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Abstract 

A product unit is a formal neuron that multiplies its input values instead of summing them. Fur- 
thermore, it has weights acting as exponents instead of being factors. We investigate the complexity 
of learning for networks containing product units. We establish bounds on the Vapnik-Chervonenkis 
(VC) dimension that can be used to assess the generalization capabilities of these networks. In par- 
ticular, we show that the VC dimension for these networks is not larger than the best known bound 
for sigmoidal networks. For higher-order networks we derive upper bounds that are independent of 
the degree of these networks. We also contrast these results with lower bounds. 

1 Introduction 
The most widely used type of neuron model in artificial neural networks is a summing unit which computes 
a weighted sum of its input values and applies an activation function that yields its output. Examples 
of this neuron type are the threshold and the sigmoidal unit. There is some agreement among neural 
network researchers that the summing operation only partially describes the way how biological neurons 
compute. A simple and obvious extension is to  allow multiplicative interactions among neurons. There is 
sufficient evidence from neurobiology showing that multiplicative-like operations are an essential feature 
of single neuron computation (see, e.g., Koch and Poggio, 1992; Mel, 1994). 

A neuron model that uses multiplication of input values as a basic operation is the higher-order 
neuron, also known as sigma-pi unit. Higher-order neural networks have been successfully used in many 
learning applications (see, e.g., Lee et al., 1986; Giles and Maxwell, 1987; Perantonis and Lisboa, 1992). 
A problem that is well known with higher-order neurons is the combinatorial explosion of higher-order 
terms. To overcome this deficiency Durbin and Rumelhart (1989) introduced a new neuron model that is 
able to  learn higher-order terms: The product unit multiplies its weighted input values and the weights 
are variable exponents. Product unit networks were further studied by Leerink et al. (1995) and found 
to  be computationally more powerful than sigmoidal networks in many learning applications. 

Here we investigate the complexity of learning for networks containing product units. In particular, 
we derive bounds for the sample complexity in terms of the Vapnik-Chervonenkis (VC) dimension. The 
VC dimension is a combinatorial parameter that  is well known to yield asymptotically tight bounds on 
the number of examples required for training neural networks to generalize well (see, e.g., Haussler, 1992; 
Maass, 1995; Anthony and Bartlett, 1999). We show for several types of networks containing product 
units that the VC dimension can be bounded by a small polynomial in terms of the number of weights 
and the number of units. Furthermore, we establish bounds for networks of higher-order neurons that 
do not involve any bound on the degree. Bounds previously shown for higher-order networks all require 
that the degree is restricted (Anthony, 1993; Bartlett et al., 1998; Goldberg and Jerrum, 1995). We also 
derive some lower bounds for product unit networks. 
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The paper is organized as follows: In the next section we give formal definitions of product unit 
networks and the VC dimension. Section 3 contains the main results which are upper bounds for various 
types of networks containing product units. Finally, we present lower bounds and conclude with some 
remarks. 

2 Neural Networks with Product Units 
We consider feedforward networks containing product units, where a product unit has the form 

Here x1 , . . . , x p  are the input variables and w1,. . . , wp are the weights of the unit. This type of unit has 
been introduced by Durbin and Rumelhart (1989) to  take into account possible nonlinear interactions 
among neurons which are not modeled by standard summing units. Product units are used in networks 
where they occur together with other types of units, such as threshold or sigmoidal units. Both the 
threshold and the sigmoidal unit are summing units which calculate a weighted sum WO + w1x1+. . . wpxp 
of their inputs and apply a so-called activation function to  this sum. The threshold unit uses the sign 
function with sign(y) = 1 if y 2 0, and 0 otherwise, whereas the standard sigmoidal unit employs the 
logistic function a(y) = 1/(1+ e-y) as activation function. Another frequently used summing unit is the 
linear unit which simply outputs the weighted sum. 

The standard architecture containing product units is a network with one hidden layer of product 
units and one sigmoidal output unit. Experiments by Durbin and Rumelhart (1989) and Leerink et al. 
(1995) showed that this architecture is sufficiently powerful t o  solve many well-studied problems using less 
neurons than networks with summing units. Theoretical results also show that networks with one hidden 
layer of product or sigmoidal units can approximate any continuous function arbitrarily well (Leshno 
et al., 1993). It is obvious that two subsequent layers of product units can be replaced by one layer. 
Similarly it can be seen that a network consisting solely of product units is not more powerful than a 
single product unit. There may be reasons, however, to  use pure product unit networks instead of a single 
product unit, for instance when the degree of multiplicative interaction of the product units, i.e. their 
fan-in, is restricted by some value smaller than the number of inputs of the network. Here we consider 
networks that may consist of summing and product units and we do not impose any restriction on the 
fan-in of these units. Therefore, we may always suppose that a product unit feeds its outputs to  some 
summing units. This allows it also to  assume without loss of generality that each product unit has some 
additional weight by which its output value is multiplied. In summing units this weight is known as the 
bias or threshold. 

We now give the definition of the VC dimension. We call a partition of a set S E R" into two disjoint 
subsets (SO,  SI)  a dichotomy. The dichotomy (So, SI) is said t o  be induced by a set 3 of functions that 
map Rn to  ( 0 , l )  if there is some f E F such that f(So) C_ (0) and {(SI) (1). Further, S is shattered by 
3 if 3 induces all dichotomies of S.  The Vapnik-Chervonenkis (VC) dimension of 3, denoted VCdim(3) 
is the largest number m such that there exists a set of cardinality m that  is shattered by 3. 

Given some architecture with n input neurons and one output neuron we associate with it a set of 
functions mapping Rn t o  (0 , l ) .  This is the set of functions obtained by assigning all possible values to  the 
parameters of the architecture. If the output neuron is a threshold unit, the functions are (0, 1)-valued 
as required in the definition of the VC dimension. To comply with the definition in the case that the 
output unit computes a real-valued function we require that the output of the network is thresholded at 
some fixed value, say 112. According t o  known results about the VC dimension we may always assume 
without loss of generality that the output unit is a linear unit. We also investigate the VC dimension of 
sets of networks. In this case the corresponding set of functions is obtained simply by taking the union 
of the function sets which are associated with each particular network. 

Some words are necessary concerning the input domain of product units. A negative number raised 
to  some non-integral power yields a complex number and has no meaning in the reals. A method how 
to cope with this case was introduced by Durbin and Rumelhart (1989) and also employed by Leerink 
et al. (1995). They propose to  discard the imaginary component and use only the real part for further 
processing. This, however, implies that  the product unit becomes one that  uses the cosine activation 
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function which has tremendous consequences for the VC dimension. It is known that the VC dimension 
of a single neuron that uses the sine or cosine activation function is infinite (Sontag, 1992; Anthony and 
Bartlett, 1999). Therefore, no finite VC dimension bounds exist in general for networks containing such 
units. We show in the following that product unit networks that operate in the nonnegative domain of 
the reals nevertheless have a VC dimension that is comparable to networks of sigmoidal gates. Thus, if no 
additional precautions are taken to guarantee low VC dimension, product unit networks should operate in 
the nonnegative domain only, which can be achieved, e.g., by transforming the input vectors. In this paper 
we assume that the inputs to  product units are all nonnegative, i.e. from the set I+ = {z E I : z 2 0). 

3 Upper Bounds 
First we consider the most widely used architecture, i.e. networks with one hidden layer. 

Theorem 1. Let N be a network wzth one hzdden layer of h product unzts and W wezghts. Then the VC 
dzmenszon of N restncted to I+ 2s at most (hW)2 + 8hWlog(3W). 

Proof. Let S be an arbitrary finite subset of (I+)" where n is the number of input units of N .  We 
proceed as follows: First we derive in terms of n, h and the cardinality of S an upper bound for the 
number of dichotomies that N induces on S. Then assuming that S is shattered we obtain the bound on 
the VC dimension. The main idea is to  write the function of n/ as a polynomial involving exponentials of 
the network parameters and then to  use a bound due to Karpinski and Macintyre (1997) on the number 
of connected components arising from sets of such polynomials. 

Let m be the cardinality of S. When applied to some input vector (SI,. . . , s,) E S the network N 
results in a function of its parameters that can be written as a sum of terms where each term has the form 
vs;31 . . . ~ 2 ~ .  Here v is the corresponding weight of the output unit that is associated with the product 
unit. The term is 0 if one of the s,, , .. . , slP is 0. We intend to  write each non-zero term as an exponential 
of a linear function in the network parameters. To accomplish this, we use an idea from Karpinski and 
Macintyre (1997) and divide the parameter domain for each output unit weight v into three components 
corresponding to  v < 0, v = 0, and v > 0. Thus we can switch to  new parameters d = In(-v) if v < 0, 
U' = v if v = 0, and d = lnv if v > 0. Having this done for all output unit weights we obtain a partition 
of the parameter domain of N into 3h components within each of which we are now able to  write every 
product unit term as 

ew'+w,, In s,, + +w3, 

if U' # 0 and s,, , . . . , s a p  # 0; otherwise the term is 0. The partition of the parameter domain into 3h 
components obtained so far does not depend on the specific choice of (SI , .. . , s,) E S. In case that some 
sa is 0, every product unit containing sa outputs 0. This is taken into account by those components where 
the corresponding v is 0. Therefore, it suffices to  consider the same 3h components for all elements of S. 

Each of these connected components may be further partitioned due to  the fact that different di- 
chotomies of S can be induced using suitable values for the remaining parameters. Anthony and Bartlett 
(1999) showed that if a set of functions .F on 1 variables is closed under addition of constants and has 
the so-called solution set components bound B, then the number of dichotomies induced on a set of 
cardinality m is at most B(em/l)' for m 2 E. Note that the set of functions arising from Af is closed 
under addition since the output unit is a linear unit with bias. According to  Karpinski and Macintyre 
(1997) for polynomials involving exponentials that are linear in the parameters the bound B satisfies 

B < - 2q'(q'-1)/2 * d' . (dE + E + l)'[E(dE + E + l)Iq' 

where q is the number of exponentials and d is the degree of the polynomials. For N we have q = h and 
d = 1 so that we can simplify this to  

B < - 2hI(hl-1)/2 . (21 + l)(h+l)' . Eh'. 

If S is shattered there must be at least 2m connected components implying that 2m 5 B(em/E)'3h. Using 
the above inequality for B and taking logarithms we have 

m 5 hZ(h1- 1)/2 + (h + 1)l log(21+ 1) + hllogl + 1 log(em/l) + hlog3. 
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Employing the well-known 
1999) we finally derive that 
W of weights we have that 

estimate 1 logm 5 m / 2  + 1 Iog(2l/(e ln2)) (see, e.g., Anthony and Bartlett, 
m 5 (h1)2 +8hl log(31). Since the number 1 of variables is equal t o  the number 

0 the cardinality of S is at most (hW)' + 8hW log(3w) as stated. 

Since a network with n input units and one hidden layer of h product units has h + 1 weights at 
the output unit and hn weights at the hidden units we can now, as it is common for networks with one 
hidden layer, give a bound on the VC dimension also in terms of the number of input units. 

Corollary 2. Let N be a network with n input units restricted to IW' and one hidden layer of h product 
units. Then VCdim(n/) 5 (h2(n + 1)  + 1 5 ) ~  + 8 ( h 2 ( n  + 1) + h)  log(3h(n + 1)  + 3) .  

In some learning applications it is common not t o  fix the number of neurons in advance but to  let the 
networks grow. In this case there is no single but a variety of architectures resulting from the learning 
algorithm. It  is possible to accomodate all these architectures in one large network so that the VC 
dimension can be bounded in terms of the latter network. However, taking into account the constraint 
underlying the growth of the network often leads to better bounds. In the following we assume that the 
growth is limited by a bound on the fan-out of the input units. Such a sparse connectivity has been 
suggested, e.g., by Lee et al. (1986). 

Theorem 3. Let P be a class of networks with n input units restricted to IWf and one hidden layer of 
product units such that every input unit has fan-out at most r .  Then VCdim(P) 5 ( r n ( 2 r n  + 1 ) ) 2  + 
8rn(2rn + 2)  log(6rn + 3).  

Proof. (Sketch.) Each network in P has at most rn  hidden units and 2rn + 1 weights. Taking into 
account that class P contains at most (rn)." networks we obtain the bound then by counting the number 

0 

A higher-order sigmoidal unit computes by applying the standard sigmoidal function to  a weighted 
sum of monomials. A monomial is a particular product unit where the exponents are restricted t o  the 
integers. Schmitt (1999) established bounds for classes of higher-order neurons with restricted input 
fan-out. The upper bound given there required a bound on the maximum exponent occurring in the 
monomials. The following result is worse in terms of r and n, but still polynomial; i t  shows, however, 
that the VC dimension is finite even when there is no bound on the exponents. 

Theorem 4. Let ?i be a class of higher-order sigmoidal units on n inputs in R such that each input unit 
has fun-out at most r .  Then VCdim(X) 5 (rn (2rn  + 1) )2  + Srn(2rn + 2) log(6rn + 3). 

Proof. (Sketch.) We have to  take negative inputs into account. A negative input modifies the network 
function (in terms of its parameters) only if the exponent of the input variable is odd. In this case the 
sign of the product unit changes. In a higher-order sigmoidal unit with input fan-out at most r there are 
at most r n  hidden units. Therefore, each element of S gives rise to  at most Z r n  functions with different 
signs of the product units. Thus, using m2." in place of m in the proof of Theorem 1 we get the claimed 
result. 0 

We finally consider arbitrary feedforward architectures. The following result shows that the bound 
for sigmoidal networks in Theorem 8.13 of Anthony and Bartlett (1999) remains valid if the network 
contains both sigmoidal and product units. 

Theorem 5. Let N be a neural network of k units where each unit is a sigmoidal or a product unit 
and let W be the number of weights. Suppose that the product units only receive values from U%+. Then 
VCdim(N) 5 ( k W ) 2  + l l k W l o g ( 1 8 k 2 W ) .  

Proof. (Sketch.) We argue as in the proof of Theorem 8.13 of Anthony and Bartlett (1999) and use the 
fact that  a product unit contributes to  the number of dichotomies not more than a sigmoidal unit. 0 

From this result we obtain a bound for networks consisting of higher-order sigmoidal units. Here we 
use that the number of product units in such a network cannot be larger than the number of weights. 

Corollary 6. Let N be a network of k higher-order sigmoidal neurons and let W be the number of weights. 
Then the VC dimension ofN restricted to R+ is at most ( k W +  W2)2+l l (k+W)Wlog(18(k+W)2W).  

of dichotomies arising from these networks in analogy to Theorem 1. 
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4 Lower Bounds 
For computations on R+ a product unit is at least as powerful as a monomial. Therefore, lower bounds 
on the VC dimension for networks of monomials or higher-order units imply lower bounds for product 
unit networks. Koiran a.nd Sontag (1997) constructed networks consisting of linear and multiplication 
units with VC dimension quadratic in the number of weights. Hence, Corollary 1 of Koiran and Sontag 
(1997) implies the following: 

Corollary 7. For every W there is a network with O ( W )  weights that consists only of linear and product 
units and has VC dimension W2. 

Bartlett et al. (1998) generalized this result and obtained a lower bound for layered sigmoidal networks 
in terms of the number of weights and the number of layers. Using their method and the construction of 
Koiran and Sontag (1997) we get the following bound: 

Corollary 8. For every L and suficiently large W there is a network with L layers and O(W)  weights 
that consists only of linear and product units and has VC dimension at least LL/2] LW/2J. 

Finally, we employ a bound established in Schmitt (1999) to  show that there is a super-linear lower 
bound on the VC dimension for a class of product unit networks with one hidden layer. 

Corollary 9. The class of networks with one hidden layer of product units and n input units, where each 
input unit has fan-out at most 1, has VC dimension n(n logn). 

5 Conclusions 
We have studied the generalization capabilities of neural networks containing product units as compu- 
tational elements. The results were given in terms of bounds for the VC dimension. These bounds can 
now be used to estimate the number of examples required t o  obtain low generalization errors in product 
unit networks. All upper bounds we presented are small polynomials in terms of the relevant parameters. 
In particular, the upper bound for networks of product and sigmoidal units is not larger than the best 
known bound for purely sigmoidal networks. Thus, from the point of view of the sample complexity there 
seem to  be no disadvantages when replacing summing by product units. Although there has still much 
research to be done regarding algorithms for learning in product unit networks, the results shown here 
are an encouraging step forward. 
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