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Abstract 
Radial Basis  Funct ion ( R B F )  network i s  a n  e f i c i e n t  

func t ion  approximator. Theoretical researches focus o n  
the capabilities of the network t o  reach a n  optimal so- 
lution. Unfortunately, f e w  results concerning the de- 
sign and training of the network are available. W h e n  
dealing with a specific application, the performances of 
the network dramatically depend o n  the number of neu-  
rons and o n  the distribution o f  the hidden neurons in 
the input  space. Generally, the network resulting f r o m  
learning applied t o  a predetermined architecture, i s  ei- 
ther  insu f ic ien t  or over-complicated. In this study, we 
focus o n  genetic learning f o r  the R B F  network applied 
to  prediction of chaotic t i m e  series. The centers and 
widths of the hidden layer neurons basis func t ion  - de- 
fined as the barycenter and distance between two input  
patterns - are coded in to  a chromosome. I t  i s  shown 
that  the basis funct ions which are also coded as  a pa- 
ramater  of the neurons provide a n  additional degree of 
freedom resulting in a smaller  optimal network. A di- 
rect inversion of matr ix  provides the weights between 
the hidden layer and the output  layer and avoids the 
risk of getting stuck in to  a local m i n i m u m .  T h e  per- 
formances of a network wi th  Gaussian basis func t ions  
i s  compared with those of a network with genetic deter- 
minat ion  of the basis func t ions  o n  the Mackey-  Glass 
delay differential equation. 

1. In t roduct ion  

When dealing with approximation and prediction by 
neural networks, one of the most common model choice 
is the multilayer perceptron. It has been shown that 
this network is a special case of the generalized radial 
basis function [4]. This class of networks has been pro- 
ven to  be capable of universal approximation [4]. Fu- 
thermore, a solid background of mathematical studies 
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is available on the problem of denseness, uniqueness 
of interpolation and convergence rate. Since predic- 
tion is a special case of approximation, i.e. a mapping 
from a continuous input space onto a continuous out- 
put space applied outside the learning regions, RBF 
networks can be trained on those classes of applica- 
tions and reach optimum performances provided that 
the network are carefully designed. Overfitting of the 
data leads to  poor generalization and long running time 
while a network with an underestimated number of 
neurons will not reach convergence. Most RBF lear- 
ning paradigms train sequentially the hidden layer then 
the output layer. While learning of the output layer is 
rather straightforward, the hidden layer must be ca- 
refully designed to1 achieve good performances. We 
propose a global genetic designing and learning of the 
hidden layer. The neurons are coded as a weighted 
combination of two training patterns associated to an 
individual activation function whose width is also de- 
termined genetical1,y. Individual activation function co- 
ded for each hidden neuron is compared to  a common 
Gaussian activation of those neurons on a benchmark 
problem. 

2. Radia l  Basis  Function 

The RBF network is a two-stage neural network im- 
plementing a mapping E : R" - RP. Its architecture 
is presented in figure 1. Each neuron i of the first layer 
consists of a center pi and width ui. The euclidean 
distance between the input signal S and the center of 
the neuron is first evaluated, then an activation func- 
tion - also known as a basis function (BF) - q5 such as 
the Gaussian function is applied. Several authors have 
proposed other functions among which six functions are 
used in our genetic algorithm: 
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Figure 1: Architecture of an RBF network 

e the Gaussian function: 

$ ( K )  = e( K 2  / P 2 )  

0 the piecewise linear function: 

4 ( K )  = K 

0 the cubic approximation: 

3 4 ( K )  = K 

the thin plate spline: 

$ ( K )  = K2 log(&) 

0 the multiquadratic function: 

2 1/2 
4 ( K )  = (2 + P ) 

e the inverse multiquadratic function: 

2 -1/2 4(K) = ( K 2  + P 1 

The outputs of the hidden layer are combined li- 
nearly by the neurons of the second layer according to: 

n 

f j ( s )  = ~0 + CX,~Q (11s - piill 
i=l 

The learning algorithm for the centers of the hidden 
layer neurons is usually an unsupervised clustering al- 
gorithm such as K-means [3] or Kohonen learning [5]. 
The simpliest approach is to set the center of the hid- 
den neurons onto randomly chosen patterns of the trai- 
ning set. This coding scheme will be applied after im- 
provment in the genetic version of the RBF. The width 

of these neurons may be set to a fixed value, it could be 
evaluated by simple methods such as setting it to  the 
mean distance to the k-nearest neighbors of the neu- 
ron or it can be computed using a statistical approach 
through the estimation of local covariance matrices. 

Learning of the weights from the hidden layer to  the 
output layer can be achieved using a gradient descent 
method, however this approach inherits the risk of get- 
ting stuck into a local minimum thus failing to  provide 
an optimum solution. In this paper, a direct method 
based on pseudoinverse matrix computation is used. 
The RBF weights are chosen to minimize a square er- 
ror function between the actual output of the network 
and the desired output d over the X patterns S .  It has 
been proven that the weights A,, can be expressed as : 

where: 

0 ~~l = E:='=, Q~(s~).Q~(s~) 

0 BU = E,"=, Ql(Sk).dj(Sk) 
(correlation matrix) 

(output matrix) 

The main difficulty in operating this network concerns 
the optimization of the hidden layer. When a dynamic 
architecture is preferred to a predefined one, the opti- 
mization method often consists in a gradient descent 
algorithm [ 2 ]  which can get trapped in local minima. 
Furthermore, the activation function has an influence 
on the final state of the optimization process. 

In the next section, a genetic algorithm capable of 
determining the most appropriate choice for each neu- 
ron will be presented. 

3. 
rons 

Genetic t r a in ing  of the Basis Funct ion neu- 

In response to  the drawbacks described in the pre- 
vious section, we propose a new approach combining 
network tailoring and training. In the range of evo- 
lutionnary programming, genetic algorithms provide 
a powerful engine to find solutions to non-linear pro- 
blems. In our application, it means to succeed in com- 
puting the parameters of a self-organizing RBF in or- 
der to achieve correct classification of the training set 
pattern while minimizing the number of BF neurons. 
Using genetic terminology [7], in our data representa- 
tion, each allele codes a parameter of a neuron, so a five 
gene sequence codes the characteristics of a BF neuron, 
and a whole chromosome, the set of parameters of the 
hidden layer (fig. 2 ) .  All the chromosomes are brought 
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together to  form a population which represents the cur- 
rent potential solutions for our classification problem. 
The classical coding approach consists in defining each 

Gene - Neuron 

widlh 01 lhc hilsis tunclion 
weight 01 lhc hilryccnler 
id of lhe second pattern 
Id Of l e  firs1 pullem 

Figure 2: Decoding the chromosome constituted by a 
list of 5-gene sequences representing neurons 

weight of the hidden neurons by an allele. A major 
drawback of this method is the increase of th'e chromo- 
some length proportionnally to  the dimension number 
of the input space. A major improvment was propo- 
sed in [l], the neurons are centered on patterns of the 
training set. The search space of the genetic algorithm 
is dramatically reduced but so are the freedom degrees 
of the possible solutions. We propose a modification of 
this coding scheme to span thoroughly the inlput space. 
A neuron is now defined as the weighted barycenter of 
two input patterns. Furthermore to  improve the adap- 
tation capacity of the network, the activation function 
of the hidden neurons (i.e. the BFs) is chosen dyna- 
mically among those presented in the previous section. 
Since some of them contain an additional vector para- 
meter (the so-called width), this vector is also added 
to  the gene translation of the neuron. 

To induce this population (100 individuals) to  evolve 
towards a set of suitable solutions, basic genetic ope- 
rators such as mutation (rate: 1%) are used, but t o  
improve computational performance, optimized mecha- 
nisms are tailored. The principle of n-dynamic crosso- 
vers (rate: 80%) to  speed up the combination of high 
performance schemata is applied. The phenotypic cros- 
sover is an inter-sequence mechanism which results in 
preserving the neuron identity thus allowing the net- 
work size to  evolve. The genotypic crossover is a clas- 
sical one adapted to  variable length chromosomes. Fur- 
thermore, fresh blood strategies to  possibly prevent the 
population from wasting time in gathering near local 
optima as well as elitist selection are used (convergence 
towards the best solution garanteed as indicated in [SI). 

The fitness function is defined as the classification 
performances of the network coded by a chromosome. 
The fitness evaluation process consists in computing 
the weights between the hidden layer and the output 
layer t o  test this network on a training set. Those 
weights are estimated through the matrix inversion me- 

chanism described in the previous section. Matrix in- 
version prevents the risk of local minimum inherent to  
gradient descent methods. Such a fitness function al- 
lows the evaluation of a network defined by a subset 
of sequences found in a chromosome. It is thus simi- 
lar to  partial function estimation used in messy genetic 
algorithms. 

4. Experimental resul ts  

We had presented in a previous paper the effec- 
tivness of the genetic approach applied to  RBF lear- 
ning [6]. In particular, we emphasized the genetic de- 
termination of the E3Fs. On classification problems the 
variety of BFs provides a additionnal degree of free- 
dom for the network to achieve efficient classification 
while remaining small. To succeed, the learning al- 
gorithm must comply with opposite constraints. On 
one hand, a better classification rate on the training 
set can almost always be obtain using more neurons. 
On the other hand. the generalization capacity tends 
to  decline when too many neurons are involved. On 
classification problems, a compromise was reached by 
discretizing the energy function : E = E, 6(Pn) with 
6(P,) = 1 if the winning output neuron (i.e. neuron 
with maximum actiivation) represents the class of the 
pattern P(n)  and b(Pn) = 0 otherwise. This energy 
function is not tailored for approximation or predic- 
tion since the notion of "correct classification" bears 
no meaning here. A.n energy function which translates 
the two constraints was chosen on the model of the 
Akaike Information Criterion [ 11 : 

where: 

This energy function balances the performances of 
the network with the number of neurons. 

To test the ability of the proposed algorithm to de- 
termine a near-optimum architecture for the predic- 
tion of function, cur genetic RBF was tested on a 
benchmark known as the Mackey-Glass delay differen- 
tial equation. The purpose is to  predict futur values of 
a time series given the nearest past values. This time 
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Best 
GRBF I MRBF GRBF 1 MRBF 

200 I 116 200 I 123.5 
Avg. 

Worst 
Smallest 
Largest 

Table 1: Number of BF neurons for the Gaussian RBF 
(GRFB) and the multi-function RBF (MRBF) on the 
Mackey-Glass problems 

199.5 87.5 199 90.2 
200 78 187 78 

187.5 72 183.5 68 
200 116 200 126 

series is described by: 

0.22(t - r )  X(t) = - O.lX(t) 
1 f Z" ( t  - T )  

In this study two values of r were used: r = 17 and 
r = 30. The resulting time series are known to be chao- 
tic and thus difficult to  approximate. The results of 
the Gaussian RBF are compared to  those of the multi- 
function RBF. 

The first criterion is the final size of the networks, 
i.e. the number of BF neurons. Table 1 summarizes the 
results. As expected, the Gaussian network needs more 
neurons than the multi-function network does. The use 
of several BF provides an additional degree of freedom 
t o  the training algorithm. The smaller size of the fi- 
nal networks makes up for this increase of the solution 
space dimension. It should be pointed out that  during 
learning the upper weights are determined through ma- 
trix inversion. Dealing with larger network is more pe- 
nalizing than dealing with an increased solution space. 
The multi-function RBF population reached the hun- 
dredth generation ten times faster than the Gaussian 
RBF networks. This results mainly from the rapidly 
growing size of the "mean" network among the Gaus- 
sian RBFs. Thus, the genetic learning algorithm takes 
full advantage of the multiple BFs. Table 2 summarizes 
the CPU time for various tests. The second criterion 

= 17 = 30 

Norm. 

Table 2: CPU time for the Gaussian RBF (GRFB) and 
the multi-function RBF (MRBF) on the Mackey-Glass 
problems 

is the prediction accuracy. The results on the Mackey- 
Glass problems are almost similar for both r = 17 and 
r = 30. The results presented here concern r = 17 
due to  the available space. The prediction results and 
errors are presented in fig. 3 and fig. 4. It is clear from 

these results that both networks achieved an effective 
approximation of the underlying dynamic of the chao- 
tic time series since the short term predictions on a test 
set are correct. The only visible difference comes from 
the points of the time series with high gradient. If not 
important for short time prediction, this kind of error 
might prove rather penalizing on long term predictions. 
A finer analysis of the respective errors proves that the 
multi-function RBF outperforms the Gaussian one in 
terms of mean value of the error (-3.79 x lop4  for the 
Gaussian RBF, -6.45 x for the multi-function 
RBF) and of standard deviation of the error (0.0051 
for the Gaussian RBF, 0.0019 for the multi-function 
RBF). The evolution of the network population is pre- 
sented in fig. 5 and fig. 6. The best individual of the 
multi-function RBF population achieves better perfor- 
mances on the training set with fewer neurons than the 
best individual of the Gaussian RBF population. On 
the presented run, the final sizes of the best individual 
from the two populations are dramatically different. 
This smaller size results in better generalization capa- 
bilities proven by the performances on a test set. This 
result emphasizes the importance of achieving learning 
with smaller networks which are not subject to  overfit- 
ting. The performances on the training sets are impro- 
ved while preserving the generalization capacity of the 
network. 
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Figure 3: Prediction of the Mackey-Glass function by 
genetic gaussian RBFs (a: original and approximated 
Mackey-Glass test series, b: zoom on the previous fi- 
gures, c: error of the short term prediction) 
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Figure 4: Prediction of the Mackey-Glass function by 
genetic multi-function RBFs (a: original and approxi- 
mated Mackey-Glass test series, b: zoom on the pre- 
vious figures, c: error of the short term prediction) 
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Figure 5: Performances of genetic RBFs on the 
Mackey-Glass problem (upper part: fitness of the 
Gaussian RBF, lower part: fitness of the multi-function 
RBF) 
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Figure 6: Sizes of genetic RBFs on the Mackey-Glass 
problem (upper part: number of neurons for the Gaus- 
sian RBF, lower part: number of neurons for the multi- 
function RBF) 
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