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Abstract. In this paper, the impact of the size of the training set on
the benefit from ensemble, i.e. the gains obtained by employing ensem-
ble learning paradigms, is empirically studied. Experiments on Bagged/
Boosted J4.8 decision trees with/without pruning show that enlarging
the training set tends to improve the benefit from Boosting but does not
significantly impact the benefit from Bagging. This phenomenon is then
explained from the view of bias-variance reduction. Moreover, it is shown
that even for Boosting, the benefit does not always increase consistently
along with the increase of the training set size since single learners some-
times may learn relatively more from additional training data that are
randomly provided than ensembles do. Furthermore, it is observed that
the benefit from ensemble of unpruned decision trees is usually bigger
than that from ensemble of pruned decision trees. This phenomenon is
then explained from the view of error-ambiguity balance.

1 Introduction

Ensemble learning paradigms train a collection of learners to solve a problem.
Since the generalization ability of an ensemble is usually better than that of a
single learner, one of the most active areas of research in supervised learning has
been to study paradigms for constructing good ensembles [5].

This paper does not attempt to propose any new ensemble algorithm. Instead,
it tries to explore how the change of the training set size impacts the benefit from
ensemble, i.e. the gains obtained by employing ensemble learning paradigms.
Having an insight into this may be helpful to better exerting the potential of
ensemble learning paradigms. This goal is pursued in this paper with an empirical
study on ensembles of pruned or unpruned J4.8 decision trees [9] generated by
two popular ensemble algorithms, i.e. Bagging [3] and Boosting (In fact, Boosting
is a family of ensemble algorithms, but here the term is used to refer the most
famous member of this family, i.e. AdaBoost [6]). Experimental results show that
enlarging training set does not necessarily enlarges the benefit from ensemble.
Moreover, interesting issues on the benefit from ensemble, which is related to the



characteristics of Bagging and Boosting and the effect of decision tree pruning,
have been disclosed and discussed.

The rest of this paper is organized as follows. Section 2 describes the empirical
study. Section 3 analyzes the experimental results. Section 4 summarizes the
observations and derivations.

2 The Empirical Study

Twelve data sets with 2,000 to 7,200 examples, 10 to 36 attributes, and 2 to 10
classes from the UCI Machine Learning Repository [2] are used in the empirical
study. Information on the experimental data sets are tabulated in Table 1.

Table 1. Experimental data sets

Attribute
Data set Size

Categorical Continuous
Class

allbp 2,800 22 7 3
ann 7,200 15 6 3
block 5,473 0 10 5
hypothyroid 3,772 22 7 2
kr-vs-kp 3,196 36 0 2
led7 2,000 7 0 10
led24 2,000 24 0 10
sat 6,435 0 36 6
segment 2,310 0 19 7
sick 3,772 22 7 2
sick-euthyroid 3,156 22 7 2
waveform 5,000 0 21 3

Each original data set is partitioned into ten subsets with similar distribu-
tions. At the first time, only one subset is used; at the second time, two subsets
are used; and so on. The earlier generated data sets are proper subsets of the
later ones. In this way, the increase of the size of the data set is simulated.

On each generated data set, 10-fold cross validation is performed. In each fold,
Bagging and Boosting are respectively employed to train an ensemble comprising
20 pruned or unpruned J4.8 decision trees. For comparison, a single J4.8 decision
tree is also trained from the training set of the ensembles. The whole process is
repeated for ten times, and the average error ratios of the ensembles generated
by Bagging and Boosting against the single decision trees are recorded, as shown
in Tables 2 to 5, respectively. The predictive error rates of the single decision
trees are shown in Tables 6 and 7. In these tables the first row indicates the
percentage of data in the original data sets that are used, and the numbers
following ‘±’ are the standard deviations.



Fig. 1. The geometrical mean error ratio of Bagged/Boosted J4.8 decision trees
with/without pruning against single J4.8 decision trees with/without pruning

Here the error ratio is defined as the result of dividing the predictive error
rate of an ensemble by that of a single decision tree. A smaller error ratio means
relatively bigger benefit from ensemble, while a bigger error ratio means relative
smaller benefit from ensemble. If an ensemble is worse than a single decision
tree, then its error ratio is bigger than 1.0.

In order to exhibit the overall tendency, the geometric mean error ratio, i.e.
average ratio across all data sets, are also provided in Tables 2 to 5, which is
then explicitly depicted in Fig. 1.

3 Discussion

3.1 Bagging and Boosting

An interesting phenomenon exposed by Fig. 1 and Tables 2 to 5 is that the ben-
efit from Bagging and Boosting exhibit quite different behaviors on the change
of the training set size. In detail, although there are some fluctuations, the ben-
efit from Bagging remains relatively unvaried while that from Boosting tends to
be enlarged when the training set size increases. In order to explain this phe-
nomenon, it may be helpful to consider the different characteristics of Bagging
and Boosting from the view of bias-variance reduction.

Given a learning target and the size of training set, the expected error of a
learning algorithm can be broken into the sum of three non-negative quantities,
i.e. the intrinsic noise, the bias, and the variance [7]. The intrinsic noise is a
lower bound on the expected error of any learning algorithm on the target. The
bias measures how closely the average estimate of the learning algorithm is able
to approximate the target. The variance measures how much the estimate of
the learning algorithm fluctuates for the different training sets of the same size.



Table 2. Error ratios of Bagged J4.8 decision trees against single J4.8 decision trees.
All the trees are pruned.

Data set 10% 20% 30% 40% 50%

allbp .909±.193 .914±.111 .952±.070 1.01±.125 .961±.149
ann 1.15±.203 .899±.135 1.03±.180 .952±.209 .931±.086
block .911±.186 .908±.061 .906±.119 .886±.067 .885±.046
hypothyroid 1.10±.236 1.01±.223 1.14±.243 1.04±.135 1.19±.247
kr-vs-kp .938±.104 .897±.180 1.06±.376 .991±.138 .892±.119
led7 .976±.054 .976±.049 .978±.017 .986±.025 .988±.019
led24 .902±.063 .920±.042 .941±.048 .961±.027 .958±.035
sat .786±.052 .751±.031 .736±.043 .722±.040 .729±.021
segment .800±.142 .898±.128 .913±.106 .851±.105 .816±.102
sick 1.22±.352 .938±.201 .999±.121 .975±.150 1.08±.143
sick-euthyroid .826±.257 .952±.212 .955±.159 .945±.139 .911±.080
waveform .672±.138 .663±.068 .664±.084 .671±.073 .655±.056

geometric-mean .933 .894 .940 .916 .916

Data set 60% 70% 80% 90% 100%

allbp .958±.078 1.02±.085 .940±.080 1.01±.116 1.01±.038
ann 1.08±.170 .985±.152 1.04±.140 1.09±.161 1.15±.162
block .876±.043 .907±.057 .873±.055 .864±.044 .862±.048
hypothyroid 1.14±.255 .908±.132 1.04±.194 .955±.076 .973±.089
kr-vs-kp .810±.169 .957±.136 1.02±.142 1.02±.130 1.07±.082
led7 .996±.014 1.01±.014 1.00±.012 1.01±.011 1.01±.013
led24 .960±.036 .967±.023 .969±.028 .972±.028 .979±.021
sat .703±.029 .719±.027 .724±.014 .715±.019 .704±.026
segment .849±.121 .859±.085 .845±.086 .826±.095 .857±.092
sick 1.07±.096 1.10±.250 1.14±.365 .978±.104 .954±.081
sick-euthyroid .950±.129 .956±.119 .941±.085 .992±.068 1.00±.108
waveform .670±.057 .650±.037 .690±.051 .699±.028 .679±.030

geometric-mean .922 .920 .935 .928 .937

Since the intrinsic noise is an inherent property of the given target, usually only
the bias and variance are concerned.

Previous research shows that Bagging works mainly through reducing the
variance [1][4]. It is evident that such a reduction is realized by utilizing bootstrap
sampling to capture the variance among the possible training sets under the given
size and then smoothing the variance through combining the trained component
learners. Suppose the original data set is D, a new data set D′ is bootstrap
sampled from D, and the size of D′ is the same as that of D, i.e. |D|. Then, the
size of the shared part between D and D′ can be estimated according to Eq. 1,
which shows that the average overlap ratio is a constant, roughly 63.2%.

(
1− (1− 1/|D|)|D|

)
|D| ≈ (1− 0.368) |D| = 0.632 |D| (1)



Table 3. Error ratios of Boosted J4.8 decision trees against single J4.8 decision trees.
All the trees are pruned.

Data set 10% 20% 30% 40% 50%

allbp 1.00±.190 .930±.202 .895±.096 1.02±.163 .883±.157
ann 1.26±.349 1.01±.238 1.07±.138 .926±.116 .924±.145
block .858±.101 .934±.110 .963±.149 .951±.073 1.01±.044
hypothyroid 1.63±.506 .983±.197 1.07±.236 .924±.394 1.12±.394
kr-vs-kp .707±.244 .669±.151 .823±.261 .827±.179 .751±.113
led7 .998±.008 1.00±.000 1.00±.000 1.00±.000 1.00±.000
led24 1.06±.104 1.09±.079 1.16±.069 1.15±.054 1.17±.059
sat .717±.041 .679±.047 .653±.040 .658±.038 .657±.025
segment .783±.138 .702±.226 .654±.084 .605±.139 .559±.141
sick 1.47±.749 1.05±.251 1.02±.130 .898±.113 .956±.071
sick-euthyroid 1.09±.329 1.02±.272 .971±.221 .980±.209 .969±.162
waveform .675±.165 .644±.075 .604±.057 .628±.061 .626±.056

geometric-mean 1.02 .893 .907 .881 .885

Data set 60% 70% 80% 90% 100%

allbp .896±.077 .931±.092 .817±.059 .844±.058 .854±.041
ann 1.04±.135 .981±.089 .894±.073 .977±.118 1.09±.146
block .986±.050 .979±.061 .986±.074 .997±.039 .968±.033
hypothyroid .984±.314 .797±.214 .886±.255 .720±.184 .771±.130
kr-vs-kp .549±.220 .522±.160 .559±.153 .623±.243 .652±.177
led7 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
led24 1.16±.033 1.19±.042 1.20±.030 1.18±.028 1.18±.032
sat .621±.031 .656±.037 .645±.028 .641±.015 .636±.018
segment .589±.149 .519±.086 .497±.079 .491±.110 .523±.092
sick .967±.149 .934±.179 .896±.167 .838±.165 .820±.078
sick-euthyroid .952±.224 .990±.193 .975±.170 1.02±.217 1.02±.229
waveform .624±.047 .629±.043 .655±.042 .650±.032 .669±.029

geometric-mean .864 .844 .834 .832 .849

This means that the variance among the possible samples with the same size
that could be captured by a given number of trials of bootstrap sampling might
not significantly change when the training set size changes. Therefore, when the
training set size increases, the improvement of the ensemble owes much to the
improvement of the component learners caused by the additional training data
instead of the capturing of more variance through bootstrap sampling. Since the
single learner also improves on the additional training data in the same way as
the component learners in the ensemble do, the benefit from Bagging might not
be significantly changed when the training set is enlarged.

As for Boosting, previous research shows that it works through reducing both
the bias and variance but primarily through reducing the bias [1][4]. It is evident
that such a reduction on bias is realized mainly by utilizing adaptive sampling,



Table 4. Error ratios of Bagged J4.8 decision trees against single J4.8 decision trees.
All the trees are unpruned.

Data set 10% 20% 30% 40% 50%

allbp 1.03±.047 .733±.029 .965±.005 .890±.129 .898±.107
ann .995±.111 .980±.109 .985±.146 1.00±.178 .879±.153
block .856±.205 .902±.058 .862±.120 .847±.059 .830±.049
hypothyroid 1.08±.149 .867±.283 1.02±.236 .864±.078 1.07±.292
kr-vs-kp .865±.151 .998±.325 .891±.200 .899±.141 .887±.252
led7 .979±.041 .968±.045 .978±.021 .999±.026 .988±.019
led24 .823±.082 .803±.046 .803±.043 .827±.030 .806±.043
sat .750±.061 .735±.036 .716±.051 .693±.039 .702±.017
segment .795±.149 .871±.127 .898±.121 .812±.085 .810±.110
sick 1.08±.337 .927±.188 .866±.091 .883±.148 1.00±.112
sick-euthyroid .818±.203 .848±.100 .827±.079 .858±.113 .836±.074
waveform .669±.134 .664±.067 .668±.090 .665±.070 .656±.062

geometric-mean .895 .858 .873 .853 .864

Data set 60% 70% 80% 90% 100%

allbp .906±.089 .885±.035 .876±.077 .858±.030 .901±.025
ann .991±.149 1.01±.095 .953±.111 1.11±.245 1.23±.273
block .836±.092 .841±.028 .872±.065 .844±.030 .804±.044
hypothyroid 1.11±.453 .788±.108 .993±.355 .870±.160 .858±.066
kr-vs-kp .864±.158 .869±.144 1.02±.181 .893±.133 1.01±.135
led7 .997±.015 1.01±.012 .996±.016 1.01±.009 1.01±.013
led24 .796±.029 .785±.022 .800±.018 .799±.017 .807±.013
sat .680±.026 .687±.027 .699±.014 .694±.023 .685±.023
segment .792±.138 .822±.105 .808±.071 .806±.078 .806±.096
sick .976±.145 1.07±.170 1.03±.242 .940±.121 .909±.064
sick-euthyroid .795±.097 .824±.091 .832±.077 .843±.062 .924±.062
waveform .663±.051 .647±.028 .682±.053 .693±.025 .669±.028

geometric-mean .867 .853 .880 .863 .884

i.e. adaptively changing the data distribution to enable a component learner
focus on hard examples for its predecessor. When the training set is enlarged,
the adaptive sampling process becomes more effective since more hard examples
for a component learner could be effectively identified and then passed on to the
successive learner, some of which might not be identified when the training set
is a relatively smaller one. Therefore, the reduction on bias may be enhanced
along with the increase of the size of training set, which leads to that the benefit
from Boosting tends to be enlarged.

It is worth noting that Fig. 1 and Tables 2 to 5 also show that the benefit
from ensemble, even for Boosting, does not always increase consistently when
the training set size increases. This is not difficult to understand because the
chances for an ensemble to get improved from the additional training data that



Table 5. Error ratios of Boosted J4.8 decision trees against single J4.8 decision trees.
All the trees are unpruned.

Data set 10% 20% 30% 40% 50%

allbp .953±.187 .746±.090 .984±.128 .883±.175 .851±.131
ann 1.47±.300 1.07±.123 .939±.146 1.06±.366 .832±.168
block .860±.210 .898±.122 .911±.075 .890±.032 .943±.048
hypothyroid 1.44±.453 .949±.345 .951±.350 .753±.316 1.00±.262
kr-vs-kp .646±.243 .757±.236 .762±.281 .865±.315 .656±.197
led7 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
led24 .968±.107 .974±.061 .956±.052 .980±.022 .965±.036
sat .691±.071 .672±.070 .640±.038 .631±.029 .624±.015
segment .723±.087 .646±.103 .549±.064 .594±.097 .539±.065
sick 1.23±.886 1.11±.259 .917±.130 .876±.123 .960±.152
sick-euthyroid .985±.242 .948±.171 .860±.162 .906±.097 .877±.095
waveform .665±.114 .643±.101 .621±.066 .631±.063 .600±.066

geometric-mean .969 .868 .841 .839 .821

Data set 60% 70% 80% 90% 100%

allbp .875±.138 .875±.054 .751±.105 .755±.069 .727±.050
ann .989±.221 1.00±.108 .948±.159 1.02±.150 1.17±.103
block .928±.048 .938±.075 .975±.048 .930±.011 .923±.051
hypothyroid .869±.366 .742±.291 .811±.118 .696±.121 .726±.103
kr-vs-kp .673±.282 .585±.075 .719±.175 .619±.066 .613±.143
led7 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
led24 .953±.026 .958±.020 .976±.024 .959±.020 .972±.016
sat .614±.038 .615±.027 .611±.012 .620±.020 .624±.017
segment .541±.064 .506±.051 .501±.047 .497±.081 .511±.057
sick .892±.103 .936±.147 .931±.209 .860±.122 .864±.074
sick-euthyroid .823±.077 .870±.079 .870±.089 .895±.064 .936±.078
waveform .601±.038 .638±.028 .637±.045 .636±.050 .659±.040

geometric-mean .813 .805 .811 .791 .810

are randomly provided might be less than that of a single learner since the
ensemble is usually far stronger than the single learner. It is analogous to the
fact that improving a poor learner is more easier than improving a strong learner.
Therefore, the benefit of ensemble shrinks if the improvement of the ensemble is
not so big as that of the single learner on additional training data. However, if
the additional training data have been adequately selected so that most of them
can benefit the ensemble, then both the ensemble and the single learner could
be significantly improved while the benefit from ensemble won’t be decreased.

3.2 Pruned and Unpruned Trees

Another interesting phenomenon exposed by Fig. 1 and Tables 2 to 5 is that the
benefit from ensemble comprising unpruned decision trees is always bigger than



Table 6. Predictive error rate (%) of pruned single C4.5 decision trees.

Data set 10% 20% 30% 40% 50%

allbp 4.40±1.36 4.00±0.58 3.57±0.52 3.25±0.55 3.35±0.38
ann 0.98±0.41 0.73±0.25 0.52±0.16 0.49±0.14 0.45±0.08
block 4.39±1.00 3.97±0.27 3.59±0.53 3.60±0.32 3.19±0.29
hypothyroid 1.45±0.57 1.24±0.39 0.97±0.34 0.69±0.14 0.57±0.16
kr-vs-kp 4.62±1.37 2.75±0.58 1.75±0.57 1.36±0.40 1.14±0.26
led7 35.21±2.92 31.83±3.07 30.08±1.87 28.81±1.67 28.01±1.48
led24 36.19±6.13 33.17±3.35 30.67±2.83 30.93±1.49 29.93±1.41
sat 19.22±1.68 17.02±1.04 15.87±0.59 15.33±0.52 14.63±0.54
segment 9.16±3.07 6.94±2.00 5.85±1.41 5.59±1.37 4.94±1.21
sick 2.21±0.97 2.27±0.97 1.86±0.36 1.79±0.27 1.63±0.33
sick-euthyroid 4.07±1.97 3.39±1.68 3.20±1.56 2.95±1.00 2.67±0.80
waveform 11.27±1.87 10.43±1.59 10.44±1.00 9.70±0.93 9.96±0.58

Data set 60% 70% 80% 90% 100%

allbp 3.10±0.32 2.88±0.28 2.94±0.30 2.87±0.29 2.76±0.17
ann 0.39±0.07 0.41±0.06 0.39±0.05 0.33±0.03 0.30±0.03
block 3.20±0.18 3.11±0.21 3.15±0.21 3.08±0.15 3.03±0.11
hypothyroid 0.53±0.16 0.54±0.12 0.53±0.11 0.49±0.06 0.45±0.04
kr-vs-kp 1.01±0.20 0.93±0.16 0.80±0.13 0.72±0.13 0.57±0.08
led7 27.82±1.41 27.39±0.68 27.02±0.56 26.90±0.50 26.73±0.27
led24 29.02±1.28 28.56±1.03 28.30±0.72 28.20±0.34 27.78±0.54
sat 14.83±0.59 14.11±0.46 14.11±0.53 13.70±0.49 13.54±0.30
segment 4.11±1.06 3.82±0.86 3.46±0.82 3.21±0.63 2.93±0.59
sick 1.50±0.30 1.42±0.28 1.33±0.35 1.39±0.25 1.38±0.29
sick-euthyroid 2.69±1.08 2.51±0.62 2.42±0.52 2.23±0.49 2.21±0.49
waveform 9.88±0.48 9.75±0.56 9.38±0.45 9.13±0.46 8.95±0.31

that comprising pruned decision trees, despite whether Bagging or Boosting is
employed. In order to explain this phenomenon, it may be helpful to consider
the effect of decision tree pruning from the view of error-ambiguity balance.

It has been shown that the generalization error of an ensemble can be decom-
posed into two terms, i.e. E = Ē−Ā, where Ē is the average generalization error
of the component learners while Ā is the average ambiguity [8]. The smaller the
Ē and the bigger the Ā, the better the ensemble.

In general, the purpose of decision tree pruning is to avoid overfitting. With
the help of pruning, the generalization ability of a decision tree is usually im-
proved. Thus, the Ē of an ensemble comprising pruned decision trees may be
smaller than that of an ensemble comprising unpruned decision trees. But on
the other hand, pruning usually causes the decrease of the ambiguity among
the decision trees. This is because some trees may become more similar after
pruning. Thus, the Ā of an ensemble comprising pruned decision trees may be
smaller than that of an ensemble comprising unpruned decision trees.



Table 7. Predictive error rate (%) of unpruned single C4.5 decision trees.

Data set 10% 20% 30% 40% 50%

allbp 4.44±1.27 4.62±0.59 3.91±0.66 3.56±0.72 3.65±0.44
ann 1.00±0.40 0.73±0.26 0.52±0.16 0.51±0.14 0.47±0.10
block 4.50±1.04 4.00±0.26 3.69±0.54 3.77±0.27 3.34±0.20
hypothyroid 1.74±0.88 1.40±0.43 1.11±0.37 0.75±0.16 0.61±0.18
kr-vs-kp 4.41±1.16 2.51±0.56 1.65±0.42 1.34±0.37 1.16±0.19
led7 35.36±2.85 32.04±3.15 30.06±1.72 28.61±1.63 28.09±1.66
led24 40.29±7.11 38.42±2.67 36.95±2.76 36.96±1.32 36.58±2.23
sat 19.92±1.69 17.40±0.99 16.34±0.63 15.93±0.56 15.09±0.52
segment 9.92±1.89 7.60±1.17 6.43±0.76 6.02±0.43 5.23±0.52
sick 2.38±1.10 2.14±0.67 2.03±0.43 1.89±0.31 1.59±0.27
sick-euthyroid 3.84±1.09 3.42±0.97 3.22±0.87 2.96±0.68 2.80±0.20
waveform 11.27±1.71 10.37±1.58 10.36±1.02 9.77±0.88 9.99±0.61

Data set 60% 70% 80% 90% 100%

allbp 3.36±0.35 3.16±0.37 3.17±0.34 3.09±0.42 3.02±0.14
ann 0.40±0.09 0.40±0.07 0.38±0.05 0.33±0.05 0.27±0.04
block 3.33±0.24 3.24±0.20 3.26±0.24 3.23±0.13 3.24±0.09
hypothyroid 0.56±0.16 0.59±0.15 0.55±0.15 0.51±0.09 0.48±0.05
kr-vs-kp 1.00±0.21 0.91±0.14 0.77±0.12 0.71±0.10 0.60±0.08
led7 27.81±1.48 27.34±0.69 27.08±0.71 27.06±0.49 26.92±0.26
led24 35.88±1.52 35.89±1.04 35.19±0.75 35.23±0.76 34.41±0.63
sat 15.27±0.62 14.66±0.46 14.54±0.53 14.06±0.55 13.84±0.30
segment 4.55±0.62 4.11±0.31 3.78±0.34 3.44±0.31 3.17±0.17
sick 1.52±0.23 1.34±0.19 1.26±0.29 1.26±0.20 1.22±0.09
sick-euthyroid 2.90±0.21 2.78±0.44 2.66±0.15 2.53±0.15 2.39±0.14
waveform 9.99±0.54 9.80±0.49 9.47±0.44 9.21±0.44 9.02±0.32

In other words, in constituting an ensemble, the advantage of stronger gener-
alization ability of pruned decision trees may be killed to some degree by its dis-
advantage of smaller ambiguity. Thus, although an ensemble comprising pruned
decision trees may be stronger than that comprising unpruned decision trees,
the gap between the former and the pruned single decision trees may not be so
big as that between the latter and the unpruned single decision trees. Therefore,
the benefit from ensemble of unpruned decision trees is usually bigger than that
from ensemble of pruned decision trees.

4 Conclusion

In summary, the empirical study described in this paper discloses:

– Enlarging the training set tends to enlarge the benefit from Boosting but
does not significantly impact the benefit from Bagging. This is because the



increase of the training set size may enhance the bias reduction effect of
adaptive sampling but may not significantly benefit the variance reduction
effect of bootstrap sampling.

– The benefit from ensemble does not always increase along with the increase
of the size of training set. This is because single learners sometimes may
learn relatively more from randomly provided additional training data than
ensembles do.

– The benefit from ensemble of unpruned decision trees is usually bigger than
that from ensemble of pruned decision trees. This is because in constituting
an ensemble, the relatively big ambiguity among the unpruned decision trees
counteracts their relatively weak generalization ability to some degree.

These findings suggest that when dealing with huge volume of data, ensemble
learning paradigms employing adaptive sampling are more promising, adequately
selected training data are more helpful, and the generalization ability of the
component learners could be sacrificed to some extent if this leads to a very
significant increase of the ambiguity.
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