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Abstract The Characteristics of a novel N a y e r  
feedforward neural network that can be used as a 
higher-order associative memory b studied. The 
network structure consists of a hidden layer that 
contains product units for which each input is raised 
to a power determined by a trainable weight. The 
operatlon of the network consists of three steps:(l) 
p rep rdess  the prescribed associative vectors and 
determlne the principal connection weights (Le., 
the first phase learning); (2) estimate the required 
number of product units and connectlons based on 
the results from (1); and (3) train the network using 
the backprop8gation algorithm until satisfactory 
recall accuracy is achieved. The use of this two- 
phase learning is shown to enable us to achieve:(a) 
learning without requiring long training time (8s 
often seen in a usual backpropagatlon-type 
network); (b) major reduction In the number of 
connection weigtrts.Various interesting characteris- 
tics of the network, including input noise tolerance 
and fault tolerance, can be seen in this network. 

I. INTRODUCITON 

A product unit is a feedforward network of the 
backpropagation [ 1,2] type proposed by Rumelhart and 
Durbin [3]. Instead of calculating a weighted sum this unit 
calculates a weighted product, where each input is raised to a 
power determined by a trainable weight. The idea behind the 
product unit is that it can learn to represent any generalized 
polynomial term in the input, and therefore help to form a 
better representation of the data in cases where higher order 
combinations of the inputs are significant. As with summing 
units such as perceptrons, there is only one weight per input. 
This is different from the Sigma-pi units [2] which not only 
provide a weight to each input but also to all higher order 
products of inputs. The output of a product unit is 
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A possible form for product unit is shown in Fig 1. The 
weights W* are treated as variable weights, and are trained by 
gradient descent on the output sum square ernx. Since the W* 
cao take fractional and negative values, product units provide 
much mOze generality than just allowing polynomial terms. 
Note that no nonlinear function is applied to the output of a 
product unit. The outputs of all summing units are 
compressed during training using a nonlineat, differentiable 
function such as the sigmoid Sig=( le-x)/( l+erX). i.e., 

L a  J 
(2) 

Note that, during the recall process, Yj may be thresholded by 
a hard-limiting function to get binary values (if in binary 
applications). 
It has been shown that network configured as in Fig 1 can be 
trained to learn as an associative memory, of which the 
memory capacity per neuron also estimated [2]. This paper 
proposes a 3-1aye.r feedforward neural network that has 
similar look of Fig 1. but utilizes our previous results of 
higher order associative memory [4,5] as the first phase 
learning. The effects and advantages of breaking the learning 
process into two phases are described, and the characteristics 
of this special network are studied. 

II. THE~ORKCONFIGURATION 

A. Preprocess (The First Phase Learning) 

To illustrate, we use a 2nd order network as an example. The 
first step in forming the network is to estimate the capacity 
[4] of a 2nd order Hebbian-type associative memory 
according to(3) 
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Fig. 1. A fully umnected product units network. 
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Fig. 2. A higher -order associative memory using product units. 

whcrc M is thc numbcr of prcscribcd pattcms and N is the 
dimcnsion of cach patrcm. Thc sccond stcp is to identify all 
principal conncclion weights and thcir awiatcd XjXk input 
combinations. No& that thc 2nd ordcr conncction weight Tijk 
is @bed by 

Ti$ =$VrVrV: , where l l i j & N  and i# j# k. (4) 
=1 

Assumc T is the set of conncction wcights comprises all 
Tijk. By principal conncction wcights we mcan thcrc exists a 
subset of T, Tpr, that conlain more information than the 
othcrs. The rccall capability of using only principal weights 

Tpr. where Tpr ET, is slightly less than if otherwise all 
weights in T are used (in fact, the accuracy diffmnce can be 
compensated by the 2nd phase 1earning:backpropgation). In 
our previous work [51, it has been shown dmt these principd 
terms Tpr are shown to be located in the range &k ITijk I S  
M and account for less than 50% of the total number of 
weights. Finally we implement these principal weights in the 
network by (i) generating the number of hidden units (product 
units [3]) by choosing these units from the XjXk input 
combinations; each hidden unit receiving only one input 
combination of XjXk (designated as an i,u,or v unit In pis 2, 

unit i and the output neuron j) ; (ii) Setting all coancclions 
wri from inputs to product units to be l(maybe changed 
during training); (iii) setting all connections between product 

e.g. XlXN =unit i and Tij= TjlN- ‘on weight between 
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units and output units to the values of the normalized 
principal weights (i.e., normalization by dividing Tijk by 
M). 
Due to the sigmoid function, this normalization is necessary 
in onkc to avoid the error signal fed bwk from the output 
ne~frombeingtoosmall .  

Thus, the idea behind this special ne~~orkconfiguration 
is twofol&(i) starting with only principat weights means that 
mote than 50% of the total connection terms can be 
eliminated, yet fairly good recall 8ccuracy Pdc can be 
achievd, and (ii) if the d t  of this significant reduction in 
connection weights is to be utilized in prepering the initid 
weights and product units for the net, the training time 
requiredshouldbe much lower than if done otherwise, due to 
the fact that the net is to learn to improve from a cerrain 
value (e.g. 0.85) of Pdc to F%IcM.99, instead of starting from 
scratch. Also, since the computations of (4) and principal 
connection weights are just straight forward, the fmt phase 
learning will take no more than 10% of the total learning 
time! 

B. The Second Phase Learning 

After setting up the network and connections, the 
network can then be trained to learn, using backpropaption, 
to improve the recall accutacy Pdc from a certain value (due 
to the prior howl- obtained from the first phase learning 
in (3)) to 20.99. Without going into math details, the update 
formulas of connection weights in Fig 2 can be derived as 

( 5 )  

where ai =XTi,:, , and dYf /dWri is obtained by taking the 
derivative of Yi (i.e., the output of the product unit i) with 
respect to Wri . Note that for the special case of binary 
inputs, dYi /dWri reduces to 

= 0, for s=l. ( 6 )  

Since the network is already capable pf achieving a certain 
high value of d accuracy before 2nd phase training (due to 
9 first-phase lam@ by Eq.(2)), the average changes in the 
connection weigSts should be mild and a quick adiptation 

m. RESULTS 

In the past the problem of estimating the number of hidden 
uniti has never been solved. The proposed network avoids 
this difficulty by preprocessing the 8ssoci8tive vector pairs, 
and provides the double advantages of speeding the learning 
and eliminating redundant CoMectiOn weights. Our result has 
indicated (not shown here) that , given the full set of 
principal- 'on weights and their cOneSpOnding product 
units, the learning speed is at least 50% less than if no 

Furthermore, It is even more interesting to know if 
the network can still learn if not all the principal connection 
weights is used. That is, by examining the trade-off between 
the number of product units and the required training time, it 
is possible to determine the best network configuration that 
meets the performance requirements. In the following 
simulation results, using N=30 and M=16 we show variouS 
properties of the network (mainly fault tolerance are shown 
here). 

prep.ocessingisperf<#med 

A. Decreasing Number of llidden Units 

Fig 3 illustrates that , given the number of ilcrations =6OOO 
and input error bits b=2, the number of hidden units can be 
decreased down to 303, which is 70% of the original number. 
and the network is still able to leam to raise Pdc to more 
than 0.99. This is significant because the decreasing n u m b  
of hidden units gives a reduction in the numbcr of 
connections (T-links and W-links in Figure 1). 

B.  Training Time vs. Number of llidden Unils 

Given that pdc is required to reach 20.99 dtcr  training, Fig 
4 shows the trade-off bctwwn uaining timc and thc n u m b  
of hidden units required. Generally spcaking. when thc 
number of hidden units decreases. the nccdcd mining timc 
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number of product u n i t s  

Fig. 3. 
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Fig. 4. 

IV. CONCLUSIONS 

The characteristics of a higher-order associative 
memory utilizing product units in the hidden layer and prior 
knowledge ~ b t a i ~ e d  from the hebbian association rule have 
been investigated. The application of the two-phase learning 
is shown to be effective, in terms of both learning speed and 
network complexity. The trade-off between the number of 
hidden units and the required training time has been shown. In 
particular, we have seen that the network shows strong fault 
tolerance capability. 
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