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Abstract 

We introduce tensor product neural networks, composed 
of a layer of univariate neurons followed by U net of 
polynomial post-processing. We look at the general 
approximation problem by these networks observing in 
particular their relationship to the Stone- Weierstrass 
theorem for  uniform function algebras. The 
implementation of the post-processing as a two-layer 
network with logarithmic and exponential neurons leads 
to potentially important ‘generalised’ product networks, 
which however require a complex approximation theory 
of Miintz-Szasz-Ehrenpreis type. A back-propagation 
algorithm for product networks is presented and used in 
three computational experiments. In particular, 
approximation by a sigmoid product network is compared 
to that of a single layer radial basis network, and a 
multiple layer sigmoid network. 
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Introduction The general idea of multiplication in neural 
networks seems to go back to Durbin and Rumelhart [6] ,  
and has since been successfully employed on occasion, for 
example, in the context of engineering implementation 
[3,5] or robotics [4]. Note, however, that these applications 
use multiplication for local pre-processing (the ‘sigma-pi’ 
units) in the perceptron. Presently, on the other hand, we 
consider multiplication in the perceptron for post- 
processing. The present note and its expanded version [7] 
seem to be the first to consider general approximation 
properties of neural networks with multiplication. In what 
follows, all neural networks are standard feed-forward with 
no a priori restriction on weights or neurons. Furthermore, 
networks are identified with the classes of functions they 
implement as the weights range over the reals, and the 
notions ‘network’ and ‘function space’ are used 
interchangeably when there is no risk of confusion. 

Tensor product: polynoinial post-processing Let S be a 
finite set of univariate neurons, each identified with its 
activation function, let N be a positive integer, and denote 
by P(S)=PN(S) the standard N-variate (infinite) perceptron 
on S. By definition, P(S) is the linear hull of the set 
S o A f n  of affine forms on RN composed with functions in 
S. It is only natural to also consider the tensor algebra A(S) 
of P(S), which is the smallest function algebra containing 
S o A f n  . A network implementing A(S) will be called the 
(tensor) product network on S. It is clear that A(S) is in 
effect the polynomial algebra in the continuum of variables 
S oAfSN, so one may think of the product network as the 
extension of the perceptron by polynomial post- 
processing. Recall that multiplication can be implemented 
in a neural network, cf [l], via the exponential 
isomorphism x + exp(x) of the additive and the 
multiplicative structures on the real line. Algebraic 
monomials in n variables are then realised as ‘product 
units’, each consisting of a network of n logarithmic and 
one exponential neurons, the partial powers in the 
monomial corresponding to the weights of the intermittent 
network connections. Recall also, however, that weights 
with values other than positive integers then yield 
‘generalised’ monomials and, if not all function in S are 
Strictly positive, care must be taken that the logarithm is 
well-defined. We then talk about generalised polynomial 
post-processing and generalised tensor product network. 

Approximation Let X be a linear topological function 
space on RN containing the set SoAffN. Much of the 
known approximation theory for the perceptron is about 
approximating elements of X by nested exhausting subsets 
Pk of P(S), k=l, 2, ... , typically defined by vanishing 
weight conditions. If P(S) is dense in X, one concludes the 
‘universal approximation property’ of P(S) in X “any 
function in X may be approximated with any accuracy by a 
sufficiently large perceptron”. Questions of density of 
linear subspaces are most classical in linear functional 
analysis [SI, so ‘universal approximation 
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theorems’ for the perceptron are readily fabricated. The 
situation is analogous if X is a topological function algebra 
on containing SoAfSN, which is the setting for a 
Stone-Weierstrass type approximation theory. For 
example, by the classical (real) Stone-Weierstrass theorem 
for uniform algebras [ 8 ] ,  given a compact K in RN, the 
restriction of A(S) to K is dense in the uniform algebra 
C(K) of all continuous functions on K if and only if 
SoAffN separates points in K. Consequently, the tensor 

product network enjoys the ‘universal approximation 
property’ for continuous functions if and only if ut least 
one of its neurons is non-constant. We only make three 
observations. First, obviously, nothing is lost in the Stone- 
Weierstrass theorem if the weights are U priori restricted 
yielding a finite K-separating subset of S 0AffN . This has 
interesting geometric interpretations. Second, results of the 
Bernstein-Jackson type in polynomial approximation 
should give bounds on the size of the approximating 
networks. Last, we note that the situation for the 
generalised tensor product networks is harder, calling for 
an approximation theory of the Miintz-Szasz-Ehrenpreis 
kind. Though complex, this case is interesting for 
neurocomputing by analogy with known interpretations of 
the trigonometric perceptron as a generalisation of the 
classical Fourier decomposition in time series analysis. See 
also the computational experiments reported in [ l ] .  

Learning Back-propagation in the product network is 
easy. Assume, for simplicity, that the network consists of 1 
inputs linked to L processing units, in turn linked to 0 
outputs. Every processing unit contains a finite number 
neurons, each with the activation function f ,  and 
implements their tensor product. The processing units and 
the ‘hidden’ neurons in the network are indexed by 
integers, say, 1 and j ,  respectively, whereby j ranges 
between some values P(1) and P(l+I)-l for the neurons 
in the Z‘th processing unit. The output of the network is 

1. P(l+l\-l 1 

as expressed in terms of its input vector R , with the index 
o ranging from one to 0, and the Ups  and B’s 
generically denoting the weight and shift parameters, 
respectively. The training set consists of pairs [ R ~ ,  T~ 1 
where R k  is the k’th input vector to the network, y k  is the 
corresponding target output, and k ranges from one to 
some K. The global error E is defined as 

K 
E 1 =------(net, l o -  k -To k 2  ) . 

k=l o=l 

The original back-propagation algorithm [6] implements 
the method of gradient descent: the change AV to the 
vector V of the network parameters W,?, B , B  in each 

iteration is proportional to the gradient of E with respect 
to V. In the Dresent case, this computes as follows: 

K -k 
ABj =-&8; AZO =-&x6, , where 

k=l k=l 
I 

netfl =CW~,H~ + B ~ ,  
i=l 

PU’+l>-l 

-k  -k 6, =2(neto - T : ) ,  and 1’ is such that 
P(Z’) 5 j I P(l’ + 1) . The ‘step size’ E is iteratively 
adjusted. 

Numerical examples The above was implemented in C on 
a SUN4/630, and tested in applications, see [7] for 
references. We illustrate the observed learning behaviour. 
For easy comparison with the radial basis network and the 
multilayer perceptron, target functions in the first two 
examples below are as in [2], where the latter two networks 
are compared in local learning model. All hidden neurons 
in the product network have the sigmoid activation 

1 function f(x) = - . 
1 + e-2x 

Example 1. Target function g(x, y) = ue-b(xz+y2) in the 
unit square in the plane, two inputs and one output, three 
neurons in the single product unit. The target function is 
sampled on a 61x61 grid. After 1000 iterations, the global 
error is of the order of 0.02%. The morul: Whatever a 
gaussian network can learn, a product network can learn 
too. 

Example 2. Target function g(rcost,rsint) = sin(r)/r sin(t- 
7d2), cf [2]. Trial and error shows that a good initialisation 
for this type of function is the alternating sum of 
characteristic functions of concentric rings regularly 
spaced around the origin. Ten such rings are used. Radial 
error weighting is applied to compensate for the singularity 
at the origin. The network trains for 10,000 epochs, but 
reasonable approximation is obtained already after 20 
epochs. The learning rate is compared with that reported in 
[2] in Figure 1. The error of the product network goes 
down steadily beyond where the constrained 2-layer 
perceptron stabilises, with roughly half the error 
throughout learning. m e  morul: The product network can 
effectively learn singular functions. 
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Figure 1: Comparison of networks. 

Exumple 3. The target function is the characteristic 
function of a regular octahedron in the plane. A product 
network with thirteen 6-product units is initiated with a 
uniform 'honeycomb'. After a very large (!) number of 
iterations, the network learns the target function essentially 
exactly. 7he moral: The product network learns a function 
in its function space exactly starting from a uniform lattice- 
like initial state. Problems: (1) how generic is this 
phenomenon? (2) speed-up the convergence! 

Cllosing coininents The product network is a natural 
generalisation of the perceptron, and holds promise as a 
general purpose approximation tool. Its systematic study 
should preferably be conducted in a framework of some 
learning theory (Valiant's, for example) as it is easy to see 
that the VC dimension of a full product network A(S) is in 
general infinite. The generalised polynomial case seems, 
furthermore, to have both computational and mathematical 
interest. Computational experimentation is advocated, in 
particular in geometric applications such as image 
processing: observe, for example, the piece-wise linear 
geometry underlying the product extension of the binary 
sigmoid perceptron, and the potential for localised 
learning. Finally, we mention the possibility of parallel 
algorithmic implementation: the product network operates 
much like the single-layer perceptron, in contrast with the 
multi-layer perceptron where the processing is nested. 
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