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Abstract. Investigated in this paper are the uniform approximation
capabilities of sum-of-product (SOPNN) and sigma-pi-sigma (SPSNN)
neural networks. It is proved that the set of functions that are generated
by an SOPNN with its activation function in C(R) is dense in C(K)
for any compact K ∈ R

N , if and only if the activation function is not a
polynomial. It is also shown that if the activation function of an SPSNN
is in C(R), then the functions generated by the SPSNN are dense in
C(K) if and only if the activation function is not a constant.

1 Introduction

There have been many methods for multivariate function approximation: polyno-
mials, Fourier series, tensor products, wavelets, radial basis functions, ridge func-
tions, etc. In this respect, a current trend is to use artificial neural networks to
compute superpositions and linear combinations of simple univariate functions.
One of the most important problems for neural networks is their approximation
capability. This problem is related to the question that whether, or under what
conditions, multivariate functions can be represented or approximated by super-
positions of univariate functions. There have been many papers related to this
topic: [1,2,7,8,9,11] for feedforward neural networks (FNN), [3,4,10,13,16,17] for
radial basis function neural networks (RBFNN), and [5,15] for Sigma-Pi neural
networks. SOPNN and SPSNN are introduced respectively in [14] and [12],
and the aim of this paper is to show their uniform approximation capability.

SOPNN can approximate nonlinear mappings in a similar manner as the
FNN and RBF. The output of SOPNN has the form

∑M
m=1

∏N
n=1 fmn(xn),

where xn’s are the inputs, N is the number of inputs, and M is the num-
ber of the product terms. The function fmn(xn) is supposed to have the form∑

k ωmnkBnk(xn), where Bnk(·) is a univariate basis function and ωmnk’s are the
weights. If Bnk(·) is a Gaussian function, the new neural network degenerates to
a Gaussian function network. The learning algorithm and the novel performance
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in function approximation, prediction, classification and learning control are pre-
sented in [14]. For convenience of hardware implementation, artificial neural net-
works usually require the nonlinear basis functions (the activation functions) to
have a similar structure. So we restrict the form of Bnk(xn) to g(ankxn +θnk) for
a given univariate function g ∈ C(R), and concentrate our attention to the set
of functions in the form

∑M
m=1

∏N
n=1

∑Kn

k=1 cmnkg(ankxn + θnk), where M and
Kn are in N (natural numbers); cmnk, ank, θnk ∈ R; x = (x1, · · · , xN ) ∈ R

N .
We will prove that this set of functions is dense in C(K) if and only if g is not
a polynomial.

We point out that our proof for the approximation capability of SOPNN
uses some corresponding results obtained in [11] for FNN. This fact reveals to
some extent the relationship between the two kinds of neural networks.
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Fig. 1. Structure of sum-of-product neural network, fmn(xn) =
∑

k ωmnkBnk(xn)

The organization of this paper is as follows. The main result for the approxi-
mation capability of SOPNN is presented and proved in Section 2. In Section 3,
the main result in Section 2 is generalized to deal with a sigma-pi-sigma neural
network (SPSNN). Section 4 is devoted to a summary of results.

2 Approximation Capability of SOPNN

Lemma 1. ([6]: Weierstrass Approximation Theorem) Let K be a com-
pact set in R

N . Then, the polynomials in N variables form a dense set in C(K).
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Lemma 2. ([11]) Let f(t) ∈ C(R). The set of functions {
∑K

k=1 ckf(λk · x + θk)}
is dense in C(K) for any compact set K in R

N , if and only if f(t) is not a
polynomial on R, where ck, θk ∈ R; x, λk ∈ R

N ; and λk · x denotes the inner
product of λk and x.

In the following, we show that for a continuous function to be qualified as an
activation function in SOPNN, the necessary and sufficient condition is that it
is not a polynomial. The next theorem is our main result on the approximation
capacity of SOPNN.

Theorem 1. Let g(t) ∈ C(R). The family of the functions
{

M∑

m=1

N∏

n=1

Kn∑

k=1

cmnkg(ankxn + θnk)

∣
∣
∣
∣
∣
M, Kn ∈ N; cmnk, ank, θnk, xn ∈ R

}

(1)

is dense in C(K) for any compact set K in R
N , if and only if g(t) is not a

polynomial on R.

Proof. Sufficiency.
Since K is a compact set in R

N , there exists a hypercube H = [a1, b1] × · · · ×
[aN , bN ], such that K ⊂ H.

Any f(x) ∈ C(K) can be approximated by a multivariate polynomial thanks to
Lemma 1, i.e., for any 0 < ε < 1, there exists a multivariate polynomial P (x) =
∑I

|i|=0 αix
i, such that

|f(x) − P (x)| <
ε

2
, ∀x ∈ K, (2)

where xi = xi1
1 xi2

2 · · · xiN

N , i = (i1, i2, · · · , iN) is a multi-index, and |i| = i1 + i2 +
· · · + iN .

Suppose P (x) has m̃ terms, A = max
0≤|i|≤I

{|αi|, 1}, B = max
1≤j, k≤N

{|aj|, |bk|, 1},

and L = max
1≤n≤N

1≤in≤I

{∣
∣xin

n

∣
∣ , an ≤ xn ≤ bn]

}
. We note that each component xin

n is

a continuous function on [an, bn]. Noting that g is not a polynomial and using
Lemma 2, we can approximate xin

n by an FNN with g as its activation function
in the following fashion: There exist Nin ∈ N and cin

k , λin

k , θin

k ∈ R, such that
∣
∣
∣
∣
∣
∣
xin

n −
Nin∑

k=1

cin

k g
(
λin

k xn + θin

k

)
∣
∣
∣
∣
∣
∣
≤ ε

2NAm̃(L + 1)NBI
, ∀xn ∈ [an, bn]. (3)

Write Qin
n (xn) =

∑Nin

k=1 cin

k g
(
λin

k xn + θin

k

)
. By Equation (3) we have that

∣
∣Qin

n (xn)
∣
∣ ≤ L + 1, ∀xn ∈ [an, bn], (4)

and that
∣
∣xin

n − Qin
n (xn)

∣
∣ ≤ ε

2NAm̃(L + 1)NBI
, ∀x = (x1, x2, · · · , xN ) ∈ H. (5)
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More generally, let us use an induction argument to establish the estimate
∣
∣xi1

1 · · · xiq
q − Qi1

1 (x1) · · · Qiq
q (xq)

∣
∣ ≤ ε

2(N+1−q)Am̃(L + 1)(N+1−q) , ∀x ∈ H. (6)

Note that Equation (6) is already valid for q = 1 due to (5). In the following,
we assume that Equation (6) is valid for q with 1 ≤ q ≤ N − 1, and we try to
show that Equation (6) is also valid for q + 1. To this end, we use the triangle
inequality to get

∣
∣
∣xi1

1 xi2
2 · · ·xiq+1

q+1 − Qi1
1 (x1)Qi2

2 (x2) · · ·Qiq+1
q+1 (xq+1)

∣
∣
∣

≤
∣
∣xi1

1 · · · xiq
q

∣
∣
∣
∣
∣x

iq+1
q+1 − Q

iq+1
q+1 (xq+1)

∣
∣
∣

+
∣
∣xi1

1 · · ·xiq
q − Qi1

1 (x1) · · ·Qiq
q (xq)

∣
∣
∣
∣
∣Q

iq+1
q+1 (xq+1)

∣
∣
∣ .

It follows from Equations (3, 4, 6) and the above inequality that
∣
∣
∣xi1

1 xi2
2 · · ·xiq+1

q+1 − Qi1
1 (x1)Qi2

2 (x2) · · ·Qiq+1
q+1 (xq+1)

∣
∣
∣

≤ ε

2(N+1−(q+1))Am̃(L + 1)(N+1−(q+1)) . (7)

Here we have made the convention that
∏N

t=q+2(bt −at) = 1 when q = N −1. So
we have proved by induction that Equation (6) is valid for all q = 1, 2, · · · , N .

In particular, by Equation (6) with q = N , we have
∣
∣xi1

1 xi2
2 · · · xiN

N − Qi1
1 (x1)Qi2

2 (x2) · · ·QiN

N (xN )
∣
∣ ≤ ε

2Am̃
, ∀x ∈ H. (8)

Set Q(x) =
∑I

|i|=0 αiQ
i1
1 (x1)Qi2

2 (x2) · · · QiN

N (xN ), then Equation (8) implies

|P (x) − Q(x)| ≤
I∑

|i|=0

|αi|
∣
∣xi1

1 xi2
2 · · ·xiN

N − Qi1
1 (x1)Qi2

2 (x2) · · · QiN

N (xN )
∣
∣

≤ ε

2
, ∀x ∈ H. (9)

A combination of Equations (2) and (9) implies

|f(x) − Q(x)| ≤ |f(x) − P (x)| + |P (x) − Q(x)| <
ε

2
+

ε

2
= ε, ∀x ∈ K. (10)

Obviously Q(x) ∈
{

M∑

m=1

N∏

n=1

Kn∑

k=1
cmnkg(ankxn + θnk)

}

, and the estimate (10)

shows that C(K) ⊆
{

M∑

m=1

N∏

n=1

Kn∑

k=1
cmnkg(ankxn + θnk)

}

. Also note the apparent

inclusion relation
{

M∑

m=1

N∏

n=1

Kn∑

k=1
cmnkg(ankxn + θnk)

}

⊆ C(K). Then we see that
{

M∑

m=1

N∏

n=1

Kn∑

k=1
cmnkg(ankxn + θnk)

}

= C(K).
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Necessity.
Now let us assume g(t) is a univariate polynomial with degree l. Then, all the

functions in the form of (1) are polynomials with degrees at most lN , which of
course are not dense in C(K). ��

Remark 1. Theorem 1 describes an approximate representation of multivariate
functions by univariate functions. It provides an answer to the question that
what kinds of univariate functions are qualified to approximate multivariate
functions. In our proof, Q(x) as the approximant to a function in C(K) is entirely
constructed in terms of univariate functions Qin

n (xn). The role of Qin
n (xn) in the

approximant Q(x) is very much like the role of xin
n in the polynomial P (x) as

an approximant to a general nonlinear function.

3 Approximation Capability of SPSNN

A sigma-pi-sigma neural network (SPSNN) is proposed in [12]. Its output is

M∑

m=1

Jm∏

j=1

N∑

n=1

Kn∑

k=1

ωmjnkBjnk(xn), (11)

where x = (x1, · · · , xN ) ∈ R
N is the input, ωmjnk’s are the weights, Bjnk(·)’s

are univariate basis functions, and M , Jm and Kn ∈ N. Similarly as before, we
concentrate our attention to the family of functions of the form

M∑

m=1

Jm∏

j=1

N∑

n=1

Kn∑

k=1

cmjnkg(ajnkxn + θjnk),

where cmjnk, ajnk, θjnk ∈ R.
In this section, we show that for a continuous function to be qualified as an

activation function in SPSNN, the necessary and sufficient condition is that it is
not a constant. The next theorem is the other main result on the approximation
capacity of SPSNN.

Theorem 2. Suppose g(t) ∈ C(R). The family of functions of x = (x1, · · · , xN )
⎧
⎨

⎩

M∑

m=1

Jm∏

j=1

N∑

n=1

Kn∑

k=1

cmjnkg(ajnkxn + θjnk)

∣
∣
∣
∣
∣
M, Kn, Jm ∈ N; cmjnk, ajnk, θjnk

⎫
⎬

⎭

(12)
is dense in C(K) for any compact set K in R

N , if and only if g(t) is not a
constant function.

Proof. Sufficiency.
We first consider the case that g(t) is not a polynomial. Note that the family of
functions of form (1) is a subset of that of form (12), thus the latter must be
dense in C(K) for any compact set K in R

N according to Theorem 1.
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Next, we turn to the other case that g(t) is a polynomial but not a constant
function on R. We claim that g(t) can generate the monomial t by translations,
stretching and sums. To see this, let us assume that g(t) = alt

l+al−1t
l−1+· · ·+a0

with l ≥ 1 and al 
= 0. Then, g(t+1) = al(t+1)l + al−1(t+1)l−1 + · · ·+ a0, and
we have that h1(t) ≡ g(t+1)− g(t) = lalt

l−1 +p(l−2)(t), where p(l−2)(t) denotes
a polynomial with degree equal to or less than l − 2. We proceed to observe that
h2(t) ≡ h1(t + 1) − h1(t) = l(l − 1)alt

(l−2) + p(l−3)(t). And we can repeat this
procedure to obtain hl−1 = l(l − 1) · · · 2alt + p0(t) = l(l − 1) · · · 2alt + b0, where
b0 is a constant. Let b1 = l(l − 1) · · · 2al, then h(t) ≡ 1

b1
(h(l−1)(t) − b0) = t.

This confirms the claim. Next, we notice that the functions of form (12) are
all polynomials and they constitute an algebra. On the other hand, it follows
from the above claim that all the monomials x1, x2, · · · , xN are members of the
family (12). Thus, the family (12) must contains all the multivariate polynomials.
Therefore, by Lemmas 1, the family (12) is also dense in C(K) for any compact
set K in R

N when g(t) is a nonconstant polynomial.
Necessity.
Otherwise, if g(t) is a constant function on R, then the functions of form (12)

are all constant functions on R
N , which of course are not dense in C(K). ��

Remark 2. Theorem 2 gives the other approximate representation of multivari-
ate functions by univariate functions. It provides an answer to the question that
what kinds of univariate functions are qualified to approximate multivariate func-
tions by the SPSNN. We can see that any nonconstant continuous function can
be used as an activation function in the SPSNN.

4 Conclusion

The approximations of multivariate functions by sum-of-product and sigma-pi-
sigma neural networks with a univariate activation function are investigated.
This paper solves the problem of whether a function is qualified as an activation
function in the two kinds of new structure neural networks. We have proved that
all the functions generated by the SOPNN with its activation function in C(R)
are dense in C(K), if and only if the activation function is not a polynomial.
We also show that if the activation function of the SPSNN is in C(R), then
the functions generated by the SPSNN are dense in C(K) if and only if the
activation function is not a constant.
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