, ALL(C4.5) and ALL(NB)
mean the accuracy of the model trained from the whole dataset
with C4.5 and NB respectively. For each entry of 3STAR, if
3STAR is better than both Random and ALL(NB), we tag “‡”
right after the value, and if STAR is better than Random but
inferior to ALL(NB), we place a tag “†” instead. On the other
hand, for each entry of Random, if its performance is better than
both 3STAR and ALL(NB), we tag “‡”, and if its performance is
better than 3STAR but inferior to ALL(NB), we place a tag “†”.

The results in Table 1 indicate that 3STAR remarkably
outperforms a random approach for representative instance
selection. When the size of the user requested subset is small,
Random is simply incomparable to 3STAR. 3STAR also has
remarkable absolute improvement values. It is possible that
3STAR can beat Random with a 20% or more improvement. For
many datasets, if the user requested subset size is 5%, the model
built from Random is significantly worse than the learner of the

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00 © 2006

whole dataset. Increasing the sampling ratio likely always
improves Random’s performance. This brings two negative
impacts to those which heavily rely on the random selection: (1)
it misleads users to draw incorrect conclusions, simply because
the sampled set is not representative enough to build a
trustworthy model; and (2) it incorrectly leads users to believe
that the more instances they use, the better their learner can be.

In addition to the fact that 3STAR can outperform Random, it
can even bring a better learner in comparison with the theory
built from the whole dataset. Obviously, having massive amounts

of data does not necessarily mean the algorithms have to use
them all. Many real-world possibilities can result in imperfect
data, which leads the learner to draw biased decisions. 3STAR
provides a practical solution to help users assess the data
behaviors and select representative instances to build a superior
learner. This can be conducted through many ways, and the most
obvious approach is to continuously increase the number of
representative instances until the decrease of the model accuracy
has been observed. Detailed discussions in this regard are beyond
the coverage of this paper.

Table 1: Representative instance selection results (30 benchmark datasets)
5% 10% 20% 30% 50% 70% 90% Dataset ALL

(C4.5)
ALL
(NB) 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random

Abalone 21.17 24.68 25.12 ‡ 18.56 25.18 ‡ 22.82 25.73 ‡ 23.76 25.61 ‡ 24.03 25.58 ‡ 24.5 25.72 ‡ 24.84 25.43 ‡ 24.96
Anneal 94.16 91.91 90.29 † 88.07 91.82 † 88.69 93.67 ‡ 90.8 94.21 ‡ 91.45 93.85 ‡ 91.94 93.02 ‡ 92.09 92.11 92.18 ‡

Auto-mpg 75.98 65.98 62.99 † 59.43 65.53 † 61.25 65.29 † 63.97 64.98 † 62.85 65.06 † 64.13 64.16 † 62.68 62.6 † 62.21
Balance 69.37 91.69 87.52 † 64.61 83.57 † 63.11 83.53 † 72.65 87.34 † 83.02 90.11 † 87.08 90.7 † 89.24 91.16 † 90.91
Breastc 66.54 71.62 72.16 ‡ 64.66 72.41 ‡ 62.67 71.81 ‡ 66.62 70.69 † 68.94 71.27 † 70.08 71.16 71.59 † 72.1 ‡ 71.82
CMC 49.89 46.67 45.47 † 42.91 45.12 † 44.17 45.1 45.11 † 45.42 45.49 † 45.40 45.89 † 46.15 † 45.91 46.46 † 46.32

Connect 79.41 80.26 76.44 † 70.78 78.51 † 70.95 79.29 † 75.31 79.82 † 78.39 80.1 † 79.57 80.21 † 79.87 80.32 ‡ 80.25
Credit 82.85 84.94 85.79 ‡ 70.31 86.32 ‡ 79.42 86.08 ‡ 82.62 85.92 ‡ 83.37 85.14 ‡ 84.54 85.44 ‡ 84.96 85.43 ‡ 85.15
Ecoli 82.59 80.15 59.02 † 53.23 59.37 † 54.72 66.32 † 62.09 71.93 † 66.79 75.41 † 73.55 77.31 † 75.81 78.54 † 78.46

German 69.52 69.99 70.72 ‡ 69.84 71.32 ‡ 70.24 70.95 ‡ 69.99 71.23 ‡ 70.13 71.17 ‡ 70.07 70.88 ‡ 69.97 70.28 ‡ 69.99
Glass 66.29 51.15 43.59 † 34.45 48.52 † 36.92 50.83 † 41.87 52.21 ‡ 43.71 52.26 ‡ 46.35 53.59 ‡ 48.29 51.82 ‡ 50.06

Kdd99 99.61 95.58 98.25 ‡ 93.04 98.29 † 93.63 97.85 ‡ 93.69 98.3 ‡ 96.77 98.56 ‡ 95.58 96.51 ‡ 95.57 95.81 96.02 ‡
Krvskp 99.42 87.88 85.05 † 59.57 86.81 † 75.72 88.15 ‡ 86.47 91.72 ‡ 86.81 93.68 ‡ 87.73 93.69 ‡ 87.75 90.97 ‡ 87.9
Led24 100 100 83.76 † 77.42 99.94 † 98.68 100 100 100 100 100 100 100 100 100 100
Liver 65.71 61.89 59.38 † 57.42 62.21 † 58.03 64.89 ‡ 61.16 64.66 ‡ 60.13 65.74 ‡ 61.31 64.77 ‡ 60.38 65.01 ‡ 62.43

Monks1 96.14 74.98 72.97 † 53.34 74.03 † 64.22 78.16 ‡ 66.65 78.94 ‡ 71.03 79.55 ‡ 72.63 77.57 ‡ 74.14 74.61 74.98 †
Monks2 47.65 65.95 61.14 † 52.48 62.24 † 57.52 62.19 † 59.55 61.48 † 57.85 61.48 † 61.31 62.17 † 61.81 64.59 † 63.83

Mushroom 100 99.68 95.46 † 92.89 98.3 † 93.47 99.89 ‡ 96.6 99.95 ‡ 99.55 99.94 ‡ 99.62 99.95 ‡ 99.68 99.89 ‡ 99.68
Nursery 98.72 91.32 88.11 † 78.51 89.43 † 82.7 91.22 † 87.45 91.04 90.1† 91.61 ‡ 90.08 91.63 ‡ 90.15 91.29 † 90.21

Pima 72.83 68.06 69.26 ‡ 65.09 68.63 ‡ 65.25 68.61 ‡ 65.26 68.53 ‡ 65.07 66.78 † 65.06 67.85 † 66.69 68.03 68.1 ‡
Sick 98.74 95.02 93.28 † 90.1 94.68 † 92.45 95.65 ‡ 94.41 95.93 ‡ 94.77 95.93 ‡ 94.88 96.1 ‡ 94.98 95.47 ‡ 95.04

 Sonar 72.82 73.62 70.75 † 55.48 71.65 † 58.29 72.31 † 62.41 72.26 † 66.52 73.84 ‡ 71.95 75.28 ‡ 73.99 74.14 ‡ 74.09
Soybean 91.72 94.38 78.25 † 70.37 82.32 † 76.79 84.45 † 82.27 87.45 † 84.52 91.05 † 89.11 92.77 † 92.45 93.19 93.78 †
Tictactoe 85.97 70.67 66.06 † 60.42 69.29 † 61.93 71.65 † 68.08 71.54 ‡ 70.17 70.79 ‡ 70.66 69.23 70.4 † 70.32 70.44 †

Tumor 37.94 45.16 31.08 † 26.31 38.56 † 34.45 41.11 † 36.32 40.75 † 39.66 41.88 † 40.77 43.16 43.23 † 43.88 44.57 †
Wbreastc 93.97 96.67 80.71 † 74.14 86.76 † 82.34 93.97 † 90.31 95.6 † 92.91 96.02 † 95.95 96.13 96.37 † 96.34 † 96.27
WDBC 93.31 88.51 90.01 ‡ 86.0 90.59 ‡ 87.68 90.77 ‡ 88.28 90.52 ‡ 87.94 90.14 ‡ 88.27 89.35 ‡ 88.32 88.6 ‡ 88.51
Wine 92.71 94.71 83.74 † 76.01 88.32 † 80.69 91.74 † 86.9 93.32 † 90.21 94.14 † 91.77 95.24 † 93.84 95.02 ‡ 94.17
Vote 95.5 90.32 94.42 ‡ 87.4 94.94 ‡ 88.49 95.15 ‡ 90.32 95.1 ‡ 90.08 93.92 ‡ 90.13 92.63 ‡ 90.64 91.93 ‡ 90.39
Zoo 92.83 95.88 93.41 † 89.17 94.28 † 89.49 94.59 † 90.41 94.38 † 91.17 94.75 † 92.25 96.03 ‡ 94.05 96.9 ‡ 95.83

‡ N/A N/A 8/30 0/30 7/30 0/30 14/30 0/30 15/30 0/30 16/30 0/30 16/30 0/30 15/30 3/30
† + ‡ N/A N/A 30/30 0/30 30/30 0/30 28/30 1/30 27/30 2/30 28/30 1/30 25/30 4/30 22/30 7/30

6. Conclusions
In this paper, we have proposed 3STAR for scalable
representative instance selection and ranking. We have shown
that a carefully selected representative instance set can often
result in a learner which is superior to the model from the whole
dataset, and it is almost always better than a random selection.
3STAR is based on an optimal instance selection theory - Monte
Carlo sampling, but with substantial complexity reduction. The
novel features that distinguish 3STAR from others are twofold: (1)
3STAR does not base on any prior knowledge to select
representative instances, and the selection procedure is based on
the contribution of instances with similar behaviors, which makes
3STAR adapt well to the uniqueness of different datasets; and (2)
3STAR adopts progressive estimation of error reduction to
directly optimize the expected future error for representative
instance selection, and seamlessly incorporates the scalability and
the utility maximization of instance selection for better
performances. It can be easily demonstrated that this framework
is general enough to incorporate any learning theory for
representative instance selection, as long as the learner can
estimate the class distribution of an instance.

References
[1] Breiman L., (1996), Bagging predictors, Machine Learning,

24(2):123-140.
[2] Schapire R., (1990), The strength of weak learnability, Machine

Learning, 5(2):197-227.
[3] Utogoff P., (1989), Incremental induction of decision trees,

Machine Learning, 4:161-186.
[4] Provost F., Jensen D., & Oates T., (1999), Efficient progressive

sampling, in Proc. of SIGKDD, pp. 23-32.
[5] Lewis D. & Catlett J., (1994), Heterogeneous uncertainty sampling

for supervised learning, in Proc. of ICML, 148-156.
[6] Aha D., Kibler D., & Albert M., (1991), Instance-based learning

algorithms. Machine Learning, 6(1):37-66.
[7] Malvin H. Kalos, Paula A. Whitlock, (1987), Monte Carlo Methods,

Volume 1, Basics, John Wiley & Sons, Inc.
[8] McLachlan G., (1992), Discriminant analysis and statistical pattern

recognition, NewYork: John Wiley and Sons.
[9] Quinlan, J.R. (1993), C4.5: Programs for machine learning,

Morgan Kaufmann, San Mateo, CA.
[10] Blake, C.L. and Merz, C.J. (1998), UCI Repository of Machine

Learning Databases.
[11] Hettich, S. and Bay, S. D. (1999). The UCI KDD Archive

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

