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Abstract:

Instance-based learning faces the problem of deciding
which instances could be discarded in order to save
computation and storage costs. For large instance bases
classifier suffers from large memory requirements and slow
response. And present noisy instances may deteriorate the
classification accuracy. This paper analyzes the strength and
weakness of some of the existing algorithms for instance
pruning, and propose an improved method C-Pruner.
Experiments over real-world datasets verify C-Prumer’s
superior to the existing methods in classification accuracy.

Keywords:

Instance-based learning; ANN classification; Instance
Pruning
1  Introduction
The Nearest Neighbor Classifier is a simple
supervised concept learning scheme which predicts the
class of the unknown (i.e. unclassified) instance based on
the existing training set, in which the instances’ class are
already labeled [1]. During classification, the nearest
neighbor classifier finds out the nearest neighbor or the
several nearest neighbors of the unlabeled instance and
make a decision of its’ class by observing the class(es) of
its neighbor(s) found. In literature, nearest neighbor
classification is also referred as kNN (k-Nearest Neighbor)
classification, where k is the number of nearest neighbors
used by the learner. The learning scheme based on ANN
classification is termed as Instance-based learning (IBL) [2],
Memory-based leamning (MBL) [3], or Case-based
reasoning (CBR) [4] respectively corresponding to different
contexts.

In the early days of ANN research, because the size of
the training instance set is relatively small, all the training
instances could be stored in main memory and the
classification efficiency is acceptable. However, as kNN is
applied in more complex application domains, the set of
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training instances becomes larger, the requirements for
storage of training instances and efficiency of classification
are intensified. One reasonable solution is the technique of
Instance pruning [5-20].

Instance pruning method tries to prune the original
training set to get a smaller subset of it, which enables the
classifier to get nearly similar (or better) classification
accuracy to (or than).that of the original set. The algorithms
of instance pruning seek to discard the harmful instances
(e.g. noisy instances) and superfluous instances as to
achieve a tradeoff between the reduction of the storage of
the training set and the accuracy of classification. Instance
pruning is studied in IBL area as well as the community of
Case-based Reasoning as a task of Case-based Maintenance
[5-7].

In this paper, we first analyze the strength and
weakness of major existing instance pruning algorithms,
and then present an improved algorithm, which is termed as
C-Pruner because it combines major advantages of
different existing instance-pruning algorithms. C-Pruner
conducts instance pruning more carefully to avoid the
deletion of some critical instances, consequently improves
the classification accuracy. We show that our aigorithm
improve the performance of ANN classifier as expected
through extensive experiments over real-world datasets.

The rest of this paper is organized as following. The
next section examines the related work on instance pruning
for classification problem, strength and weakness of major
existed algorithms are analyzed. In section 3, we give the
C-pruner algorithm in details. The results of the
experiments together with the discussion of them will be
presented in section 4. Finally we conclude the paper and
highlight future work in section 5.

2 Related Work

Since the early days of nearest neighbor classification
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Table 1.Comparisons of major instance pruning algorithms

. Application Type of Instances Instances Accuracy of
Algorithms prl)?ield Process P pruned altered Classiﬁcgtion
CNN [8] NN Incremental | Internal instances No Maintain
SNN [9] NN Decremental | Internal instances No '+« Maintain
RNN [10] NN Decremental | Internal instances No Maintain
ENN [11] NN Decremental Noisy 1pstances No Improve
Border instances
- Tomek [12] NN Decremental Noisy 1pstances No Improve
Border instances
Chang [13] NN Decremental All Yes Maintain
RISE2.0[14] IBL Decremental All Yes Maintain
NGE [20] NN Decremental All Yes Maintain
IB Family {2] IBL Incremental | Internal instances No Hybrid
Cameron-Jones [15] IBL Incremental All No Hybrid
TIBL [16] IBL Border instances No Maintain
Footprint Deletion [5] CBR Decremental All No Dep e_nds on the amount
of instance-pruning
DROP Family [17] IBL Decremental All No Hybrid
Zhu [7] CBR Incremental All No Maintain
ICF [18] IBL Decremental | Internal instances No Maintain

being proposed and applied in the 1960°s [8], many
schemes for instance pruning have been developed to save
storage and computational costs of the classifiers. The
objective of the algorithms for instance pruning are to find
a subset S of the training set T to replace T during
classification. These algorithms can be studied and
classified from different perspectives. First, in the light of
research area from which these algorithms are originated,
we can see some of them are designed for NN classification,
some are proposed by the community of Cased-based
Reasoning, while the others are from IBL area. By
considering the direction of instance pruning process, these
algorithms can be divided into two categories: incremental
and decremental. An incremental method begins with an
empty S, arid adds the instances satisfying some rules to S
from the training set T, while a decremental one begins
with § = T, then discards each instance from S if it fulfils
some pruning criteria. With respect to the types of instances
pruned by the algorithms, some algorithms mainly prune
noisy instances, some aim to prune internal instances or
border instances, while some other prune all of them. And
in terms of whether the original instances are altered during
pruning, some algorithms create new instances to represent
original instances, while most methods maintain the
original instances untouched. At last, with respect to the
effect of instance pruning, some can improve the
classification accuracy, some just maintain the
classification competence, while others may either improve
or maintain classification competence, which depend on the
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concrete application fields, so these algorithms are referred
as hybrid in this paper. In table 1, we show the major
instance pruning algorithms and comparisons among them
from different perspectives mentioned above.

Among these algorithms presented in table 1, CNN, IB
family, DROP family, ICF, Footprint Deletion and Zhu’s
are of the most influential in the research community. And
DROP family and ICF are the-state-of-the-art of instance
pruning algorithms. CNN is one of the first attempts to
reduce the size of the training set. It starts by selecting
randomly one instance from each class of 7 and put them in
S, then checks every other instance of 7" whether it can be
classified correctly with instances in S: if not, the instance
is also put into S, otherwise, it is discarded. This process is
repeated until all the instances of the original set T can be
classified correctly by S. Footprint Deletion is mainly used
in the field of case-based maintenance, and Zhu’s algorithm
is developed to overcome the drawback of Footprint
Deletion. However the advantage of Zhu’s algorithm have
not been approved by enough experiments. /CF have
adopted some concepts from Footprint Deletion and DROP
family in description of the algorithm, while the rules for
pruning instances are simpler than Footprint Deletion and
DROP family. In what follows, we focus our discussion on
DROP family and IB family.

IB family (IB1, IB2, IB3) was described by [3] in 1991
to reduce the training set without compromising
classification accuracy. /B, used as a baseline is actually
identical to 1-NN algorithm. /B2, similar to CNN, it begins



Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

with an empty set S and each instance of the training set T
is added to S if it can not be correctly classified by S. And
1B3 was introduced to reduce the noise sensitivity of /B2 by
only reserving the acceptable instances of 7. The essence
of IB family algorithms is that they seek to discard those
superfluous instances (corresponding to internal instances
here), which can be correctly classified by ANN scheme
with the remaining instances.

DROP family (DROPI, DORP2 and DROP3) is
decremental instance-pruning algorithms guided by the k
nearest neighbors set and associates set for each instance to
reduce the size of training set. The associates of an instance
i are those instances who have i as one of its k nearest
neighbors. Drop family starts with the original set and
reduces each instance in an ordered way if at least as many
of its associates can be correctly classified without it. The
basic idea is to discard the non-critical instances, which are
also mainly internal instances.

As we mentioned above, both the superfluous
instances discarded by /B family and the non-critical
instances. removed by DROP family mainly correspond to
internal instances. The reason that there are two different
ways to prune the same kind of instances lies in the fact
that these two algorithms conduct instance-pruning with
respect to different criteria: IB- family considers
superfluousness (whether it can be correctly classified with
other instances by ANN classification) of instance, while
DROP family. is based on criticalness (which it will

influence other instances’ correct classification in ANN.

scheme) of instances. Both the two series of algorithms
have drawbacks, because there exist the cases that some
superfluous instances are also critical instances which are
not suitable to be discarded, and on the other hand, not all
non-critical instances are superfluous ones, that is, some
non-critical should not be discarded in order to maintain
classification accuracy.
3  The C-Pruner
Our algorithm for instance pruning, C-Pruner,
considers both superfluousness and criticalness, thus make
our approach more careful when selecting instances to
discard than:the existing algorithms. In this section, we
introduce some concepts underlying our algorithm. Then
we propose the rule applied to identify which instances can
. be deleted, as well as the rule to identify noisy instances
which should be discarded before the process of instance
pruning.

For convenience, firstly we introduce some notations
that will be used repeatedly in what follows. A training set
T consists of a set of instances {pi, ps, ..., pn}. If p is an
instance belonging to 7, kNN(p) is denoted as the set of k
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nearest neighbors of p. An instance p also has a nearest
enemy, which is the nearest instance with different class
from its own. '

Definition 1. For an instance p in 7, the k nearest
neighbors of p make up its k-reachability set, denoted as
k-reachability(p), which is defined formally as:

k-reachability(p) = {p; | p; € T and p; € ANN(p)}

Definition 2. For an instance p in T, those instances
with similar class label to that of p, and have p as one of
their nearest neighbors are called the k-coverage set of p,
denoted as k-coverage(p). In a formal way:

k-coverage(p) = { p; | pieT, pieclass(p) and p

k-reachability(p;)}.

In fact, k-reachablity(p) is identical to KNN(p). In our
definition, k-coverage(p) only contains only those instances
which belong to the same class as p, which is different from
the definition by [17-18]. The reason will be presented later.
Based on Definition 1 and 2, we introduce the definition of
three kinds of instances, i.e. superfluous instances, Critical
instances and Noisy instances.

Definition 3. For instance p in T, if p can be classified
correctly by k-reachability(p), than we say p is implied by
k-reachability(p), and p is a superfluous instance in T.

Definition 4. For instance p in 7, p is a critical
instance, if the following condition holds:

At least one instance p; in k-coverage(p) is not implied
by k- reachability (p;), or

After p is deleted, at least one instance p; in
k-coverage(p) is not implied by k-reachability(p;).

Now, let us review our definition of k-coverage(p),
which only includes instances having the same class as p
has. This is based on the following observation. The
objective of instance pruning is to reduce the size of
training set, and at the same time to try to avoid the
deterioration of classification accuracy caused by instance
removal. However, the deletion of an instance p only
impacts classification decision of instances with similar
class of p’s, while benefits classification decision of the
instances with different class label from p’s. So we only
include those instances with similar class to that of p when
considering whether p is critical.

Definition 5. For instance p in 7, if p is not a
superfluious  instance and  |k-reachability(p)] >
|k-coverage(p)|, then p is a noisy instance.



Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

Here, we define noisy instances as those that are
incorrectly classified by its neighbors. The reason is like
this: a noisy instance is far away from the instances of its
own class, i.e., its neighbors are instances of enemy classes,
thus the result class inferred from its k-reachability is prone
to being different from its genuine class. On the other hand,
its size of k-coverage is usually smaller than that of its
k-reachability. Certainly, the definition of noisy instance is
not very strict, for according to definition 5 some border
instances between different classes may be considered as
noisy instances. However, Definition 5 describes the
characteristics of most noisy instances. The definition
adopted by most existing algorithms considers only the first
condition, which make them less strict. ,

A superfluous instance is superfluous because it can be
implied by other instances, so as a training instance, it can
be replaced by other instances. And a critical instance is
critical for it is essential to correctly classifying some
instances. If it is discarded, there are some of its neighbors
cannot be correctly classified by their k-reachability set.
For kNN classification, a superfluous instance can
obviously be discarded, however a critical instance must
remained in the training set in order to preserve the
classification accuracy. So an instance is both superfluous
and critical, it cannot be deleted. If an instance can be
deleted safely, it must be one of the following two cases: 1)
it is noisy; 2) it is superfluous, but not critical.

Based on the discussion above, we give the following
rule to guide instance pruning.

> Rule 1. Instance pruning rule
For an instance p in training set 7, if it can be
pruned, it must satisfy one of the following two conditions:

It is a noisy instance;

It a superfluous instance, but not a critical one.

In rule 1, the first condition is for removing noisy
instances; the second one involves two sub-conditions: ‘is
superfluous instance’ is the necessary condition, and ‘not a
critical one’ ensures that the deletion of the instance does
not deteriorate classification accuracy.

The order of instances removal is also very crucial in
instance-pruning process, for the deletion of an instance
will affect the decision on whether other instances can be
discarded. Intuitively, for instances fulfilling rule 1, the
internal instances should be removed first, so that the
border instances can be kept as much as possibly.
Otherwise, it may cause the domino effect of border
instances removal so that a lot of border instances are
removed, while most reserved instances are internal
instances. This is not what we expect, because the pruning

"border instances may lead to loosing classification
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competence. Generally, internal instances have some
common characteristics compared to border instances, e.g.
they have more homogeneous instances in their neighbors;
they are closer to the centers of their classes and farther
from their nearest enemy instances.

We present a heuristic rule for deciding the order in
which instances are pruned. Let H-ANN(p) be the number
of the instances of its class in ANN(p), and D-NE(p) be the
distance of p to its nearest enemy. Note that the following
rule is only applied to the removal of non-noisy instances.
The removal of noisy instances is not restricted by this rule.

Rule 2. Rule for deciding the order of instances
removal.

For two prunable instances p; and p; in training set 7,

If H-ANN(p;) > H-ANN(p;), p; should be removed
before p;;

If H-ANN(p;) = H-ANN(p;) and D-NE(p;) > D-NE(p)),
p;j should be removed before p;;

If H-ANN(p;) = H-kNN(p;) and D-NE(p;) = D-NE(p)),
the order of removal is random decided.

Following, we present the algorithm C-Pruner in
Figure 1.

C-Pruner(7, S)

/IT is the original training set, S is the pruned one.

S=T,

Forallp € Sdo

Compute k-rechability(p) and k-coverage(p);

Forallp € Sdo

If p is a noisy instance
Remove p from S;
For all p; € k-coverage(p)
Remove p from k-rechability(p;);
Update k-rechability(p;);
For all pi € k-rechability(p)
Remove p from k-coverage(p;);

Sort the removal order of instances in S according to
rule 2;

Forallp e S

If p satisfies rule 1
Remove p from S;
For all p; ek-coverage(p) ‘
Remove p from k-rechability(p;);
Update k-rechability(p;);

Return S;

Figure 1 The C-Pruner Algorithm

C-Pruner first performs noisy instances filtering, then
removes instances satisfying rule 1 in an ordered way.
Lines 2-3 compute the k-reachability and k-coverage for
each instance in S. A noise instance filtering pass is
performed by lines 3-11. When a noisy instance p is
removed, those instances having p as one of their nearest
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Table 2 Comparisons of accuracy and storage among K-NN, IB3, DROP3 and C-Pruner over 15 datasets

Datasets KNN IB3 DROP3 C-Pruner
Ace. (%) | Stor. (%) | Ace. (%) | Stor. (%) | Acc. (%) | Stor. (%) Ace.(%) | Stor. (%)
Anneal 93.11 100 91.23 10.07 93.99 8.63 94.12 11.79
Australian 84.78 100 85.65. 4.98 84.20 594" 85.07 10.90
Breast Cancer (WI) 96.28 100 97.00 3.39 96.14 3.61 95.86 442 -
Bridge 44.00 100 44.00 10.05 44.00 4.28 44.00 8.06
Glass 73.83 100 62.19 33.18 64.55 23.68 68.74 31.62
Heart (Long Beach) 74.50 100 70.00 4.89 74.50 1.11 74.50 1.72
Heart (Swiss) 93.46 100 93.26 3.70 93.46 1.81 93.46 1.81
Image Segmentation | 93.10 100 91.43 15.87 92.62 11.11 94.05 12.67
LED Creator 73.40 100 70.90 22.87 71.40 11.87 72.80 38.48
Liver (Bupa) 65.57 - 100 57.93 10.66 60.56 25.16 - 65.50 45.70
Sonar 87.55 100 71.24 12.98 78.00 26.82 79.90 35.79
Soybean (large) 88.59 100 85.65 30.15 84.65 25.12 86.60 27.87
Vehicle 71.76 100 66.09 28.41 65.38 23.09 67.62 34.13
Vowel 96.57 100 88.43 36.89 89.56 44.82 91.07 46.53
Zoo 94.44 100 93.33 30.99 88.89 20.86 88.89 24.20
Average 82.06 100 77.89 17.27 78.79 15.86 80.15 22.37

neighbors (i.e. the instances in k-coverage(p)) remove p
from. their k-reachability sets, and the instances in p’s
k-reachability also remove p from their k-coverage set. Line
12 sorts the instances remained in S with respect to rule 2.
Lines 13-18 check each instance in S to decide whether it
can be removed according to rule 1. In this pass, if a
instance p is removed, we only update the k-reachability of
those instances in k-coverage(p).
4  Experimental Results
In order to verify the expected benefits of C-Pruner,
we carry out experiments over 15 datasets from the
Machine Learning Database Repository at the University of
California, Irvine [19]. We implement three other typical
instance pruning algorithm IB3, DROP3 and KNN for
comparison with C-Pruner. kNN is the basic k nearest
neighbor algorithm that uses all instances in the original
training set during classification. In this section, we focus
on the comparison between C-Pruner and DROP3, for
DROP3 is pruning algorithm of state of the arts. The
comparison between other methods can be found in [17].
We adopted 10-fold cross-validation in the
experiments. Each dataset is divided into 10 equal parts.
For every algorithm included, 9 of these parts makes up the
training set T, which is pruned and returned as S. Instances
of the remaining part are then classified by using instances
in S. This process will be repeated for 10 times with
different combinations of the ten parts, and the average
accuracy of the 10 trails is reported, as well as the average
percentage of instances remained in S. Table 2 shows the

98

results of accuracy and storage after instances pruning for
each algorithm over the 15 datasets. And the average
accuracy and storage after pruning are listed in the last row
in bold.

Several observations can be made from the results.
The basic KNN algorithm has the highest average
classification accuracy, however it stores all the training
instances. As expected, our approach C-Pruner achieves
considerably high average classification accuracy, which is
about 2% inferior to the ANN method. Moreover, C-Pruner
outperforms DROP3 in average classification accuracy by .
nearly 1.4%, and wins /B3 by more than 2%. In fact, of all
the 15 datasets tested, C-Pruner obtains a higher accuracy
than DROP3 in 12 datasets.

As shown in table 2, the storage requirement of
C-Pruner is a little higher than /B3 and DROP3. This is not
out of our expectation because C-Pruner performs instance
pruning in a more careful way in order to prevent from
deterioration of classification accuracy. We argue that ~
higher classification accuracy is worthy of a little more
storage cost.

5 Conclusions and Future Work

This paper presents an improved instance-pruning
algorithm C-Pruner, which is based on the formal
definition of superfluous, critical and noisy instances.
C-Pruner method deletes superfluous instances in a more
careful way than the DROP family and IB family in order
to achieve higher classification accuracy. It aims to delete
the internal instances and retain the border instances. In
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practice, C-Pruner achieves this by discarding the
superfluous but not critical instances in an ordered way
after a noise-filtering pass. Experiments over 15 datasets
show C-Pruner achieved higher classification accuracy than
DROP3 and IB3 at a little storage cost as we expected.

The future work includes 1) using more datasets from
different application domains to evaluate C-Pruner; 2)
Combing C-pruner with prototyping techniques to build
classifiers of higher performance; 3) Using domain
knowledge and structure features of the datasets to enhance
C-Pruner’s performance.
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