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Abstract. Feature selection for ensembles has shown to be an effective strategy
for ensemble creation due to its ability of producing good subsets of features,
which make the classifiers of the ensemble disagree on difficult cases. In this pa-
per we present an ensemble feature selection approach based on a hierarchical
multi-objective genetic algorithm. The algorithm operates in two levels. Firstly, it
performs feature selection in order to generate a set of classifiers and then it chooses
the best team of classifiers. In order to show its robustness, the method is evalu-
ated in two different contexts: supervised and unsupervised feature selection. In
the former, we have considered the problem of handwritten digit recognition while
in the latter, we took into account the problem of handwritten month word recog-
nition. Experiments and comparisons with classical methods, such as Bagging
and Boosting, demonstrated that the proposed methodology brings compelling
improvements when classifiers have to work with very low error rates.

1 Introduction

Ensemble of classifiers has been widely used to reduce model uncertainty and improve
generalization performance. Developing techniques for generating candidate ensemble
members is a very important direction of ensemble of classifiers research. It has been
demonstrated that a good ensemble is one where the individual classifiers in the ensemble
are both accurate and make their errors on different parts of the input space [7]. In other
words, an ideal ensemble consists of good classifiers (not necessarily excellent) that
disagree as much as possible on difficult cases.

The literature has shown that varying the feature subsets used by each member of the
ensemble should help to promote this necessary diversity [6, 15, 18]. Traditional feature
selection algorithms aim at finding the best trade-off between features and generalization.
On the other hand, ensemble feature selection has the additional goal of finding a set
of feature sets that will promote disagreement among the component members of the
ensemble. The Random Subspace Method (RMS) proposed by Ho in [6] was one early
algorithm that constructs an ensemble by varying the subset of features. Strategies based
on genetic algorithms (GAs) also have been proposed [5, 15]. All these strategies claim
better results than those produced by traditional methods for creating ensembles such
as Bagging and Boosting. In spite of the good results brought by GA-based methods,
they still can be improved in some aspects, e.g., avoiding classical methods such as
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the weighted sum to combine multiple objective functions. It is well known that when
dealing with this kind of combination, one should deal with problems such as scaling
and sensitivity towards the weights.

It has been demonstrated that feature selection through multi-objective genetic algo-
rithm (MOGA) is a very powerful tool for finding a set of good classifiers [4, 14], since
GA is quite effective in rapid global search of large, non-linear and poorly understood
spaces [17]. Besides, it can overcome problems such as scaling and sensitivity towards
the weights. Kudo and Sklansky [8] have compared several algorithms for feature selec-
tion and concluded that GAs are suitable when dealing with large-scale feature selection
(number of features is over 50). This is the case of most of the problems in handwriting
recognition, which is the test problem in this work.

In this light, we propose an ensemble feature selection approach based on a hier-
archical MOGA. The underlying paradigm is the “overproduce and choose” [16]. The
algorithm operates in two levels. The former is devoted to generate a set of good classi-
fiers by minimizing two criteria: error rate and number of features. The latter combines
these classifiers in order to find an ensemble by maximizing the following two criteria:
accuracy of the ensemble and a measure of diversity. We demonstrated through exper-
imentation that using diversity jointly with performance to guide selection can avoid
overfitting during the search.

In order to show robustness of the proposed methodology, it was evaluated in two
different contexts: supervised and unsupervised feature selection. In the former, we have
considered the problem of handwritten digit recognition and used three different feature
sets and multi-layer perceptron (MLP) neural networks as classifiers. In the latter, we
took into account the problem of handwritten month word recognition and used three
different feature sets and hidden Markov models (HMM) as classifiers. We demonstrate
that it is feasible to find compact clusters and complementary high-level representa-
tions (codebooks) in subspaces without using the recognition results of the system.
Experiments and comparisons with classical methods, such as Bagging and Boosting,
demonstrated that the proposed methodology brings compelling improvements when
classifiers have to work with very low error rates.

2 Methodology Overview

In this section we outline the hierarchical approach proposed. As stated before, it is
based on an “overproduce and choose” paradigm where the first level generates several
classifiers by conducting feature selection and the second one chooses the best ensemble
among such classifiers. Figure 1 depicts the proposed methodology. Firstly, we carry out
feature selection by using a MOGA. It gets as inputs a trained classifier and its respective
data set. Since the algorithm aims at minimizing two criteria during the search1, it
will produce at the end a 2-dimensional Pareto-optimal front, which contains a set of
classifiers (trade-offs between the criteria being optimized). The final step of this first
level consists in training such classifiers.

1 Error rate and number of features in the case of supervised feature selection and a clustering
index and the number of features in the case of unsupervised feature selection.



594 L.S. Oliveira et al.

. . .

LEVEL 1: OVERPRODUCE

Trained Classifier
and Data Set

MOGA Population

Pareto-optimal
Front

. . .

LEVEL 2: CHOOSE

C 0 C 1 C 2 CL
. . .

Training Classifiers

Pareto-optimal
Front

Validation
Curve

Best
Ensemble

Diversity

P
e

rf
o

rm
an

c
e 

o
f 

th
e

 E
ns

e
m

b
le

Number of Features

E
rr

o
r 

R
at

e

MOGA Population

“Features”

“Classifiers”

Fig. 1. An overview of the proposed methodology

Once the set of classifiers have been trained, the second level is suggested to pick the
members of the team which are most diverse and accurate. Let A = {C1, C2, . . . , CL}
be a set of L classifiers extracted from the Pareto-optimal and B a chromosome of size L
of the population. The relationship between A and B is straightforward, i.e., the gene i of
the chromosome B is represented by the classifier Ci from A. Thus, if a chromosome has
all bits selected, all classifiers of A will be included in the ensemble. Therefore, the algo-
rithm will produce a 2-dimensional Pareto-optimal front which is composed of several
ensembles (trade-offs between accuracy and diversity). In order to choose the best one,
we use a validation set, which points out the most diverse and accurate team among all.
Later in this paper, we will discuss the issue of using diversity to choose the best ensemble.

In both cases, MOGAs are based on bit representation, one-point crossover, and
bit-flip mutation. In our experiments, MOGA used is a modified version of the Non-
dominated Sorting Genetic Algorithm (NSGA) [2] with elitism.

3 Classifiers and Feature Sets

As stated before, we have carried out experiments in both supervised and unsupervised
contexts. The remaining of this section describes the feature sets and classifiers we have
used.

3.1 Supervised Context

To evaluate the proposed methodology in the supervised context, we have used three
base classifiers trained to recognize handwritten digits of NIST SD19. Such classifiers
were trained with three well-known feature sets: Concavities and Contour (CCsc) [13],
Distances (DDDsc), and Edge Maps (EMsc). All classifiers here are MLPs trained with
the gradient descent applied to a sum-of-squares error function.

The training (TRDBsc) and validation (VLDB1sc) sets are composed of 195,000
and 28,000 samples from hsf 0123 series respectively while the test set (TSDBsc) is
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Table 1. Description and performance of the classifiers on TSDB (zero-rejection level)

Feature Number. of Units in the Rec. Rec. Rate
Set Features Hidden Layer Rate (%) Err=0.1% Err=0.5%

CCsc 132 80 99.13 91.83 98.50
DDDsc 96 60 98.17 75.11 92.80
EMsc 125 70 97.04 60.11 85.10
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Fig. 2. Topologies of (a) space, (b), and (c) letter models

composed of 30,089 samples from the hsf 7. We consider also a second validation set
(VLDB2sc), which is composed of 30,000 samples of hsf 7. This data is used to select
the best ensemble of classifiers. Table 1 reports the performance of all classifiers at
zero-rejection level and error rates fixed at low levels (0.10 and 0.50%). These numbers
are much more meaningful when dealing with real applications since they describe the
recognition rate in relation to a specific error rate, including implicitly a corresponding
reject rate. They also corroborates that recognition of handwritten digits is still an open
problem when very low error rates are required.

3.2 Unsupervised Context

To evaluate the proposed methodology in unsupervised context we have used three
HMM-based classifiers trained to recognize handwritten Brazilian month words
(“Janeiro”, “Fevereiro”, “Março”, “Abril”, “Maio”, “Junho”, “Julho”, “Agosto”, “Setem-
bro”, “Outubro”, “Novembro”, “Dezembro”). The training (TRDBuc), validation
(VLDB1uc), and testing (TSDBuc) sets are composed of 1,200, 400, and 400 sam-
ples, respectively. In order to increase the training and validation sets, we have also
considered 8,300 and 1,900 word images, respectively, extracted from the legal amount
database. This is possible because we are considering character models. We consider
also a second validation set (VLDB2uc) of 500 handwritten Brazilian month words.
Such data is used to select the best ensemble of classifiers.

Given a discrete HMM-based approach, each word image is transformed as a whole
into a sequence of observations by the successive application of preprocessing, segmen-
tation, and feature extraction. Preprocessing consists of correcting the average character
slant. The segmentation algorithm uses the upper contour minima and some heuristics to
split the date image into a sequence of segments (graphemes), each of which consists of
a correctly segmented, an under-segmented, or an over-segmented character. A detailed
description of the preprocessing and segmentation stages is given in [12].
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The word models are formed by the concatenation of appropriate elementary HMMs,
which are built at letter and space levels. The topology of space model shown in Figure
2(a) consists of two states linked by two transitions that encode a space (transition t01)
or no space (transition t01 = Φ).

Two topologies of letter models were chosen based on the output of our grapheme-
based segmentation algorithm which may produce a correct segmentation of a letter, a
letter under-segmentation or a letter over-segmentation into two, three, or four graphemes
depending on each letter. In order to cope with these configurations of segmentations,
we have designed topologies with three different paths leading from the initial state to
the final state. Considering uppercase and lowercase letters, we need 42 models since
the legal amount alphabet is reduced to 21 letter classes and we are not considering the
unused ones. Thus, regarding the two topologies, we have 84 HMMs which are trained
using the Baum-Welch algorithm with the Cross-Validation procedure.

The feature set that feeds the first classifier is a mixture of concavity and contour
features (CCuc) [13]. In this case, each grapheme is divided into two equal zones (hori-
zontal) where for each region a concavity and contour feature vector of 17 components is
extracted. Therefore, the final feature vector has 34 components. The other two classifiers
make use of a feature set based on distances. The former uses the same zoning discussed
before (two equal zones), but in this case, for each region a vector of 16 components
is extracted. This leads to a final feature vector of 32 components (DDD32uc). For the
latter we have tried a different zoning. Table 2 reports the performance of all classifiers
on the test set at zero-rejection level and error rates fixed at 1 and 4%. We have chosen
higher error rates in this case due to the size of the database we are dealing with.

Table 2. Performance of the classifiers on the test set

Feature Number of Codebook Rec. Rate Rec. Rate
Set Features Size (%) Err=1% Err=4%

CCuc 34 80 86.1 61.0 79.2
DDD32uc 32 40 73.0 30.5 48.4
DDD64uc 64 60 64.5 24.9 37.0

It can be observed from Table 2 that the recognition rates with error fixed at 1 and
4% are very poor, hence, the number of rejected patterns is very high. We will see in the
next sections that the proposed methodology can improve these results considerably.

4 Implementation

This section introduces how we have implemented both levels of the proposed method-
ology. First we discuss the supervised context and then the unsupervised.

4.1 Supervised Feature Subset Selection

The feature selection algorithm used in here was introduced in [14]. To make this paper
self-contained, a brief description is included in this section.
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As stated elsewhere, the idea of using feature selection is to promote diversity among
the classifiers. To tackle such a task we have to optimize two objective functions: min-
imization of the number of features and minimization of the error rate of the classifier.
Computing the first one is simple, i.e., the number of selected features. The problem lies
in computing the second one, i.e., the error rate supplied by the classifier. Regarding a
wrapper approach, in each generation, evaluation of a chromosome (a feature subset)
requires training the corresponding neural network and computing its accuracy. This
evaluation has to be performed for each of the chromosomes in the population. Since
such a strategy is not feasible due to the limits imposed by the learning time of the huge
training set considered in this work, we have adopted the strategy proposed by Moody
and Utans in [9], who use the sensitivity of the network to estimate the relationship
between the input features and the network performance.

Moody and Utans show that when variables with small sensitivity values with respect
to the network outputs are removed, they do not influence the final classification. So,
in order to evaluate a given feature subset we replace the unselected features by their
averages. In this way, we avoid training the neural network and hence turn the wrapper
approach feasible for our problem. Such a scheme makes it feasible to deal with huge
databases in order to better represent the pattern recognition problem during the fitness
evaluation. Moreover it can accommodate multiple criteria such as the number of features
and the accuracy of the classifier, and generate the Pareto-optimal front in the first run
of the algorithm.
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Fig. 3. Evolution of the population in the objective plane

It can be observed in Figure 3 that the Pareto-optimal front is composed of several
different classifiers. To find out which classifiers of the Pareto-optimal front compose
the best ensemble, we carried out a second level of search. Once we did not train the
models during the search (the training step is replaced by the sensitivity analysis), the
last step of feature selection consists of training the solutions provided by the Pareto-
optimal front (1).

4.2 Choosing the Best Ensemble

As defined in Section 2 each gene of the chromosome is represented by a classifier
produced in the previous level. Therefore, if a chromosome has all bits selected, all
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classifiers will compose the team. In order to find the best ensemble of classifiers,
i.e., the most diverse set of classifiers that brings a good generalization, we have used
two objective functions during this level of the search, namely, maximization of the
recognition rate of the ensemble and maximization of a measure of diversity. We have
tried different measures such as overlap, entropy, and ambiguity [7]. The results achieved
with ambiguity and entropy were very similar. In this work we have used ambiguity as
diversity measure. The ambiguity is defined as follows:

ai(xk) = [Vi(xk) − V (xk)]2 (1)

where ai is the ambiguity of the ith classifier on the example xk, randomly drawn from an
unknown distribution, while Vi and V are the ith classifier and the ensemble predictions,
respectively. In other words, it is simply the variance of ensemble around the mean, and
it measures the disagreement among the classifiers on input x. Thus the ambiguity of an
ensemble measured on a set of M samples is

A =
1
N

∑ 1
M

M∑

k=1

ai(xk) (2)

where N is the number of classifiers. So, if the classifiers implement the same functions,
the ambiguity A will be low, otherwise it will be high.

At this level of the strategy we want to maximize the generalization of the ensemble,
therefore, it will be necessary to use a way of combining the outputs of all classifiers to
get a final decision. To do this, we have used the average, which is a simple and effective
scheme of combining predictions of the neural networks. Other combination rules such
as product, min, and max have been tested but the simple average has produced slightly
better results. In order to evaluate the objective functions during the search described
above we have used the validation set VLDB1sc.

4.3 Unsupervised Feature Subset Selection

A lot of work done in the field of handwritten word recognition take into account discrete
HMMs as classifiers, which have to be fed with a sequence of discrete values (symbols).
This means that before using a continuous feature vector, we must convert it to discrete
values. A common way to do that is through clustering. The problem is that for the
most of real-life situations we do not know the best number of clusters, what makes it
necessary to explore different numbers of clusters using traditional clustering methods
such as the K-means algorithm and its variants. In this light, clustering can become a
trial-and-error work. Besides, its result may not be very promising especially when the
number of clusters is large and not easy to estimate.

Unsupervised feature selection emerges as a clever solution to this problem. The
literature contains several studies on feature selection for supervised learning, but only
recently, the feature selection for unsupervised learning has been investigated [3]. The
objective in unsupervised feature selection is to search for a subset of features that best
uncovers “natural” groupings (clusters) from data according to some criterion. In this
way, we can avoid the manual process of clustering and find the most discriminative
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features in the same time. Hence, we will have at the end a more compact and robust
high-level representation (symbols).

In the above context, unsupervised feature selection also presents a multi-criterion
optimization function, where the objective is to find compact and well separated hyper-
spherical clusters in the feature subspaces. Differently of the supervised feature selection,
here the criteria optimized by the algorithm are a validity index and the number of
features. [11].

In order to measure the quality of clusters during the clustering process, we have
used the Davies-Bouldin (DB)-index [1] over 80,000 feature vectors extracted from the
training set of 9,500 words. To make such an index suitable for our problem, it must be
normalized by the number of selected features. This is due to the fact that it is based
on geometric distance metrics and therefore, it is not directly applicable here because
it is biased by the dimensionality of the space, which is variable in feature selection
problems.

We have noticed that the value of DB index decreases as the number of features
increases. We have correlated this effect with the normalization of DB-index by the
number of features. In order to compensate this, we have considered as second objective
the minimization of the number of features. In this case, one feature must be set at
least. Figure 4 depicts the Pareto-optimal front found after the search, the relationship
between the number of clusters and number of features and the relationship between the
recognition rate on the validation set and the number of features.

Once we have a limited space here, we opted by not showing the Pareto-optimal front
for unsupervised case. However, it is very similar to that presented in Figure 3. Figure
4 shows the relationship between the number of clusters and the number of features and
the relationship between the recognition rate and the number of features. The way of
choosing the best ensemble is exactly the same as introduced in Section 4.2.
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tionship between the recognition rate and the number of features
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5 Experimental Results

All experiments in this work were based on a single-population master-slave MOGA. In
this strategy, one master node executes the genetic operators (selection, crossover and
mutation), and the evaluation of fitness is distributed among several slave processors.
We have used a Beowulf cluster with 17 (one master and 16 slaves) PCs (1.1Ghz CPU,
512Mb RAM) to execute our experiments.

The following parameter settings were employed in both levels: population size
= 128, number of generations = 1000, probability of crossover = 0.8, probability of
mutation = 1/L (where L is the length of the chromosome), and niche distance (σshare)
= [0.25,0.45]. The length of the chromosome in the first level is the number of components
in the feature set (see Table 1), while in the second level is the number of classifiers picked
from the Pareto-optimal front in the previous level.

In order to define the probabilities of crossover and mutation, we have used the one-
max problem, which is probably the most frequently-used test function in research on
genetic algorithms because of its simplicity. This function measures the fitness of an
individual as the number of bits set to one on the chromosome. We have used a standard
genetic algorithm with a single-point crossover and the maximum generations of 1000.
The fixed crossover and mutation rates are used in a run, and the combination of the
crossover rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the mutation rates of 0.1/L, 1/L and 10/L,
where L is the length of the chromosome. The best results were achieved with Pc = 0.8
and Pm = 1/L. The parameter σshare was tuned empirically.

5.1 Experiments in the Supervised Context

Once all parameters have been defined, the first step, as described in Section 4.1, consists
of performing feature selection for a given feature set. As depicted in Figure 3, this
procedure produces quite a large number of classifiers, which should be trained for use
in the second level. After some experiments, we found out that the second level never
chooses those classifiers with poor performance (e.g., error > 60%) to compose the
ensemble. Thus, in order to speed up the training process and the second level of search
as well, we decide not to use them in the second level. To train such classifiers, the
same databases reported in Section 3.1 were used. Table 3 summarizes the classifiers
that undergoes to the second level for the three feature sets we have considered.

Considering for example the feature set CCsc, the first level of the algorithm pro-
vided 81 classifiers which have the number of features ranging from 24 to 125 and
recognition rates ranging from 90.5% to 99.1% on TSDBsc. This shows the great di-

Table 3. Summary of the classifiers produced by the first level

Feature No. of Range of Range of
Set Classifiers Features Rec. Rates (%)

CCsc 81 24-125 90.5 - 99.1
DDDsc 54 30-84 90.6 - 98.1
EMsc 78 35-113 90.5 - 97.0
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Fig. 5. The Pareto-optimal front produced by the second-level MOGA: (a) S1 and (b) S2

versity of the classifiers produced by the feature selection method. Based on Table 3
we define four sets of base classifiers as follows: S1 = {CCsc0, . . . , CCsc80}, S2 =
{DDDsc0, . . . ,DDDsc53}, S3 = {EMsc0, . . . , EMsc77}, and S4 = {S1

⋃
S2

⋃

S3}. All these sets could be seem as ensembles, but in this work we reserve the word
ensemble to characterize the results yielded by the second-level of the algorithm. In or-
der to assess the objective functions of the second-level of the algorithm (generalization
of the ensemble and diversity) we have used the validation set (VLDB1sc).

Like the first level, the second one also generates a set of possible solutions which
are the trade-offs between the generalization of the ensemble and its diversity. Thus the
problem now lies in choosing the most accurate ensemble among all. Figure 5 depicts
the variety of ensembles yielded by the second-level of the algorithm for S1 and S2. The
number over each point stands for the number of classifiers in the ensemble. In order to
decide which ensemble to choose we validate the Pareto-optimal front using VLDB2sc,
which was not used so far. Since we are aiming at performance, the direct choice will
be the ensemble that provides better generalization on VLDB2sc. Table 4 summarizes
the best ensembles produced for the four sets of base classifiers and their performance
at zero-rejection level on the test set. For facility, we reproduce in this table the results
of the original classifiers.

We can notice from Table 4 that the ensembles and base classifiers have very similar
performance at zero-rejection level. On the other hand, it also shows that the ensembles
respond better for error rates fixed at very low levels than single classifiers. The most
expressive result was achieved for the ensemble S3, which attains a reasonable perfor-
mance at zero-rejection level but performs very poorly at low error rates. In such a case,
the ensemble of classifiers brought an improvement of about 8%. We have noticed that
the ensemble reduces the high outputs of some outliers so that the threshold used for
rejection can be reduced and consequently the number of samples rejected is reduced.
Thus, aiming for a small error rate we have to consider the important role of the ensem-
ble. Another fact worth noting though, is the performance of S4 at low error rates. For
the error rate fixed at 1% it reached 95.0% against 93.5% of S1. S4 is composed of 14,



602 L.S. Oliveira et al.

Table 4. Performance of the ensembles on the test set

Ensembles Original
Feature No. Rec. Rate Rec. Rate

Set Classif. no Rej. Err=0.1% Err=0.5% no Rej. Err=0.1% Err=0.5%
S1 4 99.22 93.49 98.86 99.13 91.83 98.50
S2 4 98.18 79.22 95.28 98.17 75.11 92.80
S3 7 97.10 68.50 89.00 97.04 60.11 85.10
S4 24 99.25 95.03 98.94

Table 5. Summary of the classifiers produced by the first level

Feature Number of Range of Range of Range of
Set Classifiers Features Codebook Rec. Rates (%)

CCuc 15 10-32 29-39 68.1 - 88.6
DDD32uc 21 10-31 20-30 71.7 - 78.0
DDD64uc 50 10-64 52-80 60.6 - 78.2

6, and 4 classifiers from S1, S2, and S3, respectively. This emphasizes the ability of the
algorithm in finding good ensembles when more original classifiers are available.

5.2 Experiments in the Unsupervised Context

The experiments in the unsupervised context follow the same vein of the supervised
one. As discussed in Section 4.3, the main difference lies in the way the feature selection
is carried out. In spite of that, we can observe that the number of classifiers produced
during unsupervised feature selection is quite large as well. To train the classifiers,
the same databases reported in Section 3.2 were considered. Table 5 summarizes the
classifiers (after training) produced by the first level for the three feature sets we have
considered.

Considering for example the feature set CCuc, the first level of the algorithm provided
15 classifiers which have the number of features ranging from 10 to 32 and recognition
rates ranging from 68.1% to 88.6% on VLDB1uc . This shows the great diversity of the
classifiers produced by the feature selection method. Based on the classifiers reported in
Table 5 we define four sets of base classifiers as follows: F1 = {CCuc0, . . . , CCuc14},
F2 = {DDD32uc0, . . . , DDD32uc20}, F3 = {DDD64uc0,
. . . , DDD64uc49}, and F4 = {F1

⋃
F2

⋃
F3}.

Figure 6 depicts the variety of ensembles yielded by the second-level of the algorithm
for F1 and F2. The number over each point stands for the number of classifiers in the
ensemble. Like in the previous experiments, the second validation set (VLDB2uc) was
used to select the best ensemble. After selecting the best ensemble the final step is to
assess them on the test set. Table 6 summarizes the performance of the ensembles on
the test set. For the sake of comparison, we reproduce in Table 6 the results presented in
Table 2.

Like in the previous experiments (supervised context), the result achieved by the
ensemble F4 shows the ability of the algorithm in finding good ensembles when more
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Fig. 6. The Pareto-optimal front (and validation curves where the best solutions are highlighted
with an arrow) produced by the second-level MOGA: (a) F1 and (b) F2

Table 6. Comparison between ensembles and original classifiers

Ensembles Original
Feature No. Rec. Rate Rec. Rate

Set Classif. no Rej. Err=1% Err=5% no Rej. Err=1% Err=4%
F1 10 89.2 66.0 81.0 86.1 61.0 79.0
F2 15 80.2 45.0 60.2 73.0 29.5 48.5
F3 36 80.7 43.7 62.5 64.5 24.0 36.5
F4 45 90.2 70.2 77.0

base classifiers are considered. The ensemble F4 is composed of 9, 11, and 25 classifiers
from F1, F2, and F3, respectively. In light of this, we decided to introduce a new feature
set, which, based on our experience, has a good discrimination power when combined
with other features such as concavities. This feature set, which we call “global features”,
is composed of primitives such as ascenders, descenders, and loops. The combination of
these primitives plus a primitive that determines whether a grapheme does not contain
ascender, descender, and loop produces a 20-symbol alphabet. For more details, see Ref.
[10]. In order to train the classifier with this feature set, we have used the same databases
described in Section 3.2. The recognition rates at zero-rejection level are 86.1% and
87.2% on validation and testing sets, respectively. This performance compares with the
CCuc classifier.

Since we have a new base classifier, our sets of base classifiers must be modified
to cope with it. Thus, F1G = {F1

⋃
G}, F2G = {F2

⋃
G}, F3G = {F3

⋃
G}, and

F4G = {F1
⋃

F2
⋃

F3
⋃

G}. In such cases,G stands for the classifier trained with global
features. Table 7 summarizes the ensembles found using these new sets of base classifiers.
It is worthy of remark the reduction of the size of the teams and the improvement in the
recognition rates. This shows the ability of the algorithm in finding not just diverse but
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Table 7. Performance of the ensembles with global features

Base Number of Rec. Rate (%)
Classifiers Classifiers no Rej. Err=1% Err=4%

F1G 2 92.2 69.0 87.5
F2G 2 89.7 53.2 80.2
F3G 7 85.5 55.0 75.0
F4G 23 92.0 75.0 88.7

also uncorrelated classifiers to compose the ensemble [19]. Besides, it corroborates to
our claim that the classifier G when combined with other features bring an improvement
to the performance.

Like the results at zero-rejection level, the improvement observed here also are quite
impressive. Table 7 shows that F1G and F4G reach similar results on the test set at zero-
rejection level, however, F1G contains just two classifiers against 23 of F4G. On the
other hand, the latter features a slightly better error-reject trade-off in the long run.

Based on the experiments reported so far we can affirm that the unsupervised feature
selection is a good strategy to generate diverse classifiers. This is made very clear in the
experiments regarding the feature set DDD64. In such a case, the original classifier has
a poor performance (about 65% on the test set), but when it is used to generate the set
of base classifiers, the second-level MOGA was able to produce a good ensemble by
maximizing the performance and the ambiguity measure. Such an ensemble of classifiers
brought an improvement of about 15% in the recognition rate at zero-rejection level.

6 Discussion and Conclusion

The results obtained here attest that the proposed strategy is able to generate a set of
good classifiers in both supervised and unsupervised contexts. To better evaluate our
results, we have used two traditional ensemble methods (Bagging and Boosting) in the

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
91

92

93

94

95

96

97

98

99

Error Rate (%)

R
ec

og
ni

tio
n 

R
at

e 
(%

)

Ensemble Feature Selection
Original System
Boosting
Bagging

Fig. 7. Comparison among feature selection for ensembles, bagging, and boosting for CCsc
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supervised context. Figure 7 reports the results for CCsc. As we can see, the proposed
methodology achieved better results, especially when considering very low error rates.

Diversity is an issue that deserves some attention when discussing ensemble of
classifiers. As we have mentioned before, some authors advocated that diversity does not
help at all. In our experiments, most of the time, the best ensembles of the Pareto-optimal
also were the best for the unseen data. This could lead one to agree that diversity is not
important when building ensembles, since even using a validation set the selected team
is always the most accurate and with less diversity.

However, if we look carefully the results, we will observe that there are cases where
the validation curve does not have the same shape of the Pareto-optimal. In such cases
diversity is very useful to avoid selecting overfitted solutions.

One can argue that using a single-objective GA and considering the entire final
population, perhaps the similar solutions found in the Pareto-optimal produced by the
MOGA will be there. To show that it does not happen, we have carried out some exper-
iments with a single-objective GA where the fitness function was the maximization of
the ensemble´s accuracy. Since a single-objetive optimization algorithm searches for an
optimum solution, it is natural to expect that it will converge towards the fittest solution,
hence, the diversity of solutions presented in the Pareto-optimal is not present in the
final population of the single-objective GA.

We have described a methodology for ensemble creation underpinned on the paradigm
“overproduce and choose”. It takes two levels of search where the first level overpro-
duces a set of classifiers by performing feature selection while the second one chooses
the best team of classifiers.

The feasibility of the strategy was demonstrated through comprehensive experiments
carried out in the context of handwriting recognition. The idea of generating classifiers
through feature selection was proved to be successful in both supervised and unsuper-
vised contexts. The results attained in both situations and using different feature sets and
base classifiers demonstrated the efficiency of the proposed strategy by finding powerful
ensembles, which succeed in improving the recognition rates for classifiers working with
a very low error rates. Such results compare favorably to traditional ensemble methods
such as Bagging and Boosting.

Finally we have addressed the issue of using diversity to build ensembles.As we have
seen, using diversity jointly with the accuracy of the ensemble as selection criterion might
be very helpful to avoid choosing overfitted solutions. Our results certainly brings some
contribution to the field, but this still is an open problem.
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