Characterization of a Higher-order Associative
Memory That Uses Product Units

Jung-Hua Wang
Department of Electrical Engineering
National Taiwan Ocean University
No.2, Pei-Ning Rd.

Keelung, Taiwan

Abstract The Characteristics of a novel 3-layer
feedforward neural network that cam be used as a
higher-order associative memory is studied. The
network structure consists of a hidden layer that
contains product units for which each input is raised
to a power determined by a trainable weight. The
operation of the network consists of three steps:(1)
preprocess. the prescribed associative vectors and
determine the principal connection weights (i.e.,
the first phase learning); (2) estimate the required
number - of product units and connections based on
the results from (1); and (3) train the network using
the backpropagation algorithm until satisfactory
recall accuracy is achieved. The wuse of this two-
phase learning is shown to enable us to achieve:(a)
learning without requiring long training time (as
often seem in a wusual backpropagation-type
network); (b) major reduction in the number of
connection weights.Various interesting characteris-
tics of the network, including input noise tolerance
and fault tolerance, can be seen in this network.

I. INTRODUCTION

"A product unit is a feedforward network of the
backpropagation [1,2] type proposed by Rumelhart and
Durbin [3]. Instead of calculating a weighted sum this unit
calculates a weighted product, where each input is raised to a
power determined by a trainable weight. The idea behind the
product unit is that it can learn to represent any generalized
polynomial term in the input, and therefore help to form a
better representation of the data in cases where higher order
combinations of the inputs are significant. As with summing
units such as perceptrons, there is only one weight per input .
This is different from the Sigma-pi units [2] which not only
provide a weight to cach input but also to all higher order
products of inputs. The output of a product unit is

Y{=INIX;”" . ' (1

r=1

Manuscript received May 13, 1993. This work was supported
in part by National Science Council under Grant No. NSC
82-0408-E-019-003. ' ' '

A possible form for product unit is shown in Fig 1. The
weights Wy are treated as variable weights, and are trained by
gradient descent on the output sum square error. Since the Wr;
can take fractional and negative values, product units provide
much more generality than just allowing polynomial terms.
Note that no nonlinear function is applied to the output of a
product unit. The outputs of all summing units are
compressed during training using a nonlinear, differentiable
function such as the sigmoid Sig=(1-X)/(1+¢%). i.e.,

=0

Note that, during the recall process, Yj may be thresholded by
a hard-limiting function to get binary values (if in binary
applications).

It has been shown that network configured as in Fig 1 can be
trained to learn as an associative memory, of which the
memory capacity per neuron also estimated [2]. This paper
proposes a 3-layer feedforward neural network that has
similar look of Fig 1, but utilizes our previous results of
higher order associative memory [4,5] as the first phase
learning. The effects and advantages of breaking the learning
process into two phases are described, and the characteristics
of this special network are studied.

II. THE NETWORK CONFIGURATION
A. Preprocess (The First Phase Learning)

To illustrate, we use a 2nd order network as an example. The
first step in forming the network is to estimate the capacity
[4] of a 2nd order Hebbian-type associativec memory
according to (3)

N+ (6—%)[ln(N)+5]

M= . 3)

(&%)[m(nw

636




£ ()=Sigmoid

Inputs

Fig. 1. A fully connected product units network.

Product Units Layer

—;@——» Y

Inputs

Outputs

Fig. 2. A higher -order associative memory using product units.

where M is the number of prescribed paticrns and N is the
dimension of cach pattern.” The sccond step is to identify all
principal connection weights and their associated XjXk input
combinations. Notc that the 2nd order conncction weight Tijk
is prescribed by

Tiik :iv:‘v}‘vf , where 1<i,jk<N and i# j* k. @)

=1

Assume T is the sct of conncction wcights comprises all
Tijk. By principal connection weights we mcan there exists a
subsetof T, Tpr, that contain more information than the
others. The recall capability of using only principal weights

Tpr, where Tpr €T, is slightly less than if otherwise all
weights in T are used (in fact, the accuracy difference can be
compensated by the 2nd phase learning:backpropagation). In
our previous work [5], it has been shown that these principal
terms Tpr are shown to be located in the range YM< ITijk | <
M and account for less than 50% of the total number of
weights. Finally we implement these principal weights in the
network by (i) generating the number of hidden units (product
units [3]) by choosing these units from the XjXk input
combinations; each hidden unit receiving only one input
combination of XjXk (designated as an i,u,or v unit in Fig 2,
e.g. X1XN =unit i and Tij= Tj1N=connection weight between
unit i and the output neuron j) ; (ii) setting all connections
wri from inputs to product units to-be 1(maybe changed
during training); (iii) setting all connections between product

637




units and output units to the values of the normalized
principal weights (i.e., normalization by dividing Tijk by
M)

Due to the sigmoid function, this normalization is necessary
in order to avoid the error signal fed back from the output
neuron from being too small.

Thus, the idea behind this special network configuration
is twofold:(i) starting with only principal weights means that
more than 50% of the total connection terms can be
eliminated, yet fairly good recall accuracy Pdc can be
achieved; and (ii) if the result of this significant reduction in
connection weights is to be utilized in preparing the initial
weights and product units for the net, the training time
required should be much lower than if done otherwise, due to
the fact that the net is to learn to improve from a certain
value (¢.g. 0.85) of Pdc to Pdc>0.99, instead of starting from
scratch. Also, since the computations of (4) and principal

- connection weights are just straight forward, the first phase
learning will take no more than 10% of the total learning
time!

B. The Second Phase Learning

After setting up the network and connections, the
network can then be trained to learn, using backpropagation,
tounprove the recall accuracy Pdc from a certain value (due
1o the prior knowledge obtained from the first phase learning

" in (3)) to 20.99. Without going into math details, the update
formulas of connection weights in Fig'2 can be derived as

Tij (t+1)= le (t+1)+'ﬂ151Y'1 » and

dyY.
W, (D)= W,; (1+1) + nﬁiW'ﬁ- , (5)

where o; -ZT,JG ,anddY; /dWri is obtained by taking the

derivative of Yl (i.c., the output of thie product unit i) with
respect to Wn Note that for the special case of binary
inputs, dY; "/dWri reduces to

Y,

1
FW—'—_ nsxr{ ZW] for x, =-1;

=0, for x, =1. 6)
Since the network is already capable of achieving a certain
high value of recall accuracy before 2nd phase training (due to
the first-phase learning by Eq.(2)), the average changes in the
connection weights should be mild and a quick adiptation
process can be expected.

638

II. RESULTS

In the past the problem of estimating the number of hidden
units has never been solved. The proposed network avoids
this difficulty by preprocessing the associative vector pairs,
and provides the double advantages of speeding the learning
and eliminating redundant connection weights. Our result has
indicated (not shown here) that , given the full set of
principal connection weights and their corresponding product
units, the learning speed is at least 50% less than if no
preprocessing is performed

Furthermore, It is even more interesting to know if
the network can still learn if not all the principal connection
weights is used. That is, by examining the trade-off between
the number of product units and the required training time, it
is possible to determine the best network configuration that
meets the performance requirements. In the following
simulation results, using N=30 and M=16 we show various
properties of the network (mainly fault tolerance are shown
here).

A. Decreasing Number of Hidden Units

Fig 3 illustrates that , given the number of itcrations =6000
and input error bits b=2, the number of hidden units can be
decreased down to 303, which is 70% of the original number,
and the network is still able to learn to raise Pdc to more
than 0.99. This is significant because the decreasing number
of hidden units gives a reduction in the number of
connections (T-links and W-links in Figure 1).

B. Training Time vs. Number of Hidden Units

Given that Pdc is required to reach >0.99 aftcr training, Fig
4 shows the trade-off between training time and the number
of hidden units requircd. Gencrally spcaking, when the
number of hidden units decrcases, the needed training time

goes up.

1.2

43 87 130 173 217 260 303 347 390 434

number of product units
Fig. 3.




Iterations

* +-r—r——r——r-rr—rr—rrror—

]
43 87 130 173 217 260 303 347 390 434
number of product units

Fig. 4.

IV. CONCLUSIONS

The characteristics of a higher-order associative

memory utilizing product units in the hidden layer and prior
knowledge obtained from the hebbian association rule have
‘been investigated. The application of the two-phase learning
is shown to be effective, in terms of both leaming speed and
network complexity. The trade-off between the number of
hidden units and the required training time has been shown. In
particular, we have seen that the network shows strong fauit
tolerance capability.

{11

(2

31

(41

[5]

REFERENCES

P. J. Werbos, "Beyond regression:New tools for prediction
and analysis in the behavioral sciences,” Doctoral Disser-
tation, Appl. Math., Harvard Univ., 1974,

D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distri-
buted Processing, Explorations in the Microstructure of
Cognition. Vol. 1: Foundations, MIT press, 1986.

R. Durbin and D. E. Rumelhart,"Product units: a computa-
tionally powerful and biologically plausible extensions to
backpropagation networks”, Neural Computation, vol. 1,

pp.133-142, 1989.

J. H. Wang, "On a neural network associative memory that

uses indirect convergence ",Proc. of 1992 IEEE Intl. Conf.

Ion Systems, Man, and Cybernetics. Vol. 2, pp.1033-1037.
Chicago, IL,1992.

J. H. Wang, T.F.Kirile, and J. F. Walkup, "Reduction of
interconnection weights in higher order associative me-

mory networks", Proc. of Intl. Joint Conf. on Neural

Networks, vol. 2, pp.177-182, Seattle, WA., 1991.

639




