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Abstract. It has remained an open question whether there exist prod-
uct unit networks with constant depth that have superlinear VC dimen-
sion. In this paper we give an answer by constructing two-hidden-layer
networks with this property. We further show that the pseudo dimension
of a single product unit is linear. These results bear witness to the coop-
erative effects on the computational capabilities of product unit networks
as they are used in practice.

1 Introduction

Product units are formal neurons that are different from the most widely used
neuron types in that they multiply their inputs instead of summing them. Fur-
thermore, their weights operate as exponents and not as factors. Product units
have been introduced by Durbin and Rumelhart [2] to allow neural networks
to learn multiplicative interactions of arbitrary degree. Product unit networks
have been proven computationally more powerful than sigmoidal networks in
many learning applications by showing that they solve problems using less units
than networks with summing units. Furthermore, the success of product unit
networks has manifested itself in a rich collection of learning algorithms ranging
from local ones, like gradient descent, to more global ones, such as simulated
annealing and genetic algorithms [3l5].

In this paper we investigate the Vapnik-Chervonenkis (VC) dimension of
product unit networks. The VC dimension, and the related pseudo dimension,
is well established as a measure for the computational diversity of analog com-
puting mechanisms. It is further known to yield bounds for the complexity of
learning in various well-studied models such as agnostic [I] and on-line learn-
ing [7]. For a large class of neuron types a superlinear VC dimension has been
established for networks, while being linear for single units [4[6/8]. This fact
gives evidence that the computational power of these neurons is considerably
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enhanced when they cooperate in networks. Using methods due to Koiran and
Sontag [4], who considered sigmoidal networks, it is not hard to show that there
exist product unit networks with superlinear VC dimension. The drawback with
this result is, however, that it requires the networks to have unbounded depth.
Such architectures are rarely used in practical applications, where one or two
hidden layers are almost always found to be satisfactory.

We show here that constant-depth product unit networks can indeed have
superlinear VC dimension. In particular, we construct networks with two hidden
layers of product and linear units that have VC dimension 2(W log k), where
W is the number of weights and k the number of network nodes. The result is
obtained by first establishing a superlinear lower bound for one-hidden-layer net-
works of a new, sigmoidal-type, summing unit. We contrast these lower bounds
by showing that the pseudo dimension, and hence the VC dimension, of a single
product unit is no more than linear.

2 Product Unit Networks and VC Dimension

A product unit has the form

wy L Wo w
1'1 1"2 “ee xp P
with input variables x1,...,2, and real weights wi,...,w,. The weights are

the adjustable parameters of the product unit. (If z; < 0, we require that w;
is an integer in order for the outputs to be real-valued.) In a monomial they
are fixed positive integers. Thus, a product unit is computationally at least as
powerful as any monomial. Moreover, divisive operations can be expressed using
negative weights. What makes product units furthermore attractive is that the
exponents are suitable for automatic adjustment by gradient-based and other
learning methods.

We consider feedforward networks with a given number of input nodes and
one output node. A network consisting solely of product units is equivalent to a
single product unit. Therefore, product units are mainly used in networks where
they occur together with other types of units. Here each non-input node may be
a product or a linear unit (computing an affine combination of its inputs). We
require that the networks have constant depth, where the depth is the length of
the longest path from an input node to the output node.

VC dimension and pseudo dimension are defined as follows (see also [1]): A
class F of {0, 1}-valued functions in n variables is said to shatter a set of vectors
S C IR" if F induces all dichotomies on S (that is, if for every partition of S
into two disjoint subsets (S, .S1) there is some f € F satisfying f(Sy) C {0} and
f(S1) C {1}). The Vapnik-Chervonenkis (VC) dimension of F is the cardinality
of the largest set shattered by F. If F is a class of real-valued functions in n
variables, the pseudo dimension of F is defined as the VC dimension of the class
{g:R"" = {0,1} | 3f € FV2 € R"Vy € R : g(z,y) = sgn(f(z) —y)} (where
sgn(z) = 11if z > 0, and 0 otherwise). The VC dimension (pseudo dimension) of
a network is defined to be the VC dimension (pseudo dimension) of the set of
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functions computed by the network with all possible assignments of values to its
adjustable parameters. For networks with real-valued output we assume that the
output values are mapped to {0,1} using some (non-trivial) threshold. Clearly,
the pseudo dimension of a network is not smaller than its VC dimension.

3 Superlinear Lower Bound for Product Unit Networks

We show in this section that product unit networks of constant depth can have a
superlinear VC dimension. The following result is the major step in establishing
this bound. We note that hidden layers are numbered here from the input nodes
toward the output node.

Theorem 1. Let n,k be natural numbers satisfying k < 2"%t2. There is a net-
work N with the following properties: It has n input nodes, at most k hidden
nodes arranged in two layers with product units in the first hidden layer and
linear units in the second, and a product unit as output node; furthermore, N
has 2n|k/4| adjustable and 7|k/4] fived weights. The VC dimension of N is at

least (n — [log(k/4) ) - [k/8] - [og(k/8) .

For the proof we require the following definition: A set of m vectors in IR"
is said to be in general position if every subset of at most n vectors is linearly
independent. Obviously, sets in general position exist for any m and n. We also
introduce a new type of summing unit that computes its output by applying the
activation function 7(y) = 141/ cosh(y) to the weighted sum of its inputs. (The
new unit can be considered as the standard sigmoidal unit with ¢ replaced by
7). We observe that 7 has its maximum at y = 0 with 7(0) = 2 and satisfies
lim7(y) =1 for y — —oo as well as for y — co.

Lemma 2. Let h,m,r be arbitrary natural numbers. Suppose N is a network
with m + r input nodes, one hidden layer of h + 2" nodes which are summing
units with activation function 1+1/ cosh, and a monomial as output node. Then
there is a set of cardinality h - m - r that is shattered by N.

Proof. We choose a set {s1,...,8h.m} C IR™ in general position and let ey, ..., e,
be the unit vectors in IR", that is, they have a 1 in exactly one component and
0 elsewhere. Clearly then, the set

S={s;i:i=1,....,h-m} x{ej:j=1,...,71}

is a subset of R”*" with cardinality h - m - r. We show that it can be shattered
by the network A as claimed.

Assume that (Sp, S1) is a dichotomy of S. Let Ly, ..., Lar be an enumeration
of all subsets of the set {1,...,r} and define the function g : {1,...,h-m} —
{1,...,2"} to satisfy

Lg(i) = {] 1 8i€j S 51} s
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where s;e; denotes the concatenated vectors s; and e;. For [ = 1,...,2" let
R; C{s1,...,Sh.m} be the set

Ry ={si:g(i)=1} .

For each R; we use [|R;|/m] hidden nodes for which we define the weights as
follows: We partition R; into [|R;|/m] subsets R;,,p = 1,...,[|R|/m], each
of which has cardinality m, except for possibly one set of cardinality less than
m. For each subset R;, there exist real numbers wy p 1, ..., W pm,t1p such that
every s; € {81,...,8p.m} satisfies

(Wip 1y s Wipm)-8i —tip =0 if and only if s; € Ry, . (1)

This follows from the fact that the set {si1,..., S} is in general position. (In
other words, (w;p1,..., Wi pm,tp) represents the hyperplane passing through
all points in R;, and through none of the other points.) With subset R;, we
associate a hidden node with threshold ¢; , and with weights w; ,1,..., Wi pm
for the connections from the first m input nodes. Since among the subsets R; ,
at most h have cardinality m and at most 2" have cardinality less than m, this
construction can be done with at most h + 2" hidden nodes.

Thus far, we have specified the weights for the connections outgoing from
the first m input nodes. The connections from the remaining r input nodes
are weighted as follows: Let ¢ > 0 be a real number such that for every s; €
{s1,..., Sh.m} and every weight vector (w1, .., Wi pm,tLp):

If s; € Ry then |[(wipi,...,Wipm):Si—tip >¢€ .

According to the construction of the weight vectors in (), such an e clearly

exists. We define the remaining weights w; p m+1,- .-, Wipm+r by
0 ifjel;,
— ’ 2
Whpmetj {5 otherwise . (2)

We show that the hidden nodes thus defined satisfy the following:

Claim 3. If s;e; € Sy then there is exactly one hidden node with output value
2; if s;e; € So then all hidden nodes yield an output value less than 2.

According to () there is exactly one weight vector (wip1,..., Wi pm,tip),
where [ = g(i), that yields 0 on s;. If s;e; € S; then j € Ly(;), which together
with () implies that the weighted sum (Wi pm+1,-- ., Wipm+r) - € is equal to

0. Hence, this node gets the total weighted sum 0 and, applying 1 + 1/ cosh,
outputs 2. The input vector e; changes the weighted sums of the other nodes by
an amount of at most €. Thus, the total weighted sums for these nodes remain
different from 0 and, hence, the output values are less than 2.

On the other hand, if s;e; € Sp then j ¢ Ly(;) and the node that yields 0 on
s; receives an additional amount ¢ through weight w;, 4. This gives a total
weighted sum different from 0 and an output value less than 2. All other nodes
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fail to receive 0 by an amount of more than € and thus have total weighted sum
different from 0 and, hence, an output value less than 2. Thus Claim[3 is proven.

Finally to complete the proof, we do one more modification with the weight
vectors and define the weights for the ouptut node. Clearly, if we multiply all
weights and thresholds defined thus far with any real number a > 0, Claim
remains true. Since lim(1 + 1/cosh(y)) = 1 for y — —oco and y — oo, we can
find an o such that on every s;e; € S the output values of those hidden nodes
that do not output 2 multiplied together yield a value as close to 1 as necessary.
Further, since 1+ 1/ cosh(y) > 1 for all y, this value is at least 1. If we employ
for the output node a monomial with all exponents equal to 1, it follows from
the reasoning above that the output value of the network is at least 2 if and only
if s;e; € S1. This shows that S is shattered by N. O

Proof (Theorem[]). Due to the length restriction we omit the proof. The idea is
to take a set S’ constructed as in Lemma [ and, as shown there, shattered by a
network A/ with a monomial as output node and one hidden layer of summing
units that use the activation function 1+ 1/ cosh. Then S’ is transformed into a
set S and N into a network A such that for every dichotomy (S, S]) induced
by N’ on S’ the network A induces the corresponding dichotomy (Sp, S1) of S.

O

From Theorem [ we obtain the superlinear lower bound for constant depth
product unit networks. (We omit its derivation due to lack of space.)

Corollary 4. Let n,k be natural numbers where 16 < k < 2"/?2+2_ There is a
network of product and linear units with n input units, at most k hidden nodes

in two layers, and at most W = nk weights that has VC dimension at least
(W/32)log(k/16).

4 Linear Upper Bound for Single Product Units

We now show that the pseudo dimension, and hence the VC dimension, of a
single product unit is indeed at most linear.

Theorem 5. The VC dimension and the pseudo dimension of a product unit
with n input variables are both equal to n.

Proof. That n is a lower bound easily follows from the fact that the class of
monomials with n variables shatters the set of unit vectors from {0,1}". We
derive the upper bound by means of the pseudo dimension of a linear unit. This
is omitted here. a

Corollary 6. The VC dimension and the pseudo dimension of the class of
monomials with n input variables are both equal to n.
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5 Conclusions

‘We have established a superlinear lower bound on the VC dimension of constant
depth product unit networks. This result has implications in two directions:
First, it gives theoretical evidence of the finding that product unit networks em-
ployed in practice are indeed powerful analog computing devices. Second, the VC
dimension yields lower bounds for the complexity of learning in several models
of learnability, e.g., on the sample size required for low generalization error. The
result presented here can now directly applied to obtain such estimates. There
are, however, models of learning for which better bounds can be obtained in
terms of other dimensions, such as, e.g., the fat-shattering dimension and cover-
ing numbers. A topic for future research is therefore to determine good bounds
for the generalization error of product unit networks in these learning models.
We have also presented here a superlinear lower bound for networks with
one hidden layer of a new type of summing unit and have shown that VC and
pseudo dimension of single product units are linear. This raises the interesting
open problem to determine the VC dimension of product unit networks with one
hidden layer. Furthermore, we do not know if the lower bounds given here are
tight. Thus far, the best known upper bounds for networks with differentiable
activation functions are low order polynomials (degree two for polynomials, four
for exponentials). But they even hold for networks of unrestricted depth. The
issue of obtaining tight upper bounds for product unit networks seems therefore
to be closely related to a general open problem in the theory of neural networks.
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