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ABSTRACT 

In this paper, we qualitatively analyze networks 
that contain product units. By replacing the neurons 
in traditional back-propagation (BP) nets with 
product units in hidden layer gives us a different 
type of BP network called P-S model. We further 
extend P-S to P-S(in) by adding direct connections 
from input neurons to output neurons. By comparing 
with traditional BP nets that consists of ordinary 
summing units, we examine performance of product 
unit networks in solving TC, XOR, AOX, and other 
hard binary problems such as odd and even parity 
problems. The results show that product units 
outperforms traditional BP nets in terms of both 
hardware efficiency and training requirement. 

1. INTRODUCTION 

Study on the product unit [l] has not received much 
attentions, and publications on this subject are limited[ 1, 
2, 31. It is well known that traditional BP networks 
consist of summing units. The output of a summing unit 
is determined by (l), where xi is the input for the &, 
neuron and is the associated connection weight. 

Because the summing unit can only learn the linear 
combination of the inputs, we propose the product unit 
which can provide a BP network with nonlinear learning. 
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The output of product unit is determined by (2), 
where Xi is the input and pi  is the associated weight. 

N 
y = XiP' 

i=l 

Because Pi is on the exponential term, learning arbitrary 
complex mapping function will make possible by 
adjusting values of Pi through training. For simplicity, 
we define a S-S model as a traditional BP network, 
whereas a P-S model is a BP net that contains only 
product units in the hidden layer and all summing units 
in other layers. To differentiate, we also denote S-S and 
P-S model that have direct connections from input 
neurons to output neurons as S-S(in) model and P-S(in) 
model. The remaining sections of this paper are 
organized as follows. In Section 11, we demonstrate that 
P-S model outperforms S-S model in solving the well 
known XOR problem. P-S(in) model are discussed in 
Section 111, we show that product unit is more capable in 
learning internal information than summing unit. A 
hard binary problem of parity is cited as another 
justification. To obtain better understanding of computa- 
tional property of the product unit, we also examine 
other examples. The TC problem is solved in Section 
IV, followed by the problem of AOX ( AND, OR, and 
XOR) in section V. Finally, conclusions are made in 
Section VI. 

2. P-S AND S-S MODELS 

From (2), we see that product units in P-S model 
potentially provide more nonlinearity than ordinary 
summing units, hence they are suitable for solving 
nonlinear-separable problem. In the following discus- 
sions, XOK is used to evaluate performance of P-S 
model and S-S model. 
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Since XOR is nonlinear-separable, it is necessary to 
train thresholds in S-S model. The reason for doing this 
can be seen in Fig. 1. 

x2 
L: division line determined 

L 

Fig. 1 Division surface determined by a summing unit. 

From Fig. 1, we can see that the solution of decision 
surface depends on the values of the connection weights 
and threshold 8. Thus, in the case of two input neurons, 
a hidden neuron provides a division line with slope w,/ 
w2 . The intersection of division line on x2-axis is 

equal to 8 (i.e., threshold). The division line is given by 
(3) ,  where x l  and x2 are two input to hidden unit and 
wl w2 are the associated weights. 

I 

xlw, + x2w2 - e= o 
a x z  =-(w, /w,)x, +e  (3) 

' Now, it is clear that division line will pass through 
the original point (0,O) of the ( xl, x2) plane, provided 
no training is given to summing unit. Therefore, it is 
impossible to solve XOR problem using this simple S-S 
model. But if P-S model is used, only single neuron is 
needed in hidden layer to solve the XOR problem. In 
addition, it requires no training on threshold. Thus, 
product unit not only outperforms summing unit in 
requiring less number of hidden-layer neurons, it is 
more efficient in training process. An example of a P-S 
network trained for XOR is shown in Fig. 2. 

benefits of using 
product unit, namely, good hardware efficiency and less 
training requirement. In fact, this is true for other 
training problems such as the parity and TC problem. 

In this section we have shown 

Fig. 2. The trained P-S model for XOR. 

3. EXTENSION TO P-S(IN) MODEL 

Product units also perform well in P-S(in) model in 
which &e input neuron has direct connections to the 
output neurons[4]. To demonstrate, the network after 
training for six dimension parity problem is shown in 
Fig. 3 (initial weights are given randomly). 

I 

Fig. 3 The network after training for six 
dimensional parity problem. 

What if dimension is larger than 6? In that case, 
training would become impractical due to immense 
number of the possible training patterns. To solve this 
difficulty, we have analyzed the parity problem and 
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devise the following algorithm useN in assigning the 
values for connection weights: 

1. Use only one product unit in hidden layer and 
randomly assign either +1 or -1 to the weight 
between input unit and hidden unit. 

2. Assign +1 to the weight between the output 
for recognizing odd-parity input strings; Assign - 

1 to the weight connecting the output unit and 
hidden unit, if the network is used for 
recogmzing even-parity input strings. 

To jus* this algorithm, let us examine (4) where 
the input vector is (1,-1,-1,-1,-1,l). If all weights 
between the output and hidden units are set to 1, and 
all weights between input and hidden units are set to 1 
or -1. 

n 
y q x i h '  

i 

= (1)-1(-1)1(-1)1(-1)'(-1)1(1)1 (4) 
1+1+1+1 = (-114 = (-1) 

=1 

Thus, the output value of positive 1 inQcates the 
input string is of odd-parity. This algorithm has the 
advantage of solving parity problem of arbitrary 
dimension and the solution comes without any training. 
It is noted in using t h s  algorithm, there is no need to 
use direct connections from input units to output units as 
in Fig. 3. 

4. THE T-C PROBLEM 

P-S model exhibits better performance even for more 
complex problem such as the T-C problem. Fig. 4 gives 
an example of the 3x3 vector arrangements for rotational 
invariation. We simulate the TC problem on a P-S 
model with 3 product units, and the initial weights are 
set randomly. It is shown that about 1000 iterations is 
needed to obtain a solution ( the convergence of training 
is shown in Fig. 5) 

Pattern I 'TI: 

input:<l 1 10 1001 O>, <lo0 1 1 1 1002, <O 100 10 1 1 1 >, <OO 1 1 1 100 1 > 
output: <1>, <1>, <1>, <1> 

Pattern 'Cl: 

input: <111100111>, <101101111~, ~111001111>, ~111100111> 

output: <o>, <O> <O>, <O> 

Fig. 4 Input vector arrangement for T-C problem 

Fig. 5. Convergence for the TC problem 

Note that we can speed up training time for the TC 
problem due to the sensibility of product unit in the 
number of 1 and 0 in input vector ( as can be seen in 
previous parity problem). As such, we can rearrange 3x3 
vector shown in Fig. 6 to improve the training speed. 
The network is still a PS model with 3 product units, 
and the initial weight are set randomly. It shown that 
only 100 iterations is need to get a solution ( the 
convergence of training is shown in Fig. 7) 
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Fig. 6. Rearrangement of taining patterns for TC 
problem. 

AOX. They both gives error rate less than 0.001 when 
the number of hidden units> 1. 

I AND OR XOF 

11 Hidden Layer 

Fig. 8. The network for AOX. 

Fig. 7. Convergence of training for TC problem 
( after rearragement the input vector) 

5. THE AOX NETWORKS 

We have made an attempt to solve the problem of 
AOX, in which XOR and two other logic functions AND 
and OR are computed simultaneously (the network is 
shown in Fig.8 ). The problem are solved using different 
models previously described. The computed output error 
rates are compared for these models, and it turns out that 
among 4 different models (shown in Fig. 9 ), P-S(in) 
and S-S(in) are the best two choices for implementing 

I Error 

0. 

0. 

0. 

0. 

1 1 2 1 3 1 4  
The number of hidden units I 

Fig. 9. Statistics (Mean Square Error) of the different 
implementations for AOX. 

6. CONCLUSIONS 

In this paper, we have seen that the including of 
product units in tradtional back-propagation networks 
can result in additional nonlinearity, decreasing network 
size and increasing learning speed. In our simulations, 
we examine performance of product unit networks in 
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solving TC, XOR, AOX, and other hard binary problems 
(such as odd and even parity problems) . Our results 
show that product units outperforms traditional BP 
networks in terms of both hardware efficiency and 
training requirement. 
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