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Abstract 
Finding a small set of representative instances for large datasets 
can bring various benefits to data mining practitioners so they 
can (1) build a learner superior to the one constructed from the 
whole massive data; and (2) avoid working on the whole original 
dataset all the time. We propose in this paper a Scalable 
Representative Instance Selection And Ranking (SRISTAR 
pronounced 3STAR) mechanism, which carries two unique 
features: (1) it provides a representative instance ranking list, so 
that users can always select instances from the top to the bottom, 
based on the number of examples they prefer; and (2) it 
investigates the behaviors of the underlying examples for 
instance selection, and the selection procedure tries to optimize 
the expected future error. Given a dataset, we first cluster 
instances into small data cells, each of which consists of 
instances with similar behaviors. Then we progressively evaluate 
data cells and their combinations, and order them into a list such 
that the learners built from the top cells are more accurate.  

1. Introduction
Having massive amounts of data does not necessarily mean that 
we have to use them all, even if all the data are collected from 
quality sources. Real-world applications often raise at least two 
concerns in this regard: (1) the efficiency of an algorithm on a 
large dataset could be unbearably low, which requires the 
algorithm to be conducted on a small set to reduce the 
computational complexity; and (2) the usefulness of some data in 
the dataset is questionable, even if the data are collected from 
trustworthy sources. Existing endeavors from data mining and 
machine learning have provided many solutions to resolve the 
first concern. E.g., using bagging [1], boosting [2], incremental 
learning [3], and sampling [4-5] to compromise the accuracy and 
efficiency in general for better performances. These methods are 
efficient from their own perspectives, but users still have to work 
on the whole original dataset all the time:  

(1) Extra data usage efforts. Large datasets are often stored 
in a data repository or a warehouse, which imposes extra 
efforts on users to get familiar with these facilities. It often 
turns out to be infeasible without help from an expert. 

(2) Data accessibility and privacy. When it comes to process 
the whole original data, privacy and accessibility issues 
become a major concern.  

(3) Flexibility. Within the context of a massive data volume, it 
is difficult for users to try different mining mechanisms.  

The above three issues are often solved in reality by sampling 
a small set of examples, which is manageable for general users. 
Then, preliminary mining results from this set are used to guide 
the subsequent procedures. On the other hand, to resolve the 
second real-world concern, existing research efforts, e.g., 
Instance Based Learning (IBL) [6], have suggested that it is very 
possible to refine the training set in such a way that a better 
learner can be constructed from the refined set.  

The above observations motivate our work of selecting a 
representative instance subset S from a given data set D, where 
the instance selection procedure should carry three important 
features: (1) Algorithm complexity is reasonable for real-world 
usages; (2) The selected subset S has minimal information loss 

and the model built from S should be close to, if cannot 
outperform, the theory from D as much as possible; and (3) good 
scalability to fit different users’ needs in instance selection. To 
consider the scalability of the instance selection, we adopt the 
concept of a ranking list for all instances in D, with D={n1, …, 
nN} for a dataset with N instances, where ni is an ordered 
instance. Whenever the user requests for a subset S of K
instances, the instance selection procedure will directly select 
examples from the rank ordered list with S={n1,…nK}. There are 
several challenges regarding this procedure, if we consider the 
above three features as a whole. 
1. What is an efficient ranking schedule to sort the instances 

based on their representation ability? 

2. Given a request of K instances, how to guarantee that the 
top K instances selected from the ranking list can provide 
better performances than other selections? 

3. When several distributed branches collaborate with each 
other to select representative instances, how to guarantee 
that the selected subset is globally optimal? 

This paper addresses these three challenges in a novel manner. 
The motivation behind is simple. Assume a user wants to select 
K most representative instances from D. A possible solution, not 
necessarily the best one, motivated by the Monte Carlo sampling 
[7] works as follows. It continuously builds learners from a 
subset consisting of any K instances from D, and selects the one 
with the minimal error rate. This method, however, if 
implemented naively, would become hopelessly inefficient, 
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K-instance subset. In addition, if the user changes the value of K,
the algorithm must repeat to search for an optimal combination 
again. If we can merge similar instances into groups, then the 
representative instance selection can be regarded as a procedure 
of selecting the combination of the groups with the lowest 
expected future error. The above motivations have guided us to 
design 3STAR to solve the problem in an efficient way. 

2. Data Cell Construction 
Because instance selection crucially depends on the underlying 
learner, we use Naïve Bayes due to its efficiency, simplicity and 
popularity in handling many real-world problems. 

3.1 Naïve Bayes Classification 
In classification learning, each instance is described by a vector 
of attribute values and a class label. A set of instances with their 
classes, the training data, is provided. The learner is asked to 
predict a test instance’s class according to the evidence provided 
by the training data. We define: 
• X <A1, A2, .., Ak> as a vector of random variables denoting 

the observed attribute values (an instance). 
• x <a1, a2, …, ak> as a particular observed attribute value 

vector (a particular instance). 
• X=x as shorthand for X1=x1 ∧ X2=x2 ∧..∧ Xk=xk.
• Y as a random variable denoting the class of an instance. 
• y as a particular class label, and yx is the class label of x.
Suppose that P(Y=yj| x) denotes the probability that example x

belongs to class yj, the Bayes theorem can be used to optimally 
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predict the class label of a previously unseen example x, given a 
set of training examples in advance. With the Bayes theorem, the 
expected classification error can be minimized by choosing 

)}|({maxarg xyYP jj = . Given an example x, the Bayes 

theorem provides a method to compute P(Y=yj| x) with Eq. (1) 
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Assuming that the attributes are independent given the class, 
P(X=x| Y=yj) can be decomposed into the product P(x1|yj) × P(x2|
yj) ×…× P(xa| yj). Then the probability that an example belongs 
to class yj is given by Eq. (2). 
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Which can be rewritten as Eq. (3). 
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3.2 Instance Behavior Assessment 
Let P(y| x) be an unknown conditional distribution over the input, 
x, and output class, y, and P(x) be the marginal “input” 
distribution. The learner is given a labeled training set, E,
consisting of IID input/output pairs drawn from P(x)P(y| x), and 
estimates a classification that given an input x, produces an 
estimated output distribution )|(ˆ xyPE

. To measure the degree of 

our disappointment in any difference between the true 
distribution, P(y| x), and the learner’s prediction )|(ˆ xyPE

, the 

log loss function in Eq. (4) is usually introduced. With the class 
label of x, we can produce P(yi| x) without bias, and then estimate 
the prediction loss for each instance x. However, existing studies 
often complain that the absolute class distribution values 
estimated by NB are likely poor. So we modify Eq. (4) slightly to 
consider the relative class distribution of each prediction, instead 
of relying on the absolute prediction values, as defined by Eq. (5). 
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With the entropy based loss function in Eq. (5), we can 
quantitatively assess the loss of a single instance x from an 
underlying classifier, but it is inadequate to evaluate the instance 
behavior because the loss function does not take the class label of 
instance x into consideration, and is therefore not able to 
differentiate the loss of a correct or incorrect classification. Then 
we modify Eq. (5) by taking the class label into consideration to 
measure instance behaviors, as defined by Eq. (6) 
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3.3 Instance Behavior Study and DC Construction 
Eq. (6) has provided a quantitative measure to study each 
separate instance. Although well motivated, two pieces of 
evidence are needed before we can use this measure to guide the 
instance selection: (1) whether Eq. (6) can indeed characterize 
instances with similar behaviors; and (2) whether instances with 
similar behaviors can contribute similarly to build a learner. We 
refer to an empirical study in this section to resolve these two 
concerns. For this purpose, we design a toy problem as shown in 
Fig. 1. It is a two class problem with a discriminant plane at y=x.

Instances above and below y=x are positive and negative 
examples respectively (denoted by rectangle and triangle boxes 
in Fig. 1). Examples on line y=x are equally separated into two 
classes. Although this problem can be easily solved by Linear 
Discriminant Analysis [8], it turns out to be a hard task for 
learners like NB or C4.5, especially when the number of training 
examples is inadequate. Our first objective is to study whether 
Eq. (6) can indeed characterize instances with similar behaviors. 
For this purpose, we adopt a cross-validation oriented approach 
to group all instances in D into n Data Cells (DC), based on their 
behavior values, as described in Algorithm 1.  
 In this experiment, we construct 10 cells for the toy dataset, 
with all cells and their members showing in Fig. 2 (we 
intentionally make each cell reserve the same class distribution 
as the original dataset D, so each cell has exactly five positive 
and five negative examples). In Fig. 2, from Cell0 to Cell9, the 
members in each cell should have lower and lower behavior 
values, because all instances are ranked by their behavior values 
in descending order. Among all instances in D, the farther the 
instance from y=x, the easier the instance can be classified. The 
most difficult instances are those around the y=x line. As we can 
see from Fig. 2, the proposed measure does cluster well instances 
with similar behaviors, with DC0 to DC9 containing examples 
more and more difficult to classify. 
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Fig. 1: A two-class toy problem 

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Cell0

Cell1

Cell2

Cell3

Cell4

Cell5

Cell6

Cell7

Cell8

Cell9

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7 8 9
Cell ID

A
cc

ur
ac

y
Test

ALL

    Fig. 2: Constructed data cells        Fig. 3: Cell performances  

However, having instances with similar behaviors in cells does 
not necessarily tell us which cell is better in constructing a 
learner? Shall we select instances from DC0 or from DC9, if a 
user requests for a subset of 10 instances? As there is no clear 
answer at this stage, we build a learner DTi from each cell DCi,
and then evaluate its performance. We repeat the same procedure 
for all learners DT0, …, DT9, and provide their accuracies in Fig. 
3. Where “Test” and “ALL” mean the accuracy of the learner 
tested on a testing set (randomly selected 10 examples) and all 
the data (100 examples) respectively. As shown in Fig. 3, the 
overall trend of the accuracy is that cells in the middle are better 
than those at both ends. A simple analysis can explain why. 
Intuitively, instances in DC0 comply well with the existing model 
(the model built from the whole dataset). But complying with the 
data model well does not necessarily contribute significantly to 
build the current learner. It is often the case that models built 
from these quality data are over simplified and cannot generalize 
well for other instances [5]. On the other hand, instances in DC9

are highly untrustworthy and confusing for the existing model. It 
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consists of two types of instances: noisy instances and truly 
confusing examples. Since no noise exists in the toy problem, all 
examples in DC9 belong to the later case. It is worth noting that 
uncertainty sampling based approaches actually believe that 
instances like those in DC9 are more important than others in 
instance selection, but it turns out to be not the case for even this 
toy problem. Therefore, selecting instances from confusing 
examples will result in a low quality learner, and it is still not an 
option for representative instance selection. Cross-validation is 
an effective tool to determine which cell is better than others, and 
this procedure discards any prior knowledge in instance selection 
and directly refers to instances’ behaviors for answers. 

Procedure: Data_Cell_Construction() 
Input: original dataset D; Output: n data cells DCi of D.
Parameter: p (# of subsets for cross-validation, typically 10); n
(# of data cells) 

(1) Form p disjoint equal-size subsets Ei, where ∪i Ei =D.
(2) For i=1, …, p
(3)     Form Ey ← D \ Ei

(4)     Induce a Classifier Hy based on examples in Ey.
(5) For every x ∈ Ei

(6)         Calculate its behavior value Bhx with Eq. (6) 
(7) Rank all instances in D based on their Bhx values in 

descending order. 
(8) For i=1, .., n
(9) Construct DCi by selecting instances continuously 

from the top to the bottom of the list, with each cell 
having the same instance numbers and class 
distributions.  

(10) Return 

Algorithm 1: Data cell construction 

3.4 Progressive Estimation of Error Reduction 
To enhance the scalability of the algorithm for general situations, 
we propose a progressive estimation of error reduction to 
progressively reorder data cells and optimize the expected further 
error, as shown in Algorithm 2. Denote )(

~
* DE

D
 by the error rate 

of a learner built from dataset D* and was tested on dataset D.
Progressive error reduction is a greedy search mechanism thus 
aims to select a data cell, DC*, such that when the instances of 
the cell are put into the existing dataset, the learner trained on the 
resulting set (D*+DC*) has a lower error rate than any others. 

Procedure: Progressive_Estimation_of_Error_Reduction () 
Input: Original data cells (DC0, DC1,…, DCn-1);
Output: L Ranking list of data cells. 
Parameter: n (# of data cells) 

(1) D=DC1 ∪ DC2 ∪..∪ DCn-1; D* ← ∅; L ← ∅
(2) For i=1, .., n
(3) D* ← D* ∪ DCk | {k = argmin l { *),(

~
* DDCDE lDCD l

⊄+
}}

(4) L ← L ∪ k
(5) Return L

Algorithm 2: Progressive Estimation of Error Reduction 
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The algorithm details are shown in Algorithm 2. It first selects 
a cell with the minimal expected error on D. Then we put 
instances to D*, and progressively assess other cells one at a 
time. Each time a data cell DC* is selected, it should guarantee 
that the learner built from the aggregation of the previous 
selected data D* and DC*, e.g., D*+DC*, can minimize the error 
rate of the learner on D.

The proposed progressive error reduction is actually a 
suboptimal mechanism, because it does not test all possible 
combinations to select the one with the minimal prediction error. 
The reason of taking this approach is twofold (1) Efficiency,
testing all possible combinations of data cells is expensive; and 
(2) Scalability, the optimal solution does not accommodate well 
the scalability of instance selection. Changing the query requires 
the whole system to repeat again. 

In Fig. 4, we show the first two selected cells (which are Cell2

and Cell1 in Fig. 2) with Algorithm 2, where items with different 
colors (and shapes) mean the members of different cells (the blue 
circles denote the members of the first selected cell, and the pink 
squares mean the members of the second selected cell). For 
comparison, the optimal solution of a representative instance set 
with 20 instances is shown in Fig. 5. Understanding the average 
classification accuracy (from the NB perspective) of the learner 
built from this cell is easy. Since the priori probability of all 
classes is equal, at each data point (i, j) we sum up the training 
examples horizontally and vertically (based on the discriminant 
function in Eq. (3)). If the number of positive examples is more 
than negative examples, the learner will classify the instance at 
(i, j) as a positive instance, and vice versa. In the case that the 
numbers of positive and negative examples are the same, the 
learner will have to do a random guess. The average accuracy 
from the learner built from Fig. 4 is about 84% which is very 
close to the learner from the optimal approach in Fig. 5 (88%), 
and far better than a random approach, which is about 70.8%.  
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The final result (ranking list) of the progressive estimation of 
error reduction on the toy problem is: Cell2, Cell1, Cell4, Cell5,
Cell6, Cell0, Cell9, Cell7, Cell3, and Cell8.

5. Experimental Evaluations  
The majority of our experiments use NB, and for comparison 
purposes we also use C4.5 [9] decision trees. For each 
experiment, we perform 10 times 10-fold cross-validation. We 
evaluate our approach on 30 benchmark datasets from the UCI 
data repository [10-11]. In Table 1, ALL(C4.5) and ALL(NB) 
mean the accuracy of the model trained from the whole dataset 
with C4.5 and NB respectively. For each entry of 3STAR, if 
3STAR is better than both Random and ALL(NB), we tag “‡” 
right  after the value, and if STAR is better than Random but 
inferior to ALL(NB), we place a tag “†” instead. On the other 
hand, for each entry of Random, if its performance is better than 
both 3STAR and ALL(NB), we tag “‡”, and if its performance is 
better than 3STAR but inferior to ALL(NB), we place a tag “†”.  

The results in Table 1 indicate that 3STAR remarkably 
outperforms a random approach for representative instance 
selection. When the size of the user requested subset is small, 
Random is simply incomparable to 3STAR. 3STAR also has 
remarkable absolute improvement values. It is possible that 
3STAR can beat Random with a 20% or more improvement. For 
many datasets, if the user requested subset size is 5%, the model 
built from Random is significantly worse than the learner of the 
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whole dataset. Increasing the sampling ratio likely always 
improves Random’s performance. This brings two negative 
impacts to those which heavily rely on the random selection: (1) 
it misleads users to draw incorrect conclusions, simply because 
the sampled set is not representative enough to build a 
trustworthy model; and (2) it incorrectly leads users to believe 
that the more instances they use, the better their learner can be. 

In addition to the fact that 3STAR can outperform Random, it 
can even bring a better learner in comparison with the theory 
built from the whole dataset. Obviously, having massive amounts 

of data does not necessarily mean the algorithms have to use 
them all. Many real-world possibilities can result in imperfect 
data, which leads the learner to draw biased decisions. 3STAR 
provides a practical solution to help users assess the data 
behaviors and select representative instances to build a superior 
learner. This can be conducted through many ways, and the most 
obvious approach is to continuously increase the number of 
representative instances until the decrease of the model accuracy 
has been observed. Detailed discussions in this regard are beyond 
the coverage of this paper. 

Table 1: Representative instance selection results (30 benchmark datasets) 
5% 10% 20% 30% 50% 70% 90% Dataset ALL 

(C4.5) 
ALL 
(NB) 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random 3STAR Random

Abalone 21.17 24.68 25.12 ‡ 18.56 25.18 ‡ 22.82 25.73 ‡ 23.76 25.61 ‡ 24.03 25.58 ‡ 24.5 25.72 ‡ 24.84 25.43 ‡ 24.96 
Anneal 94.16 91.91 90.29 † 88.07 91.82 † 88.69 93.67 ‡ 90.8 94.21 ‡ 91.45 93.85 ‡ 91.94 93.02 ‡ 92.09 92.11 92.18 ‡ 

Auto-mpg 75.98 65.98 62.99 † 59.43 65.53 † 61.25 65.29 † 63.97 64.98 † 62.85 65.06 † 64.13 64.16 † 62.68 62.6 † 62.21 
Balance 69.37 91.69 87.52 † 64.61 83.57 † 63.11 83.53 † 72.65 87.34 † 83.02 90.11 † 87.08 90.7 † 89.24 91.16 † 90.91 
Breastc 66.54 71.62 72.16 ‡ 64.66 72.41 ‡ 62.67 71.81 ‡ 66.62 70.69 † 68.94 71.27 † 70.08 71.16 71.59 † 72.1 ‡ 71.82 
CMC 49.89 46.67 45.47 † 42.91 45.12 † 44.17 45.1 45.11 † 45.42 45.49 † 45.40 45.89 † 46.15 † 45.91 46.46 † 46.32 

Connect 79.41 80.26 76.44 † 70.78 78.51 † 70.95 79.29 † 75.31 79.82 † 78.39 80.1 † 79.57 80.21 † 79.87 80.32 ‡ 80.25 
Credit 82.85 84.94 85.79 ‡ 70.31 86.32 ‡ 79.42 86.08 ‡ 82.62 85.92 ‡ 83.37 85.14 ‡ 84.54 85.44 ‡ 84.96 85.43 ‡ 85.15 
Ecoli 82.59 80.15 59.02 † 53.23 59.37 † 54.72 66.32 † 62.09 71.93 † 66.79 75.41 † 73.55 77.31 † 75.81 78.54 † 78.46 

German 69.52 69.99 70.72 ‡ 69.84 71.32 ‡ 70.24 70.95 ‡ 69.99 71.23 ‡ 70.13 71.17 ‡ 70.07 70.88 ‡ 69.97 70.28 ‡ 69.99 
Glass 66.29 51.15 43.59 † 34.45 48.52 † 36.92 50.83 † 41.87 52.21 ‡ 43.71 52.26 ‡ 46.35 53.59 ‡ 48.29 51.82 ‡ 50.06 

Kdd99 99.61 95.58 98.25 ‡ 93.04 98.29 † 93.63 97.85 ‡ 93.69 98.3 ‡ 96.77 98.56 ‡ 95.58 96.51 ‡ 95.57 95.81 96.02 ‡ 
Krvskp 99.42 87.88 85.05 † 59.57 86.81 † 75.72 88.15 ‡ 86.47 91.72 ‡ 86.81 93.68 ‡ 87.73 93.69 ‡ 87.75 90.97 ‡ 87.9 
Led24 100 100 83.76 † 77.42 99.94 † 98.68 100 100 100 100 100 100 100 100 100 100 
Liver 65.71 61.89 59.38 † 57.42 62.21 † 58.03 64.89 ‡ 61.16 64.66 ‡ 60.13 65.74 ‡ 61.31 64.77 ‡ 60.38 65.01 ‡ 62.43 

Monks1 96.14 74.98 72.97 † 53.34 74.03 † 64.22 78.16 ‡ 66.65 78.94 ‡ 71.03 79.55 ‡ 72.63 77.57 ‡ 74.14 74.61 74.98 † 
Monks2 47.65 65.95 61.14 † 52.48 62.24 † 57.52 62.19 † 59.55 61.48 † 57.85 61.48 † 61.31 62.17 † 61.81 64.59 † 63.83 

Mushroom 100 99.68 95.46 † 92.89 98.3 † 93.47 99.89 ‡ 96.6 99.95 ‡ 99.55 99.94 ‡ 99.62 99.95 ‡ 99.68 99.89 ‡ 99.68 
Nursery 98.72 91.32 88.11 † 78.51 89.43 † 82.7 91.22 † 87.45 91.04 90.1† 91.61 ‡ 90.08 91.63 ‡ 90.15 91.29 † 90.21 

Pima 72.83 68.06 69.26 ‡ 65.09 68.63 ‡ 65.25 68.61 ‡ 65.26 68.53 ‡ 65.07 66.78 † 65.06 67.85 † 66.69 68.03 68.1 ‡ 
Sick 98.74 95.02 93.28 † 90.1 94.68 † 92.45 95.65 ‡ 94.41 95.93 ‡ 94.77 95.93 ‡ 94.88 96.1 ‡ 94.98 95.47 ‡ 95.04 

 Sonar 72.82 73.62 70.75 † 55.48 71.65 † 58.29 72.31 † 62.41 72.26 † 66.52 73.84 ‡ 71.95 75.28 ‡ 73.99 74.14 ‡ 74.09 
Soybean 91.72 94.38 78.25 † 70.37 82.32 † 76.79 84.45 † 82.27 87.45 † 84.52 91.05 † 89.11 92.77 † 92.45 93.19 93.78 † 
Tictactoe 85.97 70.67 66.06 † 60.42 69.29 † 61.93 71.65 † 68.08 71.54 ‡ 70.17 70.79 ‡ 70.66 69.23 70.4 † 70.32 70.44 † 

Tumor 37.94 45.16 31.08 † 26.31 38.56 † 34.45 41.11 † 36.32 40.75 † 39.66 41.88 † 40.77 43.16  43.23 † 43.88 44.57 † 
Wbreastc 93.97 96.67 80.71 † 74.14 86.76 † 82.34 93.97 † 90.31 95.6 † 92.91 96.02 † 95.95 96.13 96.37 † 96.34 † 96.27 
WDBC 93.31 88.51 90.01 ‡ 86.0 90.59 ‡ 87.68 90.77 ‡ 88.28 90.52 ‡ 87.94 90.14 ‡ 88.27 89.35 ‡ 88.32 88.6 ‡ 88.51 
Wine 92.71 94.71 83.74 † 76.01 88.32 † 80.69 91.74 † 86.9 93.32 † 90.21 94.14 † 91.77 95.24 † 93.84 95.02 ‡ 94.17 
Vote 95.5 90.32 94.42 ‡ 87.4 94.94 ‡ 88.49 95.15 ‡ 90.32 95.1 ‡ 90.08 93.92 ‡ 90.13 92.63 ‡ 90.64 91.93 ‡ 90.39 
Zoo 92.83 95.88 93.41 † 89.17 94.28 † 89.49 94.59 † 90.41 94.38 † 91.17 94.75 † 92.25 96.03 ‡ 94.05 96.9 ‡ 95.83 

‡ N/A N/A 8/30 0/30 7/30 0/30 14/30 0/30 15/30 0/30 16/30 0/30 16/30 0/30 15/30 3/30 
† + ‡ N/A N/A 30/30 0/30 30/30 0/30 28/30 1/30 27/30 2/30 28/30 1/30 25/30 4/30 22/30 7/30 

6. Conclusions 
In this paper, we have proposed 3STAR for scalable 
representative instance selection and ranking. We have shown 
that a carefully selected representative instance set can often 
result in a learner which is superior to the model from the whole 
dataset, and it is almost always better than a random selection. 
3STAR is based on an optimal instance selection theory - Monte 
Carlo sampling, but with substantial complexity reduction. The 
novel features that distinguish 3STAR from others are twofold: (1) 
3STAR does not base on any prior knowledge to select 
representative instances, and the selection procedure is based on 
the contribution of instances with similar behaviors, which makes 
3STAR adapt well to the uniqueness of different datasets; and (2) 
3STAR adopts progressive estimation of error reduction to 
directly optimize the expected future error for representative 
instance selection, and seamlessly incorporates the scalability and 
the utility maximization of instance selection for better 
performances. It can be easily demonstrated that this framework 
is general enough to incorporate any learning theory for 
representative instance selection, as long as the learner can 
estimate the class distribution of an instance. 
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