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ABSTRACT 

In Additive-Multiplicative fuzzy neural networks 
(AMFNN), its membership functions have no adaptability 
and the number of fuzzy rules is determined subjectively. 
In this paper, a generalized Additive-Multiplicative fuzzy 
neural network (generalized AMFNN) is presented, and 
the parameters of membership functions can be adjusted. 
Therefore, there are many parameters to be determined. 
The matrix coding in genetic algorithm (GA), which 
combines binary coding with real number coding, is 
adopted to search the optimal parameters of the 
generalized AMFNN and determine the number of fuzzy 
rules. The generalized AMFNN has lower complexity and 
can approximate to a nonlinear system at high accuracy 
degree. A numerical simulation has demonstrated the 
validity of this approach. 

1. INTRODUCTION 

In reference [I], the author of this paper proposed a new 
fuzzy neural network -Additive-Multiplicative Fuzzy 
Neural Network (AMFNN), which is an integration of 
additive inference and multiplicative inference. 
Theoretical analysis and instances verification show that 
AMFNN has such characteristics as high reasoning 
precision, wide application scope, strong generalization 
capability and easy implementation. Furthermore, the 
learning algorithm of AMFNN is very simple and can be 
implemented easily. However, similar to Takagi-sugeno 
fuzzy logic system, A M F "  has some practical 
difficulties shown as follows: 

1) How to determine the membership functionp , (x,) 

(+I,  2, ._ .  n; j = l ,  2, ..__, m)? Does it have adaptive 
capability? 

2) How to determine the optimal number m of fuzzy 
rules, which relates to the complexity of AMFNN 
model. 

The determination of the optimal number of m fuzzy 
rules and membership function will directly affect whether 
AMFNN can be more adaptive to match real model, and 
much lower model complexity. Li He-sheng et al. has 
studied generalized Takagi-Sugeno logical system optimal 

< 

parameter identification based on genetic algorithm 121. 
Here, a generalized AMFNN is proposed, and the 
membership function of which is an adaptive generalized 
Gaussian function (See definition 1). In model 
implementation, a system optimal parameter identification 
method based on genetic algorithm is adopted in this paper. 
Global optimization and population searching strategy of 
GA is particularly suitable to solve complex nonlinear 
optimization problem which is dificult to be solved with 
traditional optimization method [3, 41. 

2. GENERALIZED ADDITIVE-MULTIPLICATIVE 
FUZZY NEURAL NETWORKS 

In engineering applications of fuzzy control, such 
functions as triangle, trapezium, Gaussian or other 
exponent functions are used to be membership function. 
The disadvantage of these membership functions is that as 
long as the membership function type is determined, its 
rough shade can't be modified. If we can find a parametric 
membership function, which can adaptively approximate 
toall functions above by changing parameters, it will have 
significance for the fuzzy control system. Therefore, the 
following are this adaptive function and corresponding 
fuzzy system. 

Definition 1 [ 5 ] :  Function p(x)  can be called 
generalized Gaussian function, if it has following 
expression: 

If u = l ,  P=O and appropriate value for Y ,  a set of 
generalized Gaussian membership function 

p(x)  = exp(- 1 x 1') can respectively approximate 
triangle, trapezium and Gaussian function. If 0, B are 
changing more, we can translate, compress, expand this 
set of membership function to approximate triangle, 
trapezium and Gaussian function better. Therefor, 
generalized Gaussian membership function has adaptive 
capability. 

Definition 2: A fuzzy logic system can be called 
generalized AMFNN, if the membership function of 
AMFNN is generalized Gaussian function, i.e. 
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Fig. 1 Architecture of AMFNN 
sum of all its inputs: 

s, =U,, + U 2 ,  +...."" 

where a; > 0, p j  E R ,  7,: 2 O ( i = l ,  2, ,.. n. ,I- '-1 , 2, ...., 

The generalized AMFNN with n inputs, single output 
and m fuzzy rules is shown as Fig. 1. 

The membership function is Equation (2), where 
a:, fl /  are parameters corresponding to each node uq at 
the membership generation layer. In this layer, from the 
top down, uV can be specifically expressed as: uII ,  u12, ..., 
ulm; ull, u12. ... , uIm; ... ; unl,  tin2, ... , U,,,, where n is the 
number of input variables, and m is the number of rules. 

Subscript and superscript of each a:, fl/ is similar to uB. 
Multiplicative inference is paralleled to additive 

inference in the inference layer. The nodes of inference 
layer are divided into two kinds: one used in multiplicative 
inference, and the other used in additive inference. 

The output of multiplicative inference node is an 
algebraic product of all its inputs: 

4. 

" 
p i  = u , J ' u 2 j . '  ..... . U, =nuq 

n 

+U, = c u ,  
;=I 

The final output of defuzzification layer is a ratio, the 
numerator of which is the weighted algebraic sum of every 
rule's output of multiplicative inference, and the 
denominator is the.algebraic sum of every rule's output of 
additive inference. 

Numerator: 
m 

P = w , p ,  +w2p2  +"""+w,p,  = c w , p j  
j= l  

Denominator: 

The output of additive inference node is an algebraic 
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but there is no widely accepted criterion to decide it. Here, 

(7) 

The sufficient and necessary condition of modeling by 
generalized AMFNN is that this system can approximate 
real model at arbitrary accuracy degree, i.e. it has 
universal approximation. Based on Stone-Weirstrass 
theorem [6], the universal approximation of generalized 
AMFNN can be proved. The following is the theorem and 
its proof is omitted for brevity. 

Theorem 1: Generalized AMFNN is universal 
approximator. 

3. GENERALIZED ADDITIVE-MULTIPLICATIVE 
FUZZY NEURAL NETWORK OPTIMAL 

PARAMETER IDENTIFICATION BASED ON 
GENETIC ALGORITHM 

The operation process of searching optimal parameters of 
generalized AMFNN by genetic algorithm is as follows. 

1) Encoding. According to Equation (7), this model has 
3n X m variables to he determined. Especially, when n and 
m is large number, the number of independent variables 
will be very large. If we adopt binary coding, the entire 
code of a chromosome is so long that the searching time of 
CA becomes too long. In this paper, generalized AMFNN 
adopt matrix coding, in which, binary coding and real 
number coding coexist. Matrix coding of individual of 
generalized AMFNN is shown in Fig.2. Here, code of first 
rule is on the first line, and code of second rule is on the 
second line, . . ., code of mth rule is on the mth line. Switch 
parameter Ji (i=l, 2, ._., m) is one digital binary coding, 
where d j  =I means the ith rule exists, and 6 ;  =O means the 
ith rule does not exist. Expect for d j  (i=l, 2, ..., m), the 
other uarametem are real number code. 

. . . . . . . . . . . . . . . . . . . . . . . . 
m 

6, a;? pi" y;? '.. 4' B? Y,, 

let T 4 0 ,  and we generate initial population by recursive 
cycle algorithm at random. 

3) Model evaluation. The model can be evaluated by 
model accuracy and model complexity. The model 
accuracy is made by accumulation square error e. When e 
is smaller, the model accuracy is higher. Model 
complexity is reflected by the actual number of rules Mrs. 
When M, is smaller, model complexity is lower. The 
fitness value of generalized AMFNN chromosome is 
denoted as 

1 1 g( t )  = we x-+ W M  x- 
e 4 s  

(8) 

where we, wM is weight value, and the real number of rules 
is MTs = $6, . 

4) Reproduction. Among various reproduction methods, 
we adopt the fitness-proportionate selection or the 
'roulette wheel' selection to reproduce the new individuals. 
Whenp,=l, the occurrence probability of an individual t is 

A t )  = s(t)/&(t) (9) 

5) Crossover. The crossover operation may be applied 
to all pairs of parents, or it may be applied only to some 
selected pairs. In the latter case, the selection is 
determined by the crossover probability P C. Crossover 
provides a mechanism for chromosomes to mix and match 
attributes through random processes. First, pairs of 
reproduced chromosomes (referred as parents) from the 
current population are selection at random. Second, two 
minors of matrices, which are at the same position in these 
two individuals of parents, are selected at random. Third, 
the two minors of matrices are swapped between the two 
chromosomes in each pair, resulting in two new offsprings. 
The operation process is shown in Fig.3. 

6) Mutation. Mutation is an operation on a gene. Each 
gene is assigned a probability p,,, for mutation. When a 
gene is stochastically chosen for the mutation, a new gene 
generated at random replaces it. In this paper, adaptive 
multiple mutation is adopted. The range of mutation factor 
a, is 0.5-1.0 obtained by Monte Carlo experiment. The 
mutation method is shown as follows. 

When it satisfies I) Binary coding 6 ;  (i=1,2, ..., m): 
mutation probability p,, it will mutate as follow. 

1-0 and 0-1 (10) 
1I)Real number coding vk: When it satisfies mutation 

prohabilityp,, it will mutate as follow. - Fig2 the matrix coding of generalized A M M N  vk = vir + (pk - O.~)E(UL)U,, ,  (11) 
2) popu[ation ne of Random number is p k E [ O , l ]  and a,,, is mutation factor. 

vkis real number coding in chromosome, i.e. a,!,pi,y,!. 
I 

individuals in the population is an important design value 
in the genetic algorithm, which can directly influence the 
final result and execution efficiency of genetic algorithm, "k is mutation Of "k, is the 
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Fig.) Crossover operation of generalized AMFNN with n=2, m 4  

square error of best individual in nh generation, which bas 
the best fitness. 

7) End condition. The iteration halts when the iteration 
exceeds the fixed times or the best individual has error 
smaller than the threshold. 

8) System parameter determination. Every coding value 
of the best individual is corresponding optimal parameter 
of generalized AMFNN. Switch parameter Jj  =I means 
the ith rule is exist, and 6, =O means the ith rule is not 
exist. M ,  = $Ji is the optimal number of rules in 

generalized AMFNN. 

4. NUMERICAL EXAMPLES 

In this section we illustrate a numerical example from [3]. 
The following nonlinear static system with two inputs x, 
and x2, and a scalar output y are used: 

= x',-ci+.:, , - 2 < X , , X ,  1 2  (12) 
The data were generated by using independent uniformly 
distributed random numbers {(x,(k),  xz(k)), &I,  2, --, 
100) in the domain - 2 S xI,  x2 5 2 .  The following are 
the parameters used in this experiment: population size 
T=40, selection probability P r=l,  crossover probability 
p,=0.77, mutation probability p,=O.OI, mutation factor 
am=O.65, weight of fitness value w,=l and w e l o .  

The procedure of the genetic algorithm was repeated 
200 times in this example. At each iteralion, the best 
individual in the population was recorded. Not every 
iteration produced a better individual. Fig.4 shows the 
criterion g of the best individuals at each generation. There 
were not many differences among the best individuals 

after 155 iterations. Consequently the best one at the 1 5 5 ~  
iteration was regarded as the optimal solution, i.e. 
gmcr=g(155)=39.9928, where 

max {I y ' ( k ) -  y ( k )  I} = 0.030 31. (13) 
I i k l l O O  

Fig3 shows the estimation error between Equation (9) and 
its estimation by generalized AMFNN. The original shape 
and approximation shape produced by generalized 
AMFNN are shown in Fig.6, Fig.7. To this example, the 
comparison with Tanaka method in [3], Li He-sbeng 
method in [2] is show in Table 1. The result shows that 
this generalized AMFNN is very effective. 

generation n 

Fig.4 Fitness of best individual at each generation 
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whose membership functions can be adjusted. In real 
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Fig.6 original shape 
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Fig.7 Approximation shape by generalized AMFNN 

5. CONCLUSIONS 

A generalized AMFNN is presented, and the parameters of 
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modeling, this method can approximate to practical model 
very well. An optimal parameter identification method 
based on genetic algorithm is proposed simultaneously. 
The simulation result show that generalized AMFNN can 
evaluate by GA. In some generation, we can get a set of 
suboptimal parameters of generalized AMFNN. This 
suboptimal generalized A M F ”  can approximate to a 
high nonlinear system at high accuracy, but with has low 
complexity, which offers some practical value in 
engineering application. 
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