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Abstract

In this paper, we present a modification of the RF5 hybrid neural equa-
tion discovery/rule extraction system. We show for synthetic and real data
that the modification enables the system to handle more complex data sets.

1 Introduction

As renowned as multi-layer perceptrons (MLPs) are for being good predictors
for a large variety of tasks, as notorious they are for the difficulty of extracting
meaningful relationships between their inputs and outputs. Quoting Mozer and
Smolensky [10],

One thing that connectionist networks have in common with brains is
that if you open them up and peer inside, all you can see is a big pile
of goo.

In this paper we will look at the automated extraction of humanly understandable
input/output relations from real data.

Over the years, numerous methods have been developed which aim to extract
these relationships from networks, none of which have as yet established themselves
as overall winner. Several surveys discussing these methods exist [1, 2, 11]. Most
of these methods are intended for classification problems on binary or nominal
data. Those that support regression problems usually first discretisize the output
to form if-then-else rules, which we feel limits their explanatory power.

Equation discovery systems such as Bacon [5] use a generate-and-test loop for
formulas to directly fit them on the data. These formulas show us the relationships
in the data set. Unfortunately the overhead of the formula generation process
restricts the number of formulas that can be tried. Also they are usually much
more sensitive to noise.

In this paper we will look into an alternative network representation which after
training will provide insight in the relationships among features present in the data.



We introduce improvements to this framework in section 3, which enables its use
on larger scaled problems. In section 4 we show that our improved approach is
able to automatically extract understandable relationships from a real large-scale
data set.

2 Background

The product unit was introduced in 1989 by Durbin and Rumelhart [3]. They
provide a powerful addition to the toolbox of neural network researchers, as they
allow higher orders of the unit inputs to be used. They are defined as
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in which p is a power weight, w a multiplicative weight and nx the number of in-
puts. A single product unit can therefore obtain relationships like y = x3.14
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which would require a network of summation units to approximate. On the other
hand, they cannot create sums and as such can’t replace summation units. Also,
they seem more prune to creating local minima [6].

Networks should not fully consist of product units, as these would be no more
powerful than a single unit. Instead, the most common approach is to have a
hidden layer of product units and one summation unit as output, as proposed by
Durbin and Rumelhart [3]. No biases are used in the hidden layer as these would
fulfill the same multiplicative role the output weights have. This product unit
network (PUN) structure is also the one we will use in this paper. Like regular
MLPs [4], such product unit networks are universal approximators [7].

In 1997, Saito and Nakano published RF5 [14, 16], an equation discovery system
using these PUNs. Besides these PUNs it included their regularization method [15]
for the number of hidden units based on the MDL principle [13], and their quasi-
Newton learning algorithm BPQ [17]. The function formed by a trained PUN is
much more comprehensible than that from a trained MLP.

If we define nh as the number of hidden units, nx the number of inputs, w the
weights between hidden and output (with w0 being the bias weight), and p the
input weights, this network structure can fit the following kind of functions:
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An example of such a function is:
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which can be simplified to
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To prevent output in the complex domain, the input vectors should be re-
stricted to non-zero, positive values. After training the weights p and w can
directly be interpreted as powers and coefficients respectively.

To train the network, RF5 uses BPQ [17], a quasi-Newton method they de-
veloped to use less memory and have more efficient step length calculations than
other quasi-Newton methods. For determining the optimal size of the network,
RF5 uses an MDL regularizer [15] on the number of hidden units, calculated using

MDL = 0.5nm log(MSE) + 0.5nw log(nm)

with nm being the number of samples, MSE the mean squared error and nw the
total number of weights (of all layers).

Saito and Nakano tested the PUN on artificial cases, real data and a time
series. The most difficult artificial formula was

y = 2 + 3x−1
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where the training set consisted of 9 inputs (thus, including 4 not used in the
function) and 200 samples, with each value in the 〈0, 1] range1. Since no standard-
deviation is mentioned we assume they have used a uniform random distribution.
Gaussian noise with standard deviation 0.1 was added to the targets.

The real-data experiments by Saito and Nakano are rather small, requiring just
one or two inputs and one hidden unit. As such, we will not describe them here.
Finally, they present the result for a time series, which is not predicted very well.

3 RF5 improvements

Saito and Nakano demonstrated the use of RF5 in real data experiments with one
or two inputs and one hidden unit. In these simple experiments RF5 is not very
useful because understandable input and output relations can also be obtained by
plotting the data. RF5 can be a very useful technique when applied to complex
data sets that can not be understood by simply plotting the data.

Our first improvement is replacing BPQ training with the Levenberg-Marquardt
[8, 9] algorithm. The Levenberg-Marquardt algorithm seems better suited for
training PUNs as quasi-Newton algorithms, because it excels for relatively small
networks with one output, trained on regression problems [19]. It does not per-
form well when residuals are large. This is not problem in the context of equation
discovery, since large residuals indicate that any extracted formulas is not repre-
sentative for the data.

Our second improvement is to minimize the risk of being trapped in local
minima using a breadth-first search, in which we do many brief initialize-and-train
rounds and continue the most promising network. For large data sets, we propose
series of training rounds with an incremental number of hidden units. If after
training the generalization error for a particular number of hidden units is better
than for the previous rounds, one new unit is added to the network. All existing

1The text mentions [0, 1], but all inputs should be positive.



MSE Iterations Time (s)
Units Minimum Average Std. dev. Average Std. dev. Average Std. dev.

1 46.35 98.68 45.69 47.46 20.97 0.83 0.38

2 3.87 · 10−2 70.54 123.75 75.01 43.68 1.57 0.96

3 4.80 · 10−2 80.54 241.48 132.11 74.65 3.23 1.88

Table 1. Learning statistics for the modified Hochstein formula

weights p and w keep their value and the new unit is initialized with random power
weights and a zero multiplicative weight. This way, well-generalizing networks are
given extra degrees of freedom as long as they are doing well.

Our third improvement is the use of the test set error as indication of generaliza-
tion performance. Saito and Nakano used MDL. The generalization performance
in MDL focuses on the capabilities of the network representation, while for the
test set error it is based on the data itself. So the test set error indicates the ac-
tual generalization performance given the current weights, instead of the potential
generalization for other possible weights.

Note that for equation discovery there is an extra argument to reduce the
number of hidden units. Too many hidden units enlarge the resulting equation,
making it harder to understand. But regularizing the number of hidden units is not
enough if the input space is high dimensional. Each hidden unit will contribute a
term consisting of all inputs, which still result in complicated expressions. Inputs
that hardly influence the output of a unit should be pruned away, to further
simplify the equation [12]. The pruning of inputs is beyond the scope of this
paper.

4 Experiments

4.1 Synthetic data

To demonstrate RF5 with our improvements on synthetic data sets, we chose to
simulate a hydrological formula. We did this to show that natural laws can indeed
be discovered when present in the data. The artificial data set was created to
model the ’modified Hochstein’ formula [18], defined as

y = r1Us
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in which r1 and s1 are constants, and the other factors variables. For training,
we used tiny training rounds of 10 epochs, resetting the weights when a round
yielded less than 1% MSE decrease. The tests were performed on a 700Mhz Athlon
machine.

The setup of the test was comparable to the synthetic test of Saito and Nakano,
except that we have raised the bar for the network in a couple of ways. We used a
data set with 15 (instead of 9) inputs, 4 of which are actually used in the formula.
For the input value distribution, we opted for a normal distribution instead of the
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Figure 1. Log-log distribution of PUN (left) and MLP (right) test targets versus outputs

uniform distribution apparently used in Saito and Nakano’s work, as we believe
this to be more in line with real-world input distributions. Also, we added noise to
the targets with standard deviation 0.2 instead of 0.1. The sample size remained
200. To select the number of hidden units, we have chosen to extract 20% of these
for a test set, instead of training on all data and using the MDL criterion.

In the formula, we used constants r1 = 3 and s1 = 2. The results from 100
trials for 1, 2 and 3 hidden units are summarized in table 1. By rounding off after
the second digit and removing weights with resulting value zero, we obtain the
formula

2.06 + 3.06U1.00
s A1.25

c A−1.25
w b′1.00 − 3.07U0.99

s A0.01
c A−0.01

w b′1.00

which is indeed practically identical to the original formula. The R2 ≈ 1.00 of the
test set indicates an almost perfect fit2.

4.2 Real data

Equation discovery only makes sense if the equation is not know and only some
data set is available. We used the chloride data set to test our approach. The
chloride data set is used to predict the amount of chloride in the canal Noord
at a certain location. It consists of 8627 samples with 15 explanatory variables
including chloride levels in other waterways at different time intervals, run-off of
a nearby river, nearby water levels and wind speed.

Of specific interest were the large chloride peaks, which were quite rare (ap-
proximately 0.5 percent) but not attributable to measurement errors. To make
sure both train set and test set still had a balanced distribution of peak samples
we have used stratified sampling over the target space and used a relatively large
test set (20%).

2R2 is a measure of goodness of fit, being the proportion of variance in the target explained
by the model, ranging from 0 for none to 1 for perfect fit.



w p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

h1 4.5 · 10138 6.5 0.9 -0.4 1.82 -5.5 4.1 -10.3 24.1 -7.4 -16.7 -47.2 -9.0 -1.1 -4.9 27.7

h2 4.0 · 10−16 -0.0 0.1 0.1 0.2 -0.4 0.2 0.4 2.3 0.1 2.8 -2.6 4.6 -0.0 -0.0 0.3

h3 -3.1 · 10−18 0.0 0.1 0.0 0.2 -0.4 0.2 0.7 2.7 0.1 2.6 -2.8 5.2 -0.0 -0.0 0.4

h4 1.0 · 10−20 2.6 2.1 5.4 -7.4 13.0 -5.4 -1.5 15.8 -31.4 19.0 4.6 -12.4 0.6 -0.1 5.1

h5 4.0 · 10−4 0.0 0.1 -0.0 0.3 -0.5 0.2 1.0 3.0 0.1 2.3 -2.7 5.6 0.0 -0.0 0.5

h6 -4.5 · 101 -0.0 0.0 0.0 0.1 -0.1 0.1 -0.2 -1.0 -0.3 0.9 0.3 -0.0 0.0 -0.0 0.1

Table 2. Explanatory variables w and p for chloride data set. w0 = 147.4.

Figure 1 shows a scatter plot of the 20% test targets versus net output for
respectively a PUN and a MLP. Best generalization performance was obtained
using a PUN with 6 hidden units, and a MLP with 5 hidden units. For the
PUN test set, R2 ≈ 0.90, and for the MLP R2 ≈ 0.89. Thus, the PUN slightly
outperforms the MLP for this problem.

The weights of the network are shown in table 2. They can be directly in-
terpreted as a function by starting off with bias w0 and considering each row a
separate summation term with coefficient wi, and each input xj raised to its re-
spective power weight pij . Note that the coefficients of units do not tell us much
about the importance of the units; a hidden unit with small coefficient may itself
have a large activation value and vice versa.

To determine the behavior of the hidden units, we have created histograms of
the weighed output of the hidden units (thus, of the hidden unit activations multi-
plied with their coefficients w), as shown in figure 2. These are single summation
terms in the resulting equation. The X-axis has been translated to have mean 0
for ease of reference3. The hidden units have clearly distinct characteristics.

First, units 1 and 4 are clearly peak predictors. They are close to zero for
almost the entire data set, except for rare cases in which they yield extreme values.
Considering the resulting powers, inputs 8 and 15 are examples which both units
appear to find very relevant for obtaining peaks4.

Secondly, unit 2, 3 and 5 are highly related, with unit 3 damping the output
of units 2 and 5. In table 2 this is clearly visible by the near-identical powers of
the hidden units; only for some inputs the powers are different per unit. Thus, a
composite term can be created of the form

y = (w2x
p2a
a xp2b

b + w3x
p3a
a xp3b

b + w5x
p5a
a xp5b

b ) xpc
c xpd

d . . .

where a and b are inputs with different powers p per hidden unit and c and d
are inputs with identical powers for these three hidden units. As can be seen
in the sum histogram of figure 2, the combined terms actually predict relatively
small-scale chloride fluctuations.

3Hidden units may have output ranges far from the origin or target values; any range trans-
lation is compensated by bias w0.

4Note that evaluation of importance strictly by power is mathematically unsound here as the
input vector shape is also important, but a deeper analysis of these inputs is beyond the scope
of this paper.
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Figure 2. Histogram of weighed hidden unit output (l); sum for units 2, 3 and 5 (r)

Lastly, unit 6 has a similar small-scale behavior compared to the other units.
It is unlikely to be of particular interest for peak prediction.

5 Conclusion

The use of product unit networks for discovering understandable relationships in
data sets is not restricted to small problems. When using Levenberg-Marquardt
and proper initialization they can be trained as easily as a regular MLP. They
perform similar to MLPs, but have an additional advantage that the functions
they form are comprehensible equations.
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