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Abstract. In this paper, a new approach to training set size reduction
is presented. This scheme basically consists of defining a small num-
ber of prototypes that represent all the original instances. Although the
ultimate aim of the algorithm proposed here is to obtain a strongly re-
duced training set, the performance is empirically evaluated over nine
real datasets by comparing not only the reduction rate but also the clas-
sification accuracy with those of other condensing techniques.

1 Introduction

Currently, in many domains (e.g., in text categorisation, biometrics, and retrieval
of multimedia databases) the size of the datasets is so extremely large that real-
time systems cannot afford the time and storage requirements to process them.
Under these conditions, classifying, understanding or compressing the available
information can become a very problematic task. This problem is specially dra-
matic in the case of using some distance-based learning algorithm, such as the
Nearest Neighbour (NN) rule [7]. The basic NN scheme must search through all
the available training instances (large memory requirements) to classify a new
input sample (slow during classification). On the other hand, since the NN rule
stores every prototype in the training set (TS), noisy instances are stored as
well, which can considerably degrade classification accuracy.

Among the many proposals to tackle this problem, a traditional method con-
sists of removing some of the training prototypes, so the storage requirements
and time necessary for classification are correspondingly reduced. In the Pattern
Recognition literature, those methods leading to reduce the TS size are gen-
erally referred as to prototype selection [9]. Two different families of prototype
selection methods can be defined. First, the condensing algorithms aim at select-
ing a sufficiently small subset of prototypes without a significant degradation of
classification accuracy. Second, the editing approaches eliminate erroneous pro-
totypes from the original TS and ”clean” possible overlapping among regions
from different classes.
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Wilson introduced the first editing method [13]. Briefly, this consists of using
the k-NN rule to estimate the class of each prototype in the TS, and removing
those whose class label does not agree with that of the majority of its k-NN. This
algorithm tries to eliminate mislabelled prototypes from the TS as well as those
close to the decision boundaries. Subsequently, many researchers have addressed
the problem of editing by proposing alternative schemes [1, 7, 9, 14].

Within the condensing perspective, the many existing proposals can be cate-
gorised into two main groups. First, those schemes that merely select a subset of
the original prototypes [1, 8, 10] and second, those that modify the prototypes
using a new representation [2, 4, 6]. It has been proven that the former family
is partially inferior to the latter [3]. One problem related with using the origi-
nal instances is that there may not be any vector located at the precise points
that would make the most accurate learning algorithm. Thus, prototypes can be
artificially generated to exist exactly where they are needed.

This paper focuses on the problem of appropriately reducing the TS size
by selecting a subset of prototypes, in such a way that these represent all the
instances in the original TS. The primary aim of the proposal presented in this
paper is to obtain a considerable size reduction rate, but without an important
decrease in classification accuracy.

The structure of the rest of this paper is as follows. Section 2 briefly reviews
a set of TS size reduction techniques. The condensing algorithm proposed here
is introduced in Section 3. The databases used and the experiments carried out
are described in Section 4. Results are shown and discussed in Section 5. Finally,
the main conclusions along with further extensions are depicted in Section 6.

2 Training Set Size Reduction Techniques

The problem of prototype selection is primarily related to prototype deletion as
irrelevant and harmful prototypes are removed from a TS. This is the case, e.g.,
of Hart’s condensing [10] and MCS scheme of Dasarathy [8], in which only critical
prototypes are retained in the TS. On the other hand, some other algorithms
artificially generate prototypes in locations accurately determined in order to
reduce the TS size, instead of deciding which ones to retain. Within this category,
we can find the algorithm presented by Chang [4] and by Chen and Józwik [6].

Hart’s [10] algorithm is based on reducing the set size by eliminating pro-
totypes. It is the earliest attempt at minimising the number of prototypes by
retaining only a consistent subset of the original TS. A consistent subset, S, of
a TS, T , is a subset that correctly classifies every prototype in T using the 1-NN
rule. The minimal consistent subset is the most interesting, to minimise the cost
of storage and the computing time. Hart’s condensing does not guarantee finding
the minimal subset as different subsets are given when the TS order is changed.

Chang’s algorithm [4] consists of repeatedly attempting to merge the nearest
two existing prototypes into a new single one. Two prototypes p and q are merged
only if they are from the same class and, after replacing them with prototype z,
the consistency property can be guaranteed.
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Chen and Józwik [6] proposed an algorithm which consists of dividing the
TS into some subsets using the concept of diameter of a set (i.e., the distance
between the two farthest points). The algorithm starts by partitioning the TS
into two subsets by the middle point between the two farthest cases. The next
division is performed for the subset that contains a mixture of prototypes from
different classes. If more than one subset satisfies this condition, then that with
the largest diameter is divided. The number of partitions will be equal to the
number of instances initially defined. Finally, each resulting subset is replaced by
its centroid, which will assume the same class label as the majority of instances
in the corresponding subset.

Recently, Ainslie and Sánchez introduced the family of IRSP algorithms [2],
which are based on the idea of Chen’s algorithm. The main difference between
Chen and IRSP4 is that in the former, any subset containing a mixture of pro-
totypes from different classes could be chosen to be divided. On the contrary,
by IRSP4, the subset with the biggest overlapping degree (ratio of the average
distance between prototypes belonging to different classes, and the average dis-
tance between instances being from the same class) is the one picked to be split.
Furthermore, with IRSP4 the splitting process continues until every subset is
homogeneous (i.e., all prototypes from a given subset are from a same class).

3 A New Approach to Training Set Size Reduction

The geometrical distribution among prototypes in a TS can become even more
important than just the distance between them. In this sense, the so-called sur-
rounding neighbourhood-based rules [12] try to obtain more suitable informa-
tion about prototypes in the TS and specially, for those being close to decision
boundaries. This can be achieved by taking into account not only the proximity
of prototypes to a given input sample but also their symmetrical distribution
around it.

Chaudhuri [5] proposed a neighbourhood definition, the Nearest Centroid
Neighbourhood (NCN) concept, that can be viewed as a particular realization
of the surrounding neighbourhood. Let p be a given point whose k NCN should
be found in a TS, X = {x1, . . . , xn}. These k neighbours can be searched for
through an iterative procedure in the following way:

1. The first NCN of p is also its NN, q1.
2. The i-th NCN, qi, i ≥ 2, is such that the centroid of this and previously

selected NCN, q1, . . . , qi is the closest to p.

Neighbourhood obtained by this algorithm satisfies some interesting proper-
ties that can be further used to reduce the TS size by generating new prototypes.
In particular, it is worth mentioning that the NCN search method is incremental
and that the prototypes around a given sample have a geometrical distribution
that tends to surround the sample, thus compensating the distribution of proto-
types around the sample. It is also important to note that the region of influence
of the NCN results bigger than that of the NN, as can be seen in Fig. 1.
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Fig. 1. Example of the NCN concept

3.1 Algorithm Outline

The TS size reduction technique here proposed rests upon the NCN search algo-
rithm. NCN search is used as an exploratory tool to bring out how prototypes
in the data set are geometrically distributed. The use of the NCN of a given
sample can provide local information about what is the shape of the probability
class distribution depending on the nature and class of its NCN, that is, of the
nature of the prototypes in its surrounding area.

The rationale behind it is that prototypes belonging to the same class are
located in a neighbouring area and can be replaced by a single representative
without significantly affecting the original boundaries. The main reason to em-
ploy the NCN, instead of the NN, is to benefit from the aforementioned properties
that the NCN covers a bigger region than that of the NN and that they locate
an area of influence around a given sample which is compensated in terms of
their geometrical distribution.

The algorithm attempts to replace a group of neighbouring prototypes that
belong to the same class by a representative. In order to decide which group of
prototypes are to be replaced, we compute the NCN of each prototype p in the
TS until reaching a neighbour with a class label different from that of p.

The prototype with the largest number of neighbours is defined as a represen-
tative of its corresponding group, which lie in the area of influence defined by the
NCN distribution and consequently, all its members can be now removed from
the TS. Another possibility is to replace the group by its centroid. In this case,
the reduction of the data set is done by introducing new samples that replace
groups of existing ones.

After this, for each prototype remaining in the set, we update the number
of its neighbours if some was previously eliminated as belonging to the group
of an already existing representative. This is repeated until there is no group of
prototypes to be replaced by a representative. The basic scheme has been here
named MaxNCN.
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In order to obtain a more important size reduction, a further extension to
the idea just described consists of iterating the general process until no more
prototypes are removed from the TS. Algorithmically, the iterative version can
be written as follows:

Algorithm 1 Iterative MaxNCN

while eliminated prototypes > 0 do
for i = eachprototype do

neighbours number[i] = 0
neighbour = next neighbour(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next neighbour(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

end while

4 Databases and Experiments

Nine real data sets (see Table 1) have been taken from the UCI Repository [11]
to assess the behaviour of the algorithms introduced in the previous section. The
experiments have been conducted to compare MaxNCN and iterative MaxNCN
with IRSP4, Chen’s scheme and Hart’s condensing, in terms of both TS size
reduction and accuracy rate of the condensed 1-NN classification rule.

Table 1. Data sets used in the experiments

No. No. TS Test set
Data set classes features size size

Cancer 2 9 546 137
Pima 2 6 615 153
Glass 6 9 174 40
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 678 168
Vowel 11 10 429 99
Wine 3 13 144 34
Phoneme 2 5 4324 1080
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Table 2. Experimental results: 1-NN classification accuracy

Chen’s IRSP4 Hart’s Iterative MaxNCN

Cancer 96.78 (1.25) 93,55 (3,70) 94,61 (2,94) 68,60 (3,42) 89,92 (4,61)
Pima 73.64 (2.85) 72,01 (4,52) 73,31 (3,69) 53,26 (5,80) 67,71 (5,45)
Glass 67.18 (3.90) 71,46 (3,13) 67,91 (4,60) 57,19 (9,69) 66,65 (6,28)
Heart 61.93 (5.22) 63,01 (5,11) 62,87 (4,27) 58,16 (7,26) 59,92 (5,53)
Liver 59.58 (5.15) 63,89 (7,73) 62,40 (5,76) 53,31 (8,55) 60,65 (6,74)
Vehicle 58.56 (2.46) 63,47 (1,96) 62,17 (2,16) 55,20 (4,42) 59,33 (2,17)
Vowel 60.16 (9.27) 96,02 (1,77) 90,74 (2,30) 78,63 (5,18) 90,73 (1,78)
Wine 69.31 (7.31) 69,66 (3,47) 71,71 (6,72) 62,50 (6,65) 60,77 (6,19)
Phoneme 70.03 (9.14) 71,60 (8,74) 71,04 (7,90) 65,06 (7,57) 70,00 (8,05)

Average 68.57 (5.17) 73,85 (4,46) 72,97 (4,48) 61,32 (9,95) 69,52 (5,20)

The algorithms proposed in this paper, like in the case of Chen’s and IRSP4,
need to be applied in practice to overlap-free data sets (that is, there is no
overlapping among regions from different classes). Thus, as a general rule and
according to previously published results [2, 14], the Wilson’s editing has been
considered to properly remove possible overlapping between classes. The param-
eter involved (k) has been obtained in our experiments by performing a five-fold
cross-validation experiment using only the TS and computing the average clas-
sification accuracies for different values of k and comparing them with the “no
editing” option. The best edited set (including the non-edited TS) is thus se-
lected as input for the different condensing schemes.

5 Experimental Results

Table 2 reports the 1-NN accuracy results obtained by using the different con-
densed sets. Values in brackets correspond to the standard deviation. Analo-
gously, the reduction rates with respect to the edited TS are provided in Table 3.
The average values for each method on the nine data sets are also included.

Several comments can be made from the results in these tables. As expected,
classification accuracy strongly depends on the number of prototypes in the
condensed set. Correspondingly, IRSP4 and Hart’s algorithm obtain the high-
est classification accuracy almost without exception for all the data sets, but
they also retain more prototypes than Chen’s scheme and the procedures pro-
posed here.

It is important to note that, in terms of reduction rate, the iterative MaxNCN
eliminates much more prototypes than any other scheme. Nevertheless, it also
obtains the worst classification accuracy. On the contrary, IRSP4 shows the high-
est accuracy but the lowest reduction percentage. Thus, looking for balancing
between accuracy with storage reduction, one can observe that the best options
are Hart’s, Chen’s and the plain MaxNCN approach.
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Table 3. Experimental results: set size reduction rate

Chen’s IRSP4 Hart’s Iterative MaxNCN

Cancer 98.79 93,72 93,09 99,11 96,10
Pima 90.61 70,03 79,04 95,99 85,35
Glass 67.58 32,71 51,33 73,13 62,15
Heart 85.18 55,80 67,22 92,53 78,35
Liver 82.97 45,41 63,20 91,21 74,83
Vehicle 65.79 35,60 45,98 74,85 56,59
Vowel 79.64 39,54 75,97 84,23 75,09
Wine 86.75 73,13 78,79 89,03 84,83
Phoneme 94.51 69,90 87,91 98,16 90,88

Average 83.54 57,32 71,39 88,69 78,24

In particular, MaxNCN provides an average accuracy of 69.52% (only 4%
less than IRSP4, which is the best option in accuracy) with an average reduction
rate of 78.24% (approximately 20% higher than that of IRSP4). Results given
by Chen’s algorithm are similar to those of the MaxNCN procedure, both in
accuracy and reduction percentage.

In order to assess the performance relative to these two competing goals
simultaneously, Fig. 2 represents the normalised Euclidean distance between
each (accuracy, reduction) pair and the origin (0% accuracy, 0% reduction), in
such a way that the “best” technique can be deemed as the one that is farthest
from the origin. Thus, it is possible to see that the proposed MaxNCN approach
along with Hart’s and Chen’s algorithms represent a good trade-off between
accuracy and reduction rate.
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Finally, it is to be noted that several alternatives to the algorithms here
introduced have also been analysed, although all them had a behaviour similar
to that of MaxNCN. For example, we defined a simple modification in which,
instead of using an original prototype as representative of a neighbouring group,
it computes the respective centroid of the NCN. Another alternative consisted
of using the NN instead of the NCN, but the corresponding performance was
systematically worst than that of MaxNCN.

6 Conclusions

In this paper, a new approach to TS size reduction has been introduced. This
algorithm primarily consists of replacing a group of neighbouring prototypes that
belong to a same class by a single representative. This group of prototypes is
built by using the NCN, instead of the NN, of a given point because in general,
those cover a bigger region than the one defined by the NN.

From the experiments carried out, it is apparent that the plain MaxNCN
provides a well balanced trade-off between accuracy and TS size reduction rate,
in clear contrast to the behaviour of the iterative version, which results in max-
imum reduction percentage and very poor accuracy performance.

An extension to the algorithms here proposed would consist of including
a consistency test before removing a prototype from the TS. By this condition,
we would try to keep the discriminating power and consequently, to increase the
classification accuracy of the resulting condensed set.
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