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Abstract – This paper presents a novel network, called 
Scale Equalized Higher-order Neural Network (SEHNN) 
based on concept of Scale Equalization (SE). We show that 
SE is particularly useful in alleviating the scale divergence 
problem that plagues higher-order networks. SE comprises 
two main processes: setting the initial weight vector and 
conducting the matrix transformation. An illustrative 
embodiment of SEHNN is built on the Sigma-Pi Network 
(SPN) applied to task of function approximation. Empirical 
results verify that SEHNN outperforms other higher-order 
networks in terms of computation efficiency. Compared to 
SPN, and Pi-Sigma Network (PSN), SEHNN requires less 
number of epochs to complete the training process.  

Keywords: SEHNN, Scale Equalization, Higher-order 
Neural Network, function approximation 

1.  Introduction 
Recently, higher-order networks have drawn great 

attention from researchers due to their superior 
performance in nonlinear input-output mapping, function 
approximation, and memory storage capacity.  Just to 
name a few, Sigma-Pi network (SPN) [1], Pi-Sigma 
network (PSN) [2], and Ridge Polynomial networks (RPN) 
[3]. Among these networks, SPN is the first network 
paradigm presented to the field. Training SPN is 
straightforward as it employs the simple error correction 
algorithm. However, it suffers a major drawback: 
proliferation in input combinatorial terms (a.k.a. product 
terms). That is, adding a network input or order rapidly 
increases the total number of higher-order correlations 
which in turn increases the number of connection weights. 
On the other hand, PSN requires smaller number of 
connection weights than SPN when performing the same 
task. Unlike SPN, the number of connection weights in 
PSN increases rather mildly with the input dimension. But 
PSN has some pitfalls too. Particularly, we note that PSN 
has to use either random or asynchronous scheme to update 
connection weights, inevitably decreasing computation 
efficiency [2]. In comparison, SPN with fully synchronous 
update scheme can be trained as fast as a Single Layer 
Perceptron (SLP) network [4]. Nevertheless, SPN are likely 
to have great scale differences among connection weights 
owing to the vast number of product terms, which impose 
great difficulty in training, namely excessive training 

 

epochs are often needed in order to achieve satisfactory 
results [2]. Aiming to solve aforementioned problems, the 
concept of Scale Equalization (SE) is presented in this 
paper.  An exemplar network based on SE concept, called 
Scale Equalized Higher-order Neural Network (SEHNN), 
is proposed. SEHNN can alleviate the problem of scale 
divergence by applying an optimal initial weight vector set 
to obtain a transformation matrix. With the matrix, the 
original input training data is cast into a different feature 
space wherein the training process can be reformulated. By 
doing so, the network can advantageously converge more 
quickly and achieve better performance.  Although there 
are many ways to optimally determine the initial weight 
vector, for illustration purpose we simply adopt the Support 
Vector Machine (SVM). The SVM is well known for its 
capability of assuring convergence to the global optimal 
solution [5] using small number of training data. More 
desirably, SVM can be extended to allow for non-linear 
problems by projecting the original inputs in a higher 
dimensional feature space and by formulating the linear 
separable problems in the feature space. 

The rest of this paper is organized as follows. Some 
related background concerning higher order neural 
networks is given in Section 2, in particular, SPN, PSN, 
and SVM are briefly described in order to reveal their 
distinguishing characteristics and differences in the context 
of training efficiency. In section 3, we elaborate on 
implementing SEHNN that incorporates SE and SVM. 
Experimental results are provided in section 4 to verify the 
effectiveness of the SEHNN. Finally, conclusions and 
discussions are given in section 5.  

2. Higher-order networks 

2.1 Sigma-Pi network (SPN) 

 The basic architecture of SPN contains a set of 
Higher-order processing units (HPUs) [6], as shown in Fig. 
1, where d, σ(•), and K denote the input dimension, the 
activation function (e.g. Sigmoid) and K the network order, 
respectively. Thus, Fig. 1 shown a SPN having HPUs with 
order k, k=1…K. In general, the greater the order K is, the 
more computationally capable the network can be. Eq. (1) 
prescribes how a HPU is generated in SPN, and the final 
output of SPN is determined by using Eq. (2)  

�The correspondent author 



 

Fig. 1 Architecture of SPN   
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The undesirable effect of Eq. (1) is that the total number of 
weights (denoted by n) required in SPN proliferates rapidly 
with the growing of d and K. To see this more clearly, the 
dependency of n on K and d is given in Eq.(3),  
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Boost in the number of weights inevitably demands the 
increase in the computation load required for completing 
the training process.  

2.2 Pi-Sigma network (PSN) 

 The drawback of proliferation in SPN naturally leads 
to a simple conclusion that reducing the number of 
connection weights should improve the computation 
performance of training process. In light of this, PSN was 
proposed [2] by building a higher-order network capable of 
performing similar computational tasks but with fewer 
trainable weights than SPN. Eq. (4) prescribes the output y 
of PSN with order K and input dimension d.   
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The number of connection weight of PSN is (d+1)K. 
Compared to SPN, the proliferation rate with respect to K 
obviously is milder. Although training individual linear 
sum term (i.e., Eq. (5)) can employ the error correction 
learning algorithm, but as noted in [2] training the whole 
set of summing units with a fully synchronous scheme 
could get unstable. Using asynchronous and random update 
scheme inevitably deteriorates the computation 
performance. Despite the reduction in the number of 
trainable weights, computation time required for each 
training epochs in PSN expands more rapidly as K 
increases than in SPN. Table 1 and Fig. 2 show that a 
training epoch in PSN needs almost twice the computation 
load required for training the SPN. Despite HPU-based 
SPN requires less number of arithmetic multiply operations 
than PSN per epoch, the former needs much more epochs 
than the latter. 

Table 1 Comparisons of computation load 

           Computation  load 
Training scheme 

Number of Multiplications 
(in each training epoch) 

Kth order PSN 
(Asynchronous) (d+1)K2+dK 

Kth order PSN 
(Random) (d+1)K+d 

Kth order SPN 
(full synchronous) 32 +⎟⎟

⎠

⎞
⎜⎜
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K
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Fig. 2 Number of multiplications vs. order 

 Due to the fact that combinatorial terms in SPN are 
obtained from multiplying the input signals to generate the 
vast number of product terms, it is likely to have great scale 
differences among the weights, which impose great 
difficulty in training, particularly excessive training epochs 
are often needed in order to achieve satisfactory results. To 
see this, a perceptron output prescribed in Eq.(6) is used. 
We multiply some of x1w1, x2w2, …, xdwd in Eq.(6) for 
obtaining higher-order correlation terms in Eq.(1), and 
rewrite them as Eq.(7).  
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Comparing Eq.(1) and Eq.(7) readily yields 

k
. If many of the trained weights 

are less than 1.0, the multiplied result 
is very likely a very small value. In contrast, if all the 

trained weights are greater than one, then . 
That is, some connection weights being nearly zeros, while 
the rest being excessively large. To summarize, the 
inefficient training in SPN is a direct consequence of the 
great scale differences among the weights. The greater the 
scale difference is, the more difficult it is to specify a 
proper learning rate for the training algorithm employed. 
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2.3 Support Vector Machine 

 In last decade, there has been a surge of interest in 
SVM [7]. It has been shown that SVM gives good 
performance of generalization on a wide variety of 
problems such as function approximation problems [8], 
handwritten character recognition [9], face detection [10].  
Extensive use of SVM is hampered by the following 
reasons: (1) the training algorithms for SVM are too slow, 
especially for large problems. (2) SVM is too complex, 
subtle, and difficult for an average engineer to implement. 
The training time of SVM exponentially increases [5]. Still, 
SVM sets up one of the most powerful methods for 
constructing a mathematical model on the basis of a given 
number of training examples. The basic idea of SVM is to 
construct a hyperplane as the decision surface in such a 
way that the margin of separation between positive and 
negative examples is maximized. Fig.3 shows the 
geometric construction of an optimal hyperplane for a 
two-dimensional input space. 

 In simplest, linear form, the discriminant function 
for the hyperplane is  , where x is an input 
vector, w is an adjustable weight vector, and b is a bias. We 
can find out the maximum margin m by Eq. (8). 

bxwu +⋅=

 
Fig.3 Illustration of an optimal hyperplane in SVM 
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Maximizing margin can be expressed via the following 
optimization problem [11]. Given a training set of labeled 
pairs (xi, di), i=1,…,N where  and  {1,-1},   n
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where w denotes the optimal initial weight vector. The 
slack variables ξi measure the deviation of a data point 
from the ideal condition of pattern separability. The 
function )(xφ  transforms x into a higher dimensional 
feature space. Instead of tackling Eq.(9) directly, in practice  
its dual problem is solved as follows.    
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where C is a user-specified positive parameter. Q is a N× N 
positive semi-definite matrix, Qij ≡ didjk(xi,xj), and 

( ) ( )j
T

iji xxxxk φφ≡),(  is the kernel function that depends 
on choosing the features and representing the scalar 
product in the feature space. The kernel function measures 
the similarity or distance between the input vector and the 
stored training vector. Well-known models of the kernel 
function include Gaussians, polynomial, and neural 
network non-linearities [11]. Because that the objective 
function in Eq. (10) is bounded, SVM must converge to the 
global optimal solution in a finite number of iterations. 
Solving Eq.(10) yields the values of αi. Plugging them into 
Eq. (11) gives us the optimal initial weight vector. 
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where ( )ixφ=ker . In the following section, we will show 
how this optimization technique SVM can be useful in 
implementing SEHNN.  

3. Implementing SEHNN 

3.1 Setting the initial weight vector   

 To solve the problem of scale difference, we first 
transform the original weight space so as to reduce the 
search space during the training process by rewriting Eq. (2) 
as Eq. (12), 
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where mp denotes the product terms in Eq.(2), m0 the bias, 
wp the weights, and n the total number of weights.  
Assume L is the number of training patterns, from which n 
samples are chosen. If L ≧ n, we randomly pick from the 
block of training patterns as the sample patterns. If L ＜ n, 
input patterns near the L training patterns are generated as 
the augmented samples. The closer the input pattern to the 
sample pattern, the more similar their corresponding 
outputs are. Fig. 4 shows the selection process. We can use 
Vector Quantization [11] technique, such as LBG 
algorithm [12] or Self-Organization Map (SOM) [13] for 
choosing samples. After sampling, we will obtain n input 
features  s=1…n.  ( ds xxx rrr ,....,1=

 

Fig.4 The sampling process 

Rather than setting the initial weights by zero or random 
numbers as in most neural network models, here we 
employ SVMs to determine the initial weight vector that 
allows exact input-output mapping for the selected n 
training patterns. As will be shown later, such initialization 
scheme offers the benefit of fast terminating at a minimum 
during the training process. This scheme, in fact, can also 
be applied to other single layer networks, e.g. SLP.  

According to Eq.(11),   

)( ker⋅⊗= nTW
rrr

α                   (13) 

where the symbol ⊗  is defined as an vector multiply 
operator, i.e. [ . The essence of 
our approach is to apply the initial weight vector to deduce 
a matrix that transforms the original input space into 
another. Formulated in vector form, the product results of 
all L training patterns are calculated and arranged as 

 and . Consequently, Eq.(12) is 
rewritten as Eq.(14).  
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By plugging W
r

 into Eq. (14), we have 
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r
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Following that, we rewrite Eq.(15) as Eq.(16): 

)]()[( tnt ZTT ⋅⋅⊗= ker
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where V
r

 and U represent the vector of )( nT
rr

⊗α  and the 
results of )( tZ⋅ker , respectively. Decomposing the vector 

V
r

 and the matrix U yields the network structure of 
SEHNN shown in Fig. 5. 

 

Fig.5 Network architecture of SEHNN 

And the output y is given in Eq. (17).  
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where ri denotes the j-th element of the vector ker. Note 
that the vector [u0 u1 … un-1] can be viewed as a 
transformed input by the vector ker. With this 
transformation, the original input training data is cast into a 
feature space wherein the training process can be 
reformulated, and the network training can be conducted 
that space. More significantly, the scale difference among 
connection weights is alleviated due to the use of ker. The 
beauty of this transformation is that SEHNN not only 
advantageously converges more quickly, but also achieves 
better performance.  

3.2 Training Process 

 After obtaining the matrix U, training the resulting 
SEHNN will be the same as in training a SLP. Eq. (18) is 
the update equation derived based on the gradient descent 
rule. Solving the partial differential equation yields the 
modification amount in weights. 
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Substituting rj with ker yields   
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To further simplify, one can rewrite Eqs. (19) and (20) in 
vector forms, and the results are Eq. (21) and Eq. (22). 
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where Hi=(rj·Zt)T, Γ
r

=[σ`(net1) σ`(net2)…σ`(netL)], and 
Y
r

=[ y1  y2 … yL ]. In training process, the element of Hi and 
UT are constant, and they can be pre-determined. In order to 
compare, the error correction formulate in SPN in vector 
form is derived as follows  
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 Comparing Eq. (21) and Eq. (23) easily reveals that 
they are actually the same in terms of computational 
complexity, implying the same computation load per epoch. 
But the major difference is that our proposed update 
equations have removed the problem of great scale 
differences that plagues SPN. 

4. Experimental Results 

The Gabor function shown in Fig. 6 is used as the test 
input to show the function approximation capability of 
SEHNN. The formula of Gabor function is given below. 
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where λ is the aspect ratio, σ is the scale factor and (u0, v0) 
the modulation parameters. The function becomes 
circularly symmetric if λ=1. In simulations, the parameters 
are set as λ =1, σ=5, and (u0, v0) = (1, 1). 256 points were 
picked from 16×16 grid on -0.5≦x≦0.5 and -0.5≦y≦0.5, 
from which we selected 28 points out of 256 points as the 
training patterns, the rest as test patterns. The output 

activation function used the hyperbolic tangent function. 
The network order K and learning rate η used 6 and 0.1, 
respectively. Here the sampling patterns were chosen using 
uniformly random scheme, as shown in Fig.7. Fig.8 
illustrates the learning curve of the simulation. 

The SEHNN achieved MSE=0.005 after 128 epochs, 
and the computation time for initial weight in Pentium IV 
is 0.0753 sec. (0.062 sec. for training and 0.0133 sec. for 
preparation). To compare SEHNN and the original 
counterpart PSN, we also tested the PSN using the same 
Gabor function. Table 2 compares SEHNN, PSN and 
HPU-based SPN. 

 

Fig.6 The Gabor Function. 

 

Fig.7 Samples selected uniformly 

 

Fig.8 Learning curve of SEHNN 

Table 2 Comparison of Performance 

Network MSE 
(training) 

MSE 
(testing) Epochs Time 

(sec.)

SEHNN 0.005 0.0067 128 0.0753



PSN 0.005 0.0075 142 0.2300

HPU-based SPN 0.028 0.0370 5000 1.9865

Fig. 9 shows the result of scale equalization and 
compares the resulting connection weights {vi: i=1…28} of 
SEHNN and that of HPU-based SPN {wi: i=1…28}, where 
S(wi) = log10(|wi|) and S(vi)= log10(|vi|). Results in Fig.9 
clearly show that the scale technique presented in this paper 
indeed can effectively equalize the scales of connection 
weight. 

 

Fig. 9 Scale difference of connection weights 

5. Conclusions 

 We have presented a novel concept of Scale 
Equalization (SE) useful for implementing higher-order 
networks. We have shown that SE is effective in alleviating 
the scale divergence problem that plagues higher-order 
networks. An illustrative embodiment built on the Sigma-Pi 
Network (SPN) applied to task of function approximation 
has been conducted, and empirical results verify that the 
resulting network SEHNN outperforms other higher-order 
networks in terms of computation efficiency. Finally, the 
future work will focus on the use of incremental techniques 
[14] to farther improve SEHNN in minimizing the network 
order. 

Acknowledgment 
This research was supported by the National Science 
Council of Taiwan under grant: NSC 93-2611-E-019-007 

References 

[1] D. E. Rumelhart, J. L. McClelland, Parallel 
Distributed Processing, Vol. 1, MA: MIT Press, 
Cambridge,1987. 

[2] Y. Shin and J. Ghosh, “The pi-sigma network: An 
efficient higher-order neural network for pattern 
classification and function approximation,” Proc. Int. Joint 

Conf. Neural Networks, Vol. I, Seattle, WA, pp. 13-18, July 
1991. 

[3] J. Ghosh and Y. Shin, “Ridge polynomial networks,” 
IEEE Trans. on Neural Networks, Vol. 6, No. 3, pp. 
610-622, 1995. 

[4] B. Widrow and M.E. Hoff, Jr., “Adaptive switching 
circuits.” 1960 IRE Western Electric Show and Convention 
Record, Part 4, Aug. 23, 1960, pp. 96-104. 

[5] Osuna, E., Freund, R., Girosi, F., “An improved 
training algorithm for support vector machines,” Neural 
Networks for Signal Processing [1997] VII. Proc. of the 
1997 IEEE Workshop, pp. 276-285, Sep. 1997. 

[6] C. L. Giles and T. Maxwall, “Learning, invariance, 
and generalization in a higher-order neural network,” 
Applied Optics, Vol. 26, No. 23, pp 4972-4978, 1987.  

[7] V. Vapnik. The Nature of Statistical Learning Theory. 
Springer, New York, 1995. 

[8] Shu-Xia Lu, Xi-Zhao Wang, “A comparison among 
four SVM classification methods: LSVM, NLSVM, SSVM 
and NSVM,” Machine Learning and Cybernetics, 2004. 
Proceedings of 2004 Intnl Conf. on, Vol. 7, pp. 4277-4282, 
Aug. 2004. 

[9] Cheng-Lin Liu, Sako, H., Fujisawa, H., “Effects of 
classifier structures and training regimes on integrated 
segmentation and recognition of handwritten numeral 
strings,” Pattern Analysis and Machine Intelligence, IEEE 
Trans on, Vol. 26, Issue: 11 , pp. 1395-1407, Nov. 2004. 

[10] Kepenekci, B., Akar, G.B., “Face classification with 
support vector machine,” Signal Processing and 
Communications Applications Conference, 2004. 
Proceedings of the IEEE 12th , 28-30, pp. 583-586, April 
2004 

[11] B. Fritzke, “Growing Cell Structures-A 
self-organizing network for unsupervised and supervised 
learning,” Neural Networks, Vol. 7, No. 9, pp. 1441-1460, 
1994. 

[12] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm 
for vector quantizer design,” IEEE Transactions on 
Communications, Vol. COM-28, pp. 84-95, 1980. 

[13] T. Kohonen, “Self-organized formation of 
topologically correct feature maps,” Biological Cybernetics, 
Vol. 43, pp. 59, 1982. 

[14] A. G. Ivakhnenko, “Polynomial theory of complex 
systems,” IEEE Trans. on Systems, Man, and Cybernetics, 
Vol. SMC-1, no. 4, Oct. 1971 


