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A neural network model with polynomial synapses and 
product contacts is investigated. The model further general- 
ize the sigma-pi and product units models. All the coefficients 
and exponents of the polynomial terms, the degrees of the 
polynomials (the number of polynomial terms) are learned, 
not predetermined. This can be useful when there is no a pri- 
ori knowledge available to determine what higher order terms 
to be included. The polynomial synapses together with prod- 
uct contacts can produce any polynomial terms. Since the 
number of learnable parameters are learned, in this aspect, 
our network is much like the growth networks. The growth 
networks in general have poor generalization. Several mech- 
anisms in our network contribute to a better generalization 
performance than the growth networks. Gradient descent al- 
gorithms for training feedforward networks with polynomial 
synapses and product contacts are developed. Experimental 
results are presented. 

1 Introduction 
The McCulloch-Pitts neural network model [l] has the fol- 
lowing three simplifying assumptions: 

1. The interaction of all postsynaptic signals is a simple 
summation in a latent period. 

2. A synapse only linearly amplifies or attenuates the 
presynaptic signal. This is modeled by a connection 
weight that multiplies the presynaptic signal to produce 
the postsynaptic signal. 

3. There is only one synaptic contact between two neurons. 

Because of the above simplifications, all the nonlinearity 
necessary to achieve a desired transformation is restricted to 
the neurons, i.e., the threshold or the sigmoidal transfer func- 
tions of the neurons. Physiological data show that the above 
three assumptions are not true in a real neural network. It is 
known that a neuron may have more than one synaptic con- 
tacts with another neuron. However, because of the first two 
assumptions, such multiple synaptic connections are assumed 
to be included by a single connection weight. 

In real neural networks, the interaction of all postsynaptic 
signals is more complicated than a simple summation. Neu- 
rophysiological data show that the transformation between 
the presynaptic and postsynaptic signals is not linear. The 
transfer function of a synapse may be better modeled by a 
nonlinear transformation than by a simple multiplication of 
a linear coefficient. 

Several models removing some of the above simplifying 
assumptions have been reported. The sigma-pi units by 
Rumelhart, Hinton and Williams [2] and the product units 
by Durbin and Rumelhart [3] allow multiplication between 
presynaptic or postsynaptic signals. Giles and Maxwell [4] in- 
vestigate a special case of the sigma-pi units, called high-order 
neural networks. The high-order networks use sigma-pi uints 
only at  the input layer. Encouraging results are reported in 
both cases. These models can be further generalized along 
the following lines: 

1. The synapse transfer function in these models is still 
only a linear amplification. Although the product units 
and sigma-pi units introduce cross product terms, they 
do not have the freedom of introducing higher order 
terms of each presynaptic signal itself. 

2. The sigma-pi and product units must be “handcrafted” 
in the network using a priori knowledge before learning. 
Although this is not necessarily a disadvantage since em- 
bedding a priori knowledge is a way to alleviate the the 
load of the learning algorithm, it is still desired to have a 
network that is able to learn nonlinear synapse transfor- 
mations when there is no a priori knowledge available. 

3. The number of learnable parameters are fixed in the 
sigma-pi, product and most other network models (ex- 
cept the growth networks discussed later). Again, this 
is not a disadvantage if a priori knowledge is available to 
choose the right number of learnable parameters. The 
number of learnable parameters should be kept to a min- 
imum to ensure good generalization [5]. However, when 
there is no a priori knowledge available, it is desired to 
have a ntework that will gradually increase its number 
of learnable parameters if the training examples cannot 
be successfully loaded with a given number of learnable 
parameters. Since the number of learnable parameters 
is the key in determining the generalization performance 
of network, the increase of the number of learnable pa- 
rameters should be curtailed. 

This paper reports our effort in developing a neural net- 
work model along the directions suggested above. The new 
models are not restricted by neurophysiological realizability 
constraints and no claim of adherence to neurophysiological 
data is made. Our goal at this st,age is to investigate how 
the improvement of model a t  the synapse and unit level may 
contribute to improvement of the network performance. We 
only consider feedforward neural networks in this paper. Re- 
current networks and unsupervised learning networks will be 
considered in the future. 
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[9-131. The growth networks in general have poor gener- 
alization. Our network include mechanisms preventing 

ear Synapses and Its Back- the number of learnable parameters from growing too 
large. In addition, the units used are continuous func- 

propagation Learning *‘go- tions instead of hard limit as in the growth networks; 
rit hm every learnable parameter is affected by all the train- 

ing examples. These factors add together contributing 
From a computational point of view, by restricting the to a better generalization performance than the growth 
synapses being linear and restricting all the nonlinearity to networks. 
the neurons, the freedom to introduce and change indepen- The polynomial synapse model is described below. The 
dent nonlinear terms of the inputs is lost. Functions that transformation at a synapse from (neu- 
involve nonlinear terms of individual inputs and nonlinear rons at the lowest level perform a transformation 
cross terms will not be readily learned. This severely limits to scale all inputs to within [o, 1], as explained below), is of 
the functions that can be realized by a given network. Re- the form: 
mark that although a three layer network can approximate 

For 

2 Polynomial Model of Nonlin- 

to 

arbitrarily close any L1 function in a finite interval [6-81, it 
requires an increasing number of hidden unit to do so. 

m . J  

f1J = f13 (YI) = w:3 yp” + waIJ ?/P (1) 
fixed networks, there is a difference in which one provide a a=1 

better approximation. 

which may be linear or nonlinear. The actual transforma- 
tion should be learned. To make the learning feasible, the 

we  propose to introduce a transformation at each synapse, where !/I is the Output Of neuron * *  and is a positive 
integer which is updated in learning. p13 is the only exponent 
that is updated in each iteration during learning. At any 

transformation must be of a form that accommodate time, terms each Of the integer exponents to 
both linear and no&near transformations by adjusting its in addition to Y;’’ are present. In the mt3 = O ,  

parameters. More importantly, the form of the transforma- 
tion be to analysis and derivation of the 
learning algorithm. As a first 

is, the postsynaptic signal now becomes a polynomial of the 
presynaptic 

and PI3 = ’* During learnin& Only When it 
exceeds 2 for the first time, m13 is set to one and a linear term 

we propose to 18 permanently added. Later On, whenever an integer value 

is introduced. The coefficient of a new term is set to zero 
when it is first introduced. In our current implementation, 

use polynomials to model the of That larger than m13 + is surpassed, a new Of Order mt3 + 

instead of a simple multiplication of a 
The symbols for synapses and nonlinear during learning and after learning PI3 may be 

contacts are shown in Fig. 1. Note that a synapse now de- 
noted with an endbulb contacting the neuron instead of just 

to Or less than 
may decrement 

7 since the gradient descent updating 
as increment PI,. Modification Of the 

a connection. The number of terms, the exponents, and the 
of the polynomi& at the synapses are moved in 

the direction of least error, by a learning mechanism that is 

algorithm 
m V ~  terms with exponents higher than PI, be removed. 

IJet 

be made so that when P13 is Ieduced 

derived using the gradient descent method. 
The differences between this paper and networks using 

sigma-pi units, product units, or predetermined polynomial 

n J  

FJ = FJ(flJ9 f Z J  9 .  . . 9 f n j , )  f * J  + c3 (2) 
I 3 1  

terms [2-41 of inputs are threefold. 

1. Nonlinearity is introduced at each synapse. 
where nJ is the number of inputs coming to 3 .  Then the 
output of neuron j is given as: Each 

synapse has a polynomial transfer function. Higher or- 

(3) 
der terms of a presynaptic signal can be added by learn- 1 

1 + exp-XFJ ing. The polynomial synapses together with product Y3 = 
contacts can produce any polynomial terms. The prod- 
uct terms in our model are produced as a result of prod- 
uct of twoor more postsynapticsignah after polynomial 
synapses. As a result, one product contact may produce 
manv product terms of different degrees. 

For every neuron 3, the learnable Parameters are Wuj, a = 
1,2, . . - ,mS3, d3, PV, 1 = 1,2 , . , . ,%? and ~ 3 .  

The gradient descent formulation and associated computa- 
tional arrangements for networks with polynomial synapses 

2. All the coefficients and exponents of the polynomial 
terms, the degrees of the polynomials (the number of 
polynomial terms) are learned, not predetermined. This 
can be useful when there is no a priori knowledge avail- 
able to determine what higher order terms to be in- 
cluded. 

3. The number of learnable parameters are learned. In this 
aspect, our network is much like the growth networks 

are developed. The procedure is similar to that of the stan- 
dard backpropagation algorithm [2], and is omitted here due 
to space limit except one remark: The term ln(y,) in the 
derivatives requires that y3 > 0. In intermediate layers, this 
does not cause a problem since 0 < y3 < 1. At the input 
layer, this is taken care of by scaling the input to (0,l) .  

Discussions of elimination of terms with small coefficient, 
hardware considerations and scaling of the input are omitted 
here due to spilce limit. 
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3 Networks with Both Summa- 4 Generalization of Learning 
tion and Product Contacts and Relation between Non- 

linear Synapse Networks and 
Linear Synapse Growth Net- 
works 

In real neural networks, there are multiple synaptic connec- 

not exist in neural network models using linear synapses and 
tions between two neurons. Such multiple connections do 

summation contacts. This is because all synapses are lin- 
ear, and if there are multiple connections, their effects are 
equally modeled by a single synapse with its weight equal to 
the sum of all connection weights. Neurophysiological data 
suggest that the interaction between postsynaptic signals is 
more than just a linear summation. This disagreement be- 
tween linear synapse neural network models and real neural 
networks prompted us to investigate nonlinear synaptic con- 
tacts and the effects of multiple synaptic connections between 
two neurons. Multiple synaptic contacts are also present in 
sigma-pi and product unit networks [2,3]. The product terms 
in our model are produced as a result of product of two or 
more postsynaptic signals after polynomial synapses. As a re- 
sult, one product contact may produce many product terms 
of different degrees. 

We modify the linear summation neuron model by allowing 
both summation and product of postsynaptic signals, that is, 
Eq. (2) is modified to: 

where n3 is the number of postsynaptic signals in the summa- 
tion, rn3 is the total number of product terms, and k, is the 
number of postsynaptic signals involved in the ith product 
term. Note that some of the postsynaptic signals in the sum- 
mation term and the product term may come from the same 
neuron. Also, some of the postsynaptic signals may have both 
a summation contact and one or more product contacts with 
a neuron, thus appearing in both the summation and product 
terms. The sigmoidal transfer function of a neuron is then 
applied to F3 defined in the above equation. 

A postsynaptic signal that contributes a summation term 
in Eq. (4) is said to have a linear or summation synaptic con- 
tact, or summation contact for short with neuron j .  Similarly, 
a postsynaptic signal that contributes to a product term in 
Eq. (4) is said to have a nonlinear or product synaptic con- 
tact, or product contact for short, with neuron j .  

From a computational point of view, allowing both sum- 
mation and product contacts provides a network with the 
freedom of adding independent cross terms in the polynomial 
F3. The gradient descent formulation is generalized to include 
the product contacts. Derivation of the learning algorithm is 
omitted. 

From the viewpoint of increasing the function representation 
capacity, increasing the degrees (and terms) of the polynomi- 
als at the synapses of a nonlinear synapse network is equiva- 
lent to increasing the size of a linear synapse network. There 
have been several algorithms in the literature that grows a 
network for a given classification task [9-131. We refer to this 
type of networks (algorithms) as the growth networks (algo- 
rithms). The idea is to learn the structure and the weights of 
the network simultaneously. If the training samples cannot 
be learned, the growth algorithms will add more neurons and 
connections. Growth algorithms are guaranteed to converge. 
The problem is that the algorithm may grow a overly large 
network and may lead to poor generalization. We claim that 
increasing the nonlinearity of synapses should yield a bet- 
ter generalization than adding neurons and connections as in 
growth algorithms. Our claim is supported by experimental 
results. This is because of the following reasons: 

1. For a difficult classification problem, the decision surface 
to be learned is highly nonlinear in the pattern space at 
the hidden layers (transformed image space). In a linear 
synapse network, although the overall decision surface 
realized is curved, the sub-decision surface at each neu- 
ron is a plane. Only the position and orientation of the 
plane can be adjusted to  approximate the function to 
be learned, whereas in a nonlinear synapse network, the 
decision surface at each neuron is a curved surface. Not 
only the position and orientation, but also the shape of 
the curved surface can be adjusted to approximate the 
decision surface. As a result, a better approximation can 
be achieved requiring a less number of subdecision sur- 
faces using a nonlinear synapse network. A less number 
of sub-decision surfaces should yield a better generaliza- 
tion. 

2. Growth algorithms use hard-limit threshold unit. The 
network in this paper uses sigmoidal functions at  neu- 
rons. Information is not lost as a result of early imma- 
ture decision from layer to layer as in the growth algo- 
rithms [14]. Therefore, less units may be required than 
using hard-limit unit. (see the analog factor in [15]). 

3. Growth algorithms may end up adding one neuron (and 
the corresponding connections) for one sample. The de- 
gree (and the number of terms), and all the added pa- 
rameters of the polynomial of a synapse are affected by 
all training samples. The exponents may go up and 
may go down depending on the direction of the gradi- 
ent. Since the generalization capability of a network 
is determined by the number of its learnable parame- 
ters [5], a possible way to ensure good generalization 
is fix the total number of learnable parameters before- 
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4. 

5 

hand. Then, during learning, these synapses requiring 
more learnable parameters (exponents and coefficients 
for a higher degree polynomial) will get more. Synapses 
may eliminate terms with small coefficients to release 
the learnable parameters they grabbed but no longer 
need. This is effectively a network which learns both its 
parameters and the structure (i.e., distribution of learn- 
able parameters), although it may appear to have fixed 
graph representation of the network. Such a scheme may 
be implemented in hardware. 

In our network, the inputs are scaled to (0,l) at the 
first layer. As a result, higher order terms has less in- 
fluence because all signal having a magnitude less than 
one. This effectively prevents the degrees of the polyno- 
mials from incrementing to impractically high. Hence, 
the total number of parameters in the network is pre- 
vented from growing too large. This limiting capability 
is inherent and is not a hard-limit type (i.e., it does not 
prespecify a fixed degree for the synapses polynomials). 

Experiment a1 Results 
Networks of various structures with polynomial synapses and 
linear contacts, and networks with polynomial synapses and 
both summation and product contacts, are trained using the 
gradient descent algorithms described in this paper. The 
learning algorithms and the networks are tested on many 
examples. Due to space limit, only some of the representa- 
tive test results are presented below and are compared with 
networks with linear synapses and summation-only contacts. 
In the following, one iteration means the presentation of one 
training sample to the learning algorithm. If a network is able 
to learn the correct classification of the training samples in 
less than 1,000,000 iterations, we say that it converges. Oth- 
erwise, the network is considered unable to learn the function. 

Figs. 2(a) to 2(d) are examples of the 2D sample patterns 
used in training the networks described below. They will be 
referred to as pattern 1 to 4. Each training points in Fig. 2 
is labeled 1 if it belongs to class 1, and labeled 0 otherwise. 
The first example shows how much more powerful a single 
neuron can be by using polynomial synapses. A single neu- 
ron with polynomial synapses and summation-only contacts 
as depicted in Fig. 3 (Network 1) is able to correctly classify 
patterns 1 and 4. For pattern 1, the synaptic transformations 
learned are 
Synapse 1: - 0 . 8 4 9 ~ t . ~ ~ ~  Synapse 2: -6.83022.728 - 
1.8072; + 0.14022 + 6.38622. The bias is -1.310. 
As is obvious, a single neuron with only linear synapses can- 
not learn any of the patterns since they are not linearly sepa- 
rable. Fig. 4 shows a single neuron with polynomial synapses 
and both summation and product contacts (Network 2). The 
contacts with synapses 1 and 2 are of the summation type, 
and the contacts with synapses 3 and 4 are of the product 
type. The network is able to learn the correct classification 
for patterns 1, 2 and 4. The synaptic transformations learned 
are omitted due to space limit. The highest order term in 
the synapse polynomials is 4.896, and the synapse with the 

highest degree polynomial has five terms. The multilayer 
networks in Fig. 5 (Network 3) is able to learn the classifi- 
cation of patterns 1,  3 and 4. The number of iterations for 
convergence for networks 1, 2 and 3 are shown in Table 1 
Also shown in Table 1 are the results of training the linear 
synapse network (Network 4 in Fig. 6) with the same struc- 
ture as Network 3. The multilayer linear synapse network 
is also able to learn patterns 1 and 4, but unable to learn 
pattern 3, i.e., it does not converge in 1,000,000 iterations. 
Fig. 7 shows examples of the classification functions learned 
by the nonlinear synapse networks. Each figure in Fig. 7 is 
produced by using regularly space sampling points (including 
training points) as testing samples. Points classified to class 
1 is labeled as 1, and points classified to 0 is labeled 0. 

The next five sample patterns are classification in a 4D 
space. The examples are generated by a multidimensional 
polynomial function. The polynomials for patterns 5 to 9 are 

P5 : 

P6 : 

P, : 

2: + z; + 2; + 2: - 3 = 0 
-2212; + 2; + 22123 + 2: - 2 = 0 

2: + 2; + 2; + 2: - 3 = 0 

( 5 )  

(6) 
(7) 

p9 : - 2 ~ ~ 2 & '  + Z; - zlz2 + 2232; (9) 

P .  : 2:22 - ZzS3 + Z; + 2222324 - 221 + 3 = 0 (8) 

-321222324 - 3 = 0 

A total of 225 Or so training samples are randomly generated 
from the integer points in the [-2,2]' cubic. Samples on 
the negative side belongs to one class, and samples on the 
positive side belongs to another class. A two-layer network 
(not counting the input layer) shown in Fig. 8 is used to 
learn 9, P6, P7 and Ps. A three-layer network of similar 
structure is used to learn Pg. 

Table 2 shows the number of iterations for convergence for 
both the multilayer nonlinear and linear synapse networks. 
The linear synapse network with the same structure is unable 
to converge for patterns 6,7, and 8 in 1,000,000 iterations. 
The learned synapse functions are not shown due to space 
limit. The highest exponents of the polynomials is 4.027 for 
P5, 6.014 for Ps, 6.891 for P7, 6.630 for Ps, and 7.848 for Pg. 
For P5 and P7, most of synapses have only one term with 
exponent in the interval of (1,2). 

Shown in Table 2 are also the results of generalization 
test, i.e., testing of the learned function using newly gen- 
erated samples. The testing samples are the integer points in 
the [-2,2]" cubic subtracting the 225 or so training samples. 
Therefore, there are about 400 testing samples in each case. 
The first number in the generalization column is the number 
of test samples correctly classified, and the second number is 
the total number of testing samples (excluding training sam- 
ples). For examples, the trained nonlinear synapse network 
correctly classifies over 96% of the testing samples in the best 
case, and over 83% in the worst case. 

Note that when both the linear synapse network and the 
polynomial synapse network converge, the number of iter- 
ations required by the nonlinear synapse network is much 
smaller, sometimes several order of magnitude smaller. Note 
that for a polynomial synapse network, each synapse has 
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more parameters to be updated than a linear synapse net- 
work. These computations are done serially in the simulation. 
In hardware implementation, all parameters can be updated 
at the same time. 

Of course, in all the above examples where a linear synapse 
network fails to converge, a larger linear synapse network may 
be able to learn the same function. However, since a linear 
synapse summation-only network does not have the freedom 
of adding independent higher order and cross terms, it may 
require a network with much connections to achieve the same 
performance of a nonlinear synapse network (with or without 
product contacts). 
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Fig. 1. Symbols for nonlinear synapses, summation 
and pruduct contacts. C 1 and C3 are summation 
contacts, and C2 is a product contact 

1 

Fig.3: Network 1: a single neuron with 
nonlinear synapses. . .  

I I 
Fig. 4. Network 2: a single neuron with 
nonlinear synapse and prcduct contact. 
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No. 
1 
2 
3 
4 

Network 1 Network 2 Network 3 Network 4 
20511 5284 2944 51720 

not convergent 101465 not convergent not convergent 
not convergent not convergent 10073 not convergent 

140167 21234 6762 10647 

Table 1: 2D experimental results 

Table 

1 1 

2: 4D experimental results. 
I 

1 1 

Fig. 5. Network 3: a twelayer nonlinear synapse network 

Fig. 6. Network 4: a two-layer linear synapse network 
having the same graph as Network 3. - 

1 0 0 00 111 1 00 00 0 00 
0 11 00 011 1 1 1 0  1 0  0 0 '  0 

1 0  0 0 1  0 1  0 0000 1 1 
00 10 0 000 11 00 

1 0 0  1 0 0  1 0  1 00 
0 1 1 1  0 0  0 0 1  0 

0 11 0 
0 1  0 0 00 111 000 000 00 111 00 

0 1 00 0 1 1 1 0  1 00 11 0 00 00 1 
1 00000 0 0 1 1 0  00 1 0 1  

0 11 0 0 0  

1 1  
1 0 0 1 000 00000 1 1 

(a) pat tun  1 ( b ) .  Pattern 2 (a). pattern 3 (d). Pattun 
r ig .  a Training samples of pattern 1 to 4. 

Fig. 8. A two-layer four-input nonliaear synapse network. 
All input units a~ directly connected to the output unit. 

1100001100 0000000000 1111111100 0000000000 
0000111100 0111111100 1100001100 0000000011 

0000001111 1100001100 0001111100 0011111100 
0000011111 0001111100 0001111000 1100001100 
0000011111 0001111100 0000111000 1100001100 

1100001100 0000011111 0001111100 0000111000 
1100001100 0000011111 0001111100 0000111000 

0000001111 1100001100 0001111100 0000111100 
0000000111 1100001100 

1100001100 0001111000 0001111111 
( a )  Pattern 1 (b). Pattern 2 (c). Pattern 3 (d). Pattorn 
Fig. 7 .  Uammification function learned by nonlinear aynapmo nmtuul 
frcm the training ample. i n  r ig .  4 

0001111100 0000111110 0000000001 

4 

4 
ckm 
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