
Artificial

Abstract

Neural Networks with Nonlinear Synapses
and Nonlinear Synaptic Contacts

Ping Liang and Nadeem Jamali
School of Computer Science

Technical University of Nova Scotia
Halifax, NS B3J 2x4 , Canada

A neural network model with polynomial synapses and
product contacts is investigated. The model further general-
ize the sigma-pi and product units models. All the coefficients
and exponents of the polynomial terms, the degrees of the
polynomials (the number of polynomial terms) are learned,
not predetermined. This can be useful when there is no a pri-
ori knowledge available to determine what higher order terms
to be included. The polynomial synapses together with prod-
uct contacts can produce any polynomial terms. Since the
number of learnable parameters are learned, in this aspect,
our network is much like the growth networks. The growth
networks in general have poor generalization. Several mech-
anisms in our network contribute to a better generalization
performance than the growth networks. Gradient descent al-
gorithms for training feedforward networks with polynomial
synapses and product contacts are developed. Experimental
results are presented.

1 Introduction
The McCulloch-Pitts neural network model [l] has the fol-
lowing three simplifying assumptions:

1. The interaction of all postsynaptic signals is a simple
summation in a latent period.

2. A synapse only linearly amplifies or attenuates the
presynaptic signal. This is modeled by a connection
weight that multiplies the presynaptic signal to produce
the postsynaptic signal.

3. There is only one synaptic contact between two neurons.

Because of the above simplifications, all the nonlinearity
necessary to achieve a desired transformation is restricted to
the neurons, i.e., the threshold or the sigmoidal transfer func-
tions of the neurons. Physiological data show that the above
three assumptions are not true in a real neural network. It is
known that a neuron may have more than one synaptic con-
tacts with another neuron. However, because of the first two
assumptions, such multiple synaptic connections are assumed
to be included by a single connection weight.

In real neural networks, the interaction of all postsynaptic
signals is more complicated than a simple summation. Neu-
rophysiological data show that the transformation between
the presynaptic and postsynaptic signals is not linear. The
transfer function of a synapse may be better modeled by a
nonlinear transformation than by a simple multiplication of
a linear coefficient.

Several models removing some of the above simplifying
assumptions have been reported. The sigma-pi units by
Rumelhart, Hinton and Williams [2] and the product units
by Durbin and Rumelhart [3] allow multiplication between
presynaptic or postsynaptic signals. Giles and Maxwell [4] in-
vestigate a special case of the sigma-pi units, called high-order
neural networks. The high-order networks use sigma-pi uints
only at the input layer. Encouraging results are reported in
both cases. These models can be further generalized along
the following lines:

1. The synapse transfer function in these models is still
only a linear amplification. Although the product units
and sigma-pi units introduce cross product terms, they
do not have the freedom of introducing higher order
terms of each presynaptic signal itself.

2. The sigma-pi and product units must be “handcrafted”
in the network using a priori knowledge before learning.
Although this is not necessarily a disadvantage since em-
bedding a priori knowledge is a way to alleviate the the
load of the learning algorithm, it is still desired to have a
network that is able to learn nonlinear synapse transfor-
mations when there is no a priori knowledge available.

3. The number of learnable parameters are fixed in the
sigma-pi, product and most other network models (ex-
cept the growth networks discussed later). Again, this
is not a disadvantage if a priori knowledge is available to
choose the right number of learnable parameters. The
number of learnable parameters should be kept to a min-
imum to ensure good generalization [5]. However, when
there is no a priori knowledge available, it is desired to
have a ntework that will gradually increase its number
of learnable parameters if the training examples cannot
be successfully loaded with a given number of learnable
parameters. Since the number of learnable parameters
is the key in determining the generalization performance
of network, the increase of the number of learnable pa-
rameters should be curtailed.

This paper reports our effort in developing a neural net-
work model along the directions suggested above. The new
models are not restricted by neurophysiological realizability
constraints and no claim of adherence to neurophysiological
data is made. Our goal at this st,age is to investigate how
the improvement of model a t the synapse and unit level may
contribute to improvement of the network performance. We
only consider feedforward neural networks in this paper. Re-
current networks and unsupervised learning networks will be
considered in the future.

0-7803-0720-8/92 $3.00 01992 IEEE

[9-131. The growth networks in general have poor gener-
alization. Our network include mechanisms preventing

ear Synapses and Its Back- the number of learnable parameters from growing too
large. In addition, the units used are continuous func-

propagation Learning *‘go- tions instead of hard limit as in the growth networks;
rit hm every learnable parameter is affected by all the train-

ing examples. These factors add together contributing
From a computational point of view, by restricting the to a better generalization performance than the growth
synapses being linear and restricting all the nonlinearity to networks.
the neurons, the freedom to introduce and change indepen- The polynomial synapse model is described below. The
dent nonlinear terms of the inputs is lost. Functions that transformation at a synapse from (neu-
involve nonlinear terms of individual inputs and nonlinear rons at the lowest level perform a transformation
cross terms will not be readily learned. This severely limits to scale all inputs to within [o, 1], as explained below), is of
the functions that can be realized by a given network. Re- the form:
mark that although a three layer network can approximate

For

2 Polynomial Model of Nonlin-

to

arbitrarily close any L1 function in a finite interval [6-81, it
requires an increasing number of hidden unit to do so.

m . J

f1J = f13 (YI) = w:3 yp” + waIJ ?/P (1)
fixed networks, there is a difference in which one provide a a=1

better approximation.

which may be linear or nonlinear. The actual transforma-
tion should be learned. To make the learning feasible, the

we propose to introduce a transformation at each synapse, where !/I is the Output Of neuron * * and is a positive
integer which is updated in learning. p13 is the only exponent
that is updated in each iteration during learning. At any

transformation must be of a form that accommodate time, terms each Of the integer exponents to
both linear and no&near transformations by adjusting its in addition to Y;’’ are present. In the mt3 = O ,

parameters. More importantly, the form of the transforma-
tion be to analysis and derivation of the
learning algorithm. As a first

is, the postsynaptic signal now becomes a polynomial of the
presynaptic

and PI3 = ’* During learnin& Only When it
exceeds 2 for the first time, m13 is set to one and a linear term

we propose to 18 permanently added. Later On, whenever an integer value

is introduced. The coefficient of a new term is set to zero
when it is first introduced. In our current implementation,

use polynomials to model the of That larger than m13 + is surpassed, a new Of Order mt3 +

instead of a simple multiplication of a
The symbols for synapses and nonlinear during learning and after learning PI3 may be

contacts are shown in Fig. 1. Note that a synapse now de-
noted with an endbulb contacting the neuron instead of just

to Or less than
may decrement

7 since the gradient descent updating
as increment PI,. Modification Of the

a connection. The number of terms, the exponents, and the
of the polynomi& at the synapses are moved in

the direction of least error, by a learning mechanism that is

algorithm
m V ~ terms with exponents higher than PI, be removed.

IJet

be made so that when P13 is Ieduced

derived using the gradient descent method.
The differences between this paper and networks using

sigma-pi units, product units, or predetermined polynomial

n J

FJ = FJ(flJ9 f Z J 9 . . . 9 f n j ,) f * J + c3 (2)
I 3 1

terms [2-41 of inputs are threefold.

1. Nonlinearity is introduced at each synapse.
where nJ is the number of inputs coming to 3 . Then the
output of neuron j is given as: Each

synapse has a polynomial transfer function. Higher or-

(3)
der terms of a presynaptic signal can be added by learn- 1

1 + exp-XFJ ing. The polynomial synapses together with product Y3 =
contacts can produce any polynomial terms. The prod-
uct terms in our model are produced as a result of prod-
uct of twoor more postsynapticsignah after polynomial
synapses. As a result, one product contact may produce
manv product terms of different degrees.

For every neuron 3, the learnable Parameters are Wuj, a =
1,2, . . - ,mS3, d3, PV, 1 = 1,2 , . , . ,%? and ~ 3 .

The gradient descent formulation and associated computa-
tional arrangements for networks with polynomial synapses

2. All the coefficients and exponents of the polynomial
terms, the degrees of the polynomials (the number of
polynomial terms) are learned, not predetermined. This
can be useful when there is no a priori knowledge avail-
able to determine what higher order terms to be in-
cluded.

3. The number of learnable parameters are learned. In this
aspect, our network is much like the growth networks

are developed. The procedure is similar to that of the stan-
dard backpropagation algorithm [2], and is omitted here due
to space limit except one remark: The term ln(y,) in the
derivatives requires that y3 > 0. In intermediate layers, this
does not cause a problem since 0 < y3 < 1. At the input
layer, this is taken care of by scaling the input to (0,l) .

Discussions of elimination of terms with small coefficient,
hardware considerations and scaling of the input are omitted
here due to spilce limit.

1044

3 Networks with Both Summa- 4 Generalization of Learning
tion and Product Contacts and Relation between Non-

linear Synapse Networks and
Linear Synapse Growth Net-
works

In real neural networks, there are multiple synaptic connec-

not exist in neural network models using linear synapses and
tions between two neurons. Such multiple connections do

summation contacts. This is because all synapses are lin-
ear, and if there are multiple connections, their effects are
equally modeled by a single synapse with its weight equal to
the sum of all connection weights. Neurophysiological data
suggest that the interaction between postsynaptic signals is
more than just a linear summation. This disagreement be-
tween linear synapse neural network models and real neural
networks prompted us to investigate nonlinear synaptic con-
tacts and the effects of multiple synaptic connections between
two neurons. Multiple synaptic contacts are also present in
sigma-pi and product unit networks [2,3]. The product terms
in our model are produced as a result of product of two or
more postsynaptic signals after polynomial synapses. As a re-
sult, one product contact may produce many product terms
of different degrees.

We modify the linear summation neuron model by allowing
both summation and product of postsynaptic signals, that is,
Eq. (2) is modified to:

where n3 is the number of postsynaptic signals in the summa-
tion, rn3 is the total number of product terms, and k, is the
number of postsynaptic signals involved in the ith product
term. Note that some of the postsynaptic signals in the sum-
mation term and the product term may come from the same
neuron. Also, some of the postsynaptic signals may have both
a summation contact and one or more product contacts with
a neuron, thus appearing in both the summation and product
terms. The sigmoidal transfer function of a neuron is then
applied to F3 defined in the above equation.

A postsynaptic signal that contributes a summation term
in Eq. (4) is said to have a linear or summation synaptic con-
tact, or summation contact for short with neuron j . Similarly,
a postsynaptic signal that contributes to a product term in
Eq. (4) is said to have a nonlinear or product synaptic con-
tact, or product contact for short, with neuron j .

From a computational point of view, allowing both sum-
mation and product contacts provides a network with the
freedom of adding independent cross terms in the polynomial
F3. The gradient descent formulation is generalized to include
the product contacts. Derivation of the learning algorithm is
omitted.

From the viewpoint of increasing the function representation
capacity, increasing the degrees (and terms) of the polynomi-
als at the synapses of a nonlinear synapse network is equiva-
lent to increasing the size of a linear synapse network. There
have been several algorithms in the literature that grows a
network for a given classification task [9-131. We refer to this
type of networks (algorithms) as the growth networks (algo-
rithms). The idea is to learn the structure and the weights of
the network simultaneously. If the training samples cannot
be learned, the growth algorithms will add more neurons and
connections. Growth algorithms are guaranteed to converge.
The problem is that the algorithm may grow a overly large
network and may lead to poor generalization. We claim that
increasing the nonlinearity of synapses should yield a bet-
ter generalization than adding neurons and connections as in
growth algorithms. Our claim is supported by experimental
results. This is because of the following reasons:

1. For a difficult classification problem, the decision surface
to be learned is highly nonlinear in the pattern space at
the hidden layers (transformed image space). In a linear
synapse network, although the overall decision surface
realized is curved, the sub-decision surface at each neu-
ron is a plane. Only the position and orientation of the
plane can be adjusted to approximate the function to
be learned, whereas in a nonlinear synapse network, the
decision surface at each neuron is a curved surface. Not
only the position and orientation, but also the shape of
the curved surface can be adjusted to approximate the
decision surface. As a result, a better approximation can
be achieved requiring a less number of subdecision sur-
faces using a nonlinear synapse network. A less number
of sub-decision surfaces should yield a better generaliza-
tion.

2. Growth algorithms use hard-limit threshold unit. The
network in this paper uses sigmoidal functions at neu-
rons. Information is not lost as a result of early imma-
ture decision from layer to layer as in the growth algo-
rithms [14]. Therefore, less units may be required than
using hard-limit unit. (see the analog factor in [15]).

3. Growth algorithms may end up adding one neuron (and
the corresponding connections) for one sample. The de-
gree (and the number of terms), and all the added pa-
rameters of the polynomial of a synapse are affected by
all training samples. The exponents may go up and
may go down depending on the direction of the gradi-
ent. Since the generalization capability of a network
is determined by the number of its learnable parame-
ters [5], a possible way to ensure good generalization
is fix the total number of learnable parameters before-

1045

4.

5

hand. Then, during learning, these synapses requiring
more learnable parameters (exponents and coefficients
for a higher degree polynomial) will get more. Synapses
may eliminate terms with small coefficients to release
the learnable parameters they grabbed but no longer
need. This is effectively a network which learns both its
parameters and the structure (i.e., distribution of learn-
able parameters), although it may appear to have fixed
graph representation of the network. Such a scheme may
be implemented in hardware.

In our network, the inputs are scaled to (0,l) at the
first layer. As a result, higher order terms has less in-
fluence because all signal having a magnitude less than
one. This effectively prevents the degrees of the polyno-
mials from incrementing to impractically high. Hence,
the total number of parameters in the network is pre-
vented from growing too large. This limiting capability
is inherent and is not a hard-limit type (i.e., it does not
prespecify a fixed degree for the synapses polynomials).

Experiment a1 Results
Networks of various structures with polynomial synapses and
linear contacts, and networks with polynomial synapses and
both summation and product contacts, are trained using the
gradient descent algorithms described in this paper. The
learning algorithms and the networks are tested on many
examples. Due to space limit, only some of the representa-
tive test results are presented below and are compared with
networks with linear synapses and summation-only contacts.
In the following, one iteration means the presentation of one
training sample to the learning algorithm. If a network is able
to learn the correct classification of the training samples in
less than 1,000,000 iterations, we say that it converges. Oth-
erwise, the network is considered unable to learn the function.

Figs. 2(a) to 2(d) are examples of the 2D sample patterns
used in training the networks described below. They will be
referred to as pattern 1 to 4. Each training points in Fig. 2
is labeled 1 if it belongs to class 1, and labeled 0 otherwise.
The first example shows how much more powerful a single
neuron can be by using polynomial synapses. A single neu-
ron with polynomial synapses and summation-only contacts
as depicted in Fig. 3 (Network 1) is able to correctly classify
patterns 1 and 4. For pattern 1, the synaptic transformations
learned are
Synapse 1: - 0 . 8 4 9 ~ t . ~ ~ ~ Synapse 2: -6.83022.728 -
1.8072; + 0.14022 + 6.38622. The bias is -1.310.
As is obvious, a single neuron with only linear synapses can-
not learn any of the patterns since they are not linearly sepa-
rable. Fig. 4 shows a single neuron with polynomial synapses
and both summation and product contacts (Network 2). The
contacts with synapses 1 and 2 are of the summation type,
and the contacts with synapses 3 and 4 are of the product
type. The network is able to learn the correct classification
for patterns 1, 2 and 4. The synaptic transformations learned
are omitted due to space limit. The highest order term in
the synapse polynomials is 4.896, and the synapse with the

highest degree polynomial has five terms. The multilayer
networks in Fig. 5 (Network 3) is able to learn the classifi-
cation of patterns 1, 3 and 4. The number of iterations for
convergence for networks 1, 2 and 3 are shown in Table 1
Also shown in Table 1 are the results of training the linear
synapse network (Network 4 in Fig. 6) with the same struc-
ture as Network 3. The multilayer linear synapse network
is also able to learn patterns 1 and 4, but unable to learn
pattern 3, i.e., it does not converge in 1,000,000 iterations.
Fig. 7 shows examples of the classification functions learned
by the nonlinear synapse networks. Each figure in Fig. 7 is
produced by using regularly space sampling points (including
training points) as testing samples. Points classified to class
1 is labeled as 1, and points classified to 0 is labeled 0.

The next five sample patterns are classification in a 4D
space. The examples are generated by a multidimensional
polynomial function. The polynomials for patterns 5 to 9 are

P5 :

P6 :

P, :

2: + z; + 2; + 2: - 3 = 0
-2212; + 2; + 22123 + 2: - 2 = 0

2: + 2; + 2; + 2: - 3 = 0

(5)

(6)
(7)

p9 : - 2 ~ ~ 2 & ' + Z; - zlz2 + 2232; (9)

P . : 2:22 - ZzS3 + Z; + 2222324 - 221 + 3 = 0 (8)

-321222324 - 3 = 0

A total of 225 Or so training samples are randomly generated
from the integer points in the [-2,2]' cubic. Samples on
the negative side belongs to one class, and samples on the
positive side belongs to another class. A two-layer network
(not counting the input layer) shown in Fig. 8 is used to
learn 9, P6, P7 and Ps. A three-layer network of similar
structure is used to learn Pg.

Table 2 shows the number of iterations for convergence for
both the multilayer nonlinear and linear synapse networks.
The linear synapse network with the same structure is unable
to converge for patterns 6,7, and 8 in 1,000,000 iterations.
The learned synapse functions are not shown due to space
limit. The highest exponents of the polynomials is 4.027 for
P5, 6.014 for Ps, 6.891 for P7, 6.630 for Ps, and 7.848 for Pg.
For P5 and P7, most of synapses have only one term with
exponent in the interval of (1,2).

Shown in Table 2 are also the results of generalization
test, i.e., testing of the learned function using newly gen-
erated samples. The testing samples are the integer points in
the [-2,2]" cubic subtracting the 225 or so training samples.
Therefore, there are about 400 testing samples in each case.
The first number in the generalization column is the number
of test samples correctly classified, and the second number is
the total number of testing samples (excluding training sam-
ples). For examples, the trained nonlinear synapse network
correctly classifies over 96% of the testing samples in the best
case, and over 83% in the worst case.

Note that when both the linear synapse network and the
polynomial synapse network converge, the number of iter-
ations required by the nonlinear synapse network is much
smaller, sometimes several order of magnitude smaller. Note
that for a polynomial synapse network, each synapse has

1046

more parameters to be updated than a linear synapse net-
work. These computations are done serially in the simulation.
In hardware implementation, all parameters can be updated
at the same time.

Of course, in all the above examples where a linear synapse
network fails to converge, a larger linear synapse network may
be able to learn the same function. However, since a linear
synapse summation-only network does not have the freedom
of adding independent higher order and cross terms, it may
require a network with much connections to achieve the same
performance of a nonlinear synapse network (with or without
product contacts).

Acknowledgement This is work was supported in
part by a grant from the Natural Science and Engineering
Research Council of Canada.

References
[l] McCulloch, W.S. and W. Pitts, “A logical calculus of

ideas immanent in nervous activity”, Bull. of Math. Bio-

[2] Rumelhart, D.E., Hinton, G.E., Williams, R.J., “Learn-
ing internal representations by error propagation”, in Parallel
distributed processing, eds. D.E. Rumelhart, J.L. McClelland,
MIT Press, Cambridge, MA, 1986, pp. 318-362.

[3] R. Durbin and D.E. Rumelhart, “Product units: a com-
putationally powerful and biologically plausible extension to
the backpropagation networks”, Neural Computation, vol.1,
No. 1, 1989.

[4] C.L. Giles and T. Maxwell, “Learning, invariance, and
generalization in high-order neural networks”, Applied Op-
tics, vol. 26, 1987, pp. 4972-4978.

[5] Baum, E.B. and Haussler, D.: ‘What size net gives
valid generalization?’, Neural Computation, vol. I, 1989, pp.

[6] Cybenko, G., 1989. Approximation by superpositions
of a sigmoidal function. Math. Control Signals Systems, 2,

[7] Carroll, S.M. and B. W. Dickinson, 1989. Construction
of neural nets using the random transform. In Proc. Intl.
Joint Conf. Neural Networks, June 1989, Washington, DC.,

[8] Hornik, K . , M. Stinchcombe and H. White, 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural Networks, vol. 2, 1989, pp. 359-366.

[9] Frean, M., The upstart algorithm: A method for con-
structing and training feedforward networks”, Neural Com-

[lo] Marchand, M., Golea, M. and Rujan, P., “A conver-
gence theorem for sequential learning in two-layer Percep
trons”, Europhys. Lett., 11, 1990, pp. 487-492.

[ll] Mezard, M. and Nadal, J., “Learning in feedforward
layered networks: the tiling algorithm”, J. Phys. A, 22,1990,
pp. 2191.

[12] Liang, P. “Problem decomposition and subgoaling in
artificial neural networks”. Proc. 1990 IEEE Conf. Syst.
Man Cybernetics, Nov. 4-7, 1990. Los Angeles, CA. pp. 178-
181.

physics, vol. 5, 1943, pp. 115-133.

151-160.

303-314.

vol. I, pp. 607-611.

put., 2 , pp. 198-209, 1990.

[13] Yin, H.F. and Liang, P., “A Connectionist Expert Sys-
tem Combining Production System and Associative Mem-
ory”, vol. 5, No. 4, 1991, pp. 523-544.

[14] Sethi, I.K., “Entropy nets: From decision trees to neu-
ral networks”, Proc. IEEE, vol. 78, 1990, pp. 1605-1613.

[15] Abu-Mostafa, Y.: ‘Complexity in neural systems’, in
Analog VLSI and neural systems, by C. Mead, Addison Wes-
ley, Reading, MA, 1989.

Fig. 1. Symbols for nonlinear synapses, summation
and pruduct contacts. C 1 and C3 are summation
contacts, and C2 is a product contact

1

Fig.3: Network 1: a single neuron with
nonlinear synapses. . .

I I
Fig. 4. Network 2: a single neuron with
nonlinear synapse and prcduct contact.

1047

No.
1
2
3
4

Network 1 Network 2 Network 3 Network 4
20511 5284 2944 51720

not convergent 101465 not convergent not convergent
not convergent not convergent 10073 not convergent

140167 21234 6762 10647

Table 1: 2D experimental results

Table

1 1

2: 4D experimental results.
I

1 1

Fig. 5. Network 3: a twelayer nonlinear synapse network

Fig. 6. Network 4: a two-layer linear synapse network
having the same graph as Network 3. -

1 0 0 00 111 1 00 00 0 00
0 11 00 011 1 1 1 0 1 0 0 0 ' 0

1 0 0 0 1 0 1 0 0000 1 1
00 10 0 000 11 00

1 0 0 1 0 0 1 0 1 00
0 1 1 1 0 0 0 0 1 0

0 11 0
0 1 0 0 00 111 000 000 00 111 00

0 1 00 0 1 1 1 0 1 00 11 0 00 00 1
1 00000 0 0 1 1 0 00 1 0 1

0 11 0 0 0

1 1
1 0 0 1 000 00000 1 1

(a) pat tun 1 (b) . Pattern 2 (a). pattern 3 (d). Pattun
r ig . a Training samples of pattern 1 to 4.

Fig. 8. A two-layer four-input nonliaear synapse network.
All input units a~ directly connected to the output unit.

1100001100 0000000000 1111111100 0000000000
0000111100 0111111100 1100001100 0000000011

0000001111 1100001100 0001111100 0011111100
0000011111 0001111100 0001111000 1100001100
0000011111 0001111100 0000111000 1100001100

1100001100 0000011111 0001111100 0000111000
1100001100 0000011111 0001111100 0000111000

0000001111 1100001100 0001111100 0000111100
0000000111 1100001100

1100001100 0001111000 0001111111
(a) Pattern 1 (b). Pattern 2 (c). Pattern 3 (d). Pattorn
Fig. 7 . Uammification function learned by nonlinear aynapmo nmtuul
frcm the training ample. i n r ig . 4

0001111100 0000111110 0000000001

4

4
ckm

1048

