
Perceptrons with Polynomial Post-Processing

Louis Sanzogni’, Richard F. Bonner, Ringo Chan
School of Information Systems and Management Science,

Griffith University, Nathan 414 1, Australia, and,
John A. Vaccaro, Physics Department, The Open University,

WaSton Hall. Milton Keynes MK76AA, U. K.

Abstract

We introduce tensor product neural networks, composed
of a layer of univariate neurons followed by U net of
polynomial post-processing. We look at the general
approximation problem by these networks observing in
particular their relationship to the Stone- Weierstrass
theorem for uniform function algebras. The
implementation of the post-processing as a two-layer
network with logarithmic and exponential neurons leads
to potentially important ‘generalised’ product networks,
which however require a complex approximation theory
of Miintz-Szasz-Ehrenpreis type. A back-propagation
algorithm for product networks is presented and used in
three computational experiments. In particular,
approximation by a sigmoid product network is compared
to that of a single layer radial basis network, and a
multiple layer sigmoid network.

Keywords neural network approximation,
polynomial post-processing, product unit

Introduction The general idea of multiplication in neural
networks seems to go back to Durbin and Rumelhart [6] ,
and has since been successfully employed on occasion, for
example, in the context of engineering implementation
[3,5] or robotics [4]. Note, however, that these applications
use multiplication for local pre-processing (the ‘sigma-pi’
units) in the perceptron. Presently, on the other hand, we
consider multiplication in the perceptron for post-
processing. The present note and its expanded version [7]
seem to be the first to consider general approximation
properties of neural networks with multiplication. In what
follows, all neural networks are standard feed-forward with
no a priori restriction on weights or neurons. Furthermore,
networks are identified with the classes of functions they
implement as the weights range over the reals, and the
notions ‘network’ and ‘function space’ are used
interchangeably when there is no risk of confusion.

Tensor product: polynoinial post-processing Let S be a
finite set of univariate neurons, each identified with its
activation function, let N be a positive integer, and denote
by P(S)=PN(S) the standard N-variate (infinite) perceptron
on S. By definition, P(S) is the linear hull of the set
S o A f n of affine forms on RN composed with functions in
S. It is only natural to also consider the tensor algebra A(S)
of P(S), which is the smallest function algebra containing
S o A f n . A network implementing A(S) will be called the
(tensor) product network on S. It is clear that A(S) is in
effect the polynomial algebra in the continuum of variables
S oAfSN, so one may think of the product network as the
extension of the perceptron by polynomial post-
processing. Recall that multiplication can be implemented
in a neural network, cf [l], via the exponential
isomorphism x + exp(x) of the additive and the
multiplicative structures on the real line. Algebraic
monomials in n variables are then realised as ‘product
units’, each consisting of a network of n logarithmic and
one exponential neurons, the partial powers in the
monomial corresponding to the weights of the intermittent
network connections. Recall also, however, that weights
with values other than positive integers then yield
‘generalised’ monomials and, if not all function in S are
Strictly positive, care must be taken that the logarithm is
well-defined. We then talk about generalised polynomial
post-processing and generalised tensor product network.

Approximation Let X be a linear topological function
space on RN containing the set SoAffN. Much of the
known approximation theory for the perceptron is about
approximating elements of X by nested exhausting subsets
Pk of P(S), k=l, 2, ... , typically defined by vanishing
weight conditions. If P(S) is dense in X, one concludes the
‘universal approximation property’ of P(S) in X “any
function in X may be approximated with any accuracy by a
sufficiently large perceptron”. Questions of density of
linear subspaces are most classical in linear functional
analysis [SI, so ‘universal approximation

1 Email: cadsanzo@griffin.itc.gu.edu.au Fax: + 617 3875 7750

472
0-8186-7686-8196 $05.00 0 1996 IEEE

theorems’ for the perceptron are readily fabricated. The
situation is analogous if X is a topological function algebra
on containing SoAfSN, which is the setting for a
Stone-Weierstrass type approximation theory. For
example, by the classical (real) Stone-Weierstrass theorem
for uniform algebras [8] , given a compact K in RN, the
restriction of A(S) to K is dense in the uniform algebra
C(K) of all continuous functions on K if and only if
SoAffN separates points in K. Consequently, the tensor

product network enjoys the ‘universal approximation
property’ for continuous functions if and only if ut least
one of its neurons is non-constant. We only make three
observations. First, obviously, nothing is lost in the Stone-
Weierstrass theorem if the weights are U priori restricted
yielding a finite K-separating subset of S 0AffN . This has
interesting geometric interpretations. Second, results of the
Bernstein-Jackson type in polynomial approximation
should give bounds on the size of the approximating
networks. Last, we note that the situation for the
generalised tensor product networks is harder, calling for
an approximation theory of the Miintz-Szasz-Ehrenpreis
kind. Though complex, this case is interesting for
neurocomputing by analogy with known interpretations of
the trigonometric perceptron as a generalisation of the
classical Fourier decomposition in time series analysis. See
also the computational experiments reported in [l] .

Learning Back-propagation in the product network is
easy. Assume, for simplicity, that the network consists of 1
inputs linked to L processing units, in turn linked to 0
outputs. Every processing unit contains a finite number
neurons, each with the activation function f , and
implements their tensor product. The processing units and
the ‘hidden’ neurons in the network are indexed by
integers, say, 1 and j , respectively, whereby j ranges
between some values P(1) and P(l+I)-l for the neurons
in the Z‘th processing unit. The output of the network is

1. P(l+l\-l 1

as expressed in terms of its input vector R , with the index
o ranging from one to 0, and the Ups and B’s
generically denoting the weight and shift parameters,
respectively. The training set consists of pairs [R ~ , T~ 1
where R k is the k’th input vector to the network, y k is the
corresponding target output, and k ranges from one to
some K. The global error E is defined as

K
E 1 =------(net, l o - k -To k 2) .

k=l o=l

The original back-propagation algorithm [6] implements
the method of gradient descent: the change AV to the
vector V of the network parameters W,?, B , B in each

iteration is proportional to the gradient of E with respect
to V. In the Dresent case, this computes as follows:

K -k
ABj =-&8; AZO =-&x6, , where

k=l k=l
I

netfl =CW~,H~ + B ~ ,
i=l

PU’+l>-l

-k -k 6, =2(neto - T :) , and 1’ is such that
P(Z’) 5 j I P(l’ + 1) . The ‘step size’ E is iteratively
adjusted.

Numerical examples The above was implemented in C on
a SUN4/630, and tested in applications, see [7] for
references. We illustrate the observed learning behaviour.
For easy comparison with the radial basis network and the
multilayer perceptron, target functions in the first two
examples below are as in [2], where the latter two networks
are compared in local learning model. All hidden neurons
in the product network have the sigmoid activation

1 function f(x) = - .
1 + e-2x

Example 1. Target function g(x, y) = ue-b(xz+y2) in the
unit square in the plane, two inputs and one output, three
neurons in the single product unit. The target function is
sampled on a 61x61 grid. After 1000 iterations, the global
error is of the order of 0.02%. The morul: Whatever a
gaussian network can learn, a product network can learn
too.

Example 2. Target function g(rcost,rsint) = sin(r)/r sin(t-
7d2), cf [2]. Trial and error shows that a good initialisation
for this type of function is the alternating sum of
characteristic functions of concentric rings regularly
spaced around the origin. Ten such rings are used. Radial
error weighting is applied to compensate for the singularity
at the origin. The network trains for 10,000 epochs, but
reasonable approximation is obtained already after 20
epochs. The learning rate is compared with that reported in
[2] in Figure 1. The error of the product network goes
down steadily beyond where the constrained 2-layer
perceptron stabilises, with roughly half the error
throughout learning. m e morul: The product network can
effectively learn singular functions.

473

I I I
4 Id lo' I OB In

Trdining epochhr

A : Constrained Multi-Layer Perceptroil
B : Single-Layer Radial Basis Network
C : Sigmoid Product Network

Figure 1: Comparison of networks.

Exumple 3. The target function is the characteristic
function of a regular octahedron in the plane. A product
network with thirteen 6-product units is initiated with a
uniform 'honeycomb'. After a very large (!) number of
iterations, the network learns the target function essentially
exactly. 7he moral: The product network learns a function
in its function space exactly starting from a uniform lattice-
like initial state. Problems: (1) how generic is this
phenomenon? (2) speed-up the convergence!

Cllosing coininents The product network is a natural
generalisation of the perceptron, and holds promise as a
general purpose approximation tool. Its systematic study
should preferably be conducted in a framework of some
learning theory (Valiant's, for example) as it is easy to see
that the VC dimension of a full product network A(S) is in
general infinite. The generalised polynomial case seems,
furthermore, to have both computational and mathematical
interest. Computational experimentation is advocated, in
particular in geometric applications such as image
processing: observe, for example, the piece-wise linear
geometry underlying the product extension of the binary
sigmoid perceptron, and the potential for localised
learning. Finally, we mention the possibility of parallel
algorithmic implementation: the product network operates
much like the single-layer perceptron, in contrast with the
multi-layer perceptron where the processing is nested.

REFERENCES

Acknowledgment The authors are grateful to an
anonymous referee for pointing out the recent work [3-51
involving sigma-pi units.

R. Durbin and D. E. Rumelhart, Product units with
trainable exponents and multi-layer networks, pp. 15-
26 in: Fogelman Soulie, F. and J. Kerault, eds.,
Neurocomputing: Algorithms, Architectures and
Applications, Springer-Verlag, 1990.

S. Geva and J. Sitte, Constrained gradient descent, pp.
76-79 in: Proc. ACNN'94.

K.N.Gurney, Training nets of hardware realizable
sigma-pi units, Neural Networks 5 (1992) 289-303.

B. W. Mel, MURPHY: a robot that learns by doing,
NIPS 2, American Inst. Physics, 1988.

R. Neville and T.J. Stonham, Generalization in sigma-
pi networks, Connection Science 7 (1995) 29-59.

D.E.Rumelhart, J.C.McClelland, eds., Parallel
Distributed Processing, I, MIT Press, 1986.

L. Sanzogni, R.F.Bonner, R.Chan and J.A.Vaccaro,
Tensor product neural networks: perceptrons with
polynomial post-processing, Report ISMS-R12-96,
Griffith University, Australia, 1996.

K. Yosida, Functional Analysis, Springer-Verlag, 5th
ed., 1978.

474

