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Abstract. This paper investigates local patterns in the multi-relational
constraint-based data mining framework. Given this framework, it con-
tributes to the theory of local patterns by providing the definition of
local patterns, and a set of objective and subjective measures for evalu-
ating the quality of induced patterns. These notions are illustrated on a
description task of subgroup discovery, taking a propositionalization ap-
proach to relational subgroup discovery (RSD), based on adapting rule
learning and first-order feature construction, applicable in individual-
centered domains. It focuses on the use of constraints in RSD, both in
feature construction and rule learning. We apply the proposed RSD ap-
proach to the Mutagenesis benchmark known from relational learning
and a real-life telecommunications dataset.

1 Introduction

Inductive databases [11] embody a database perspective on knowledge discovery,
where knowledge discovery processes are considered as query processes. In ad-
dition to normal data, inductive databases contain patterns (either materialized
or defined as views). Data mining operations looking for patterns are viewed as
queries posed to the inductive database. In addition to patterns (which are of
local nature), models (which are of global nature) can also be considered.

A general formulation of data mining [19] involves the specification of a
language of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can be
divided in two parts: language constraints and evaluation constraints. The first
only concern the pattern itself, the second concern the validity of the pattern
with respect to a database.

1.1 Constraints in inductive databases

Inductive queries consist of constraints and the primitives of an inductive query
language include language constraints (e.g., find association rules with item A



in the head) and evaluation primitives. Evaluation primitives are functions that
express the validity of a pattern on a given dataset. We can use these to form
evaluation constraints (e.g., find all item sets with support above a threshold)
or optimization constraints (e.g., find the 10 association rules with highest con-
fidence).

Constraints thus play a central role in data mining and constraint-based data
mining is now a recognized research topic [4]. The use of constraints enables
more efficient induction as well as focussing the search for patterns on patterns
likely to be of interest to the end user. While many different types of patterns
have been considered in data mining, constraints have been mostly considered
in mining frequent itemsets and association rules, as well as some related tasks,
such as mining frequent episodes, Datalog queries, molecular fragments, etc. Few
approaches exist that use constraints for other types of patterns/models, such
as size and accuracy constraints in decision trees [10] or in classification rule
discovery.

1.2 Constraints in relational subgroup discovery

In this paper, we consider the use of constraints in the context of relational sub-
group discovery (RSD). We consider the task of subgroup discovery defined as
follows: given a population of individuals and a specific property of those indi-
viduals that we are interested in, find population subgroups that are statistically
‘most interesting’, e.g., are as large as possible and have the most unusual sta-
tistical (distributional) characteristics with respect to the property of interest
[32]. We restrict ourselves to class-labeled data in our approach, with the class
attribute being the property of interest.

While the goal of standard rule learning is to generate models, one for each
class, inducing class characteristics in terms of properties occurring in the de-
scriptions of training examples, in contrast, subgroup discovery aims at discov-
ering individual ‘patterns’ of interest. In this sense, subgroup discovery belongs
to descriptive induction [23, 34] which has recently gained much attention of
researchers developing rule learning algorithms. These involve mining of associ-
ation rules (e.g., the APRIORI association rule learning algorithm [1]), clausal
discovery (e.g., the CLAUDIEN system [23, 24]), subgroup discovery (e.g., the
MIDOS [32, 33], EXPLORA [12], SD [9] and CN2-SD [17] subgroup discovery
systems) and other approaches to non-classificatory induction aimed at finding
interesting patterns in data.

Our approach to constraint-based RSD first performs feature generation,
then applies a propositional approach to subgroup discovery (the RSD imple-
mentation in the Yap Prolog with a user’s manual and sample problems can be
obtained from http://labe.felk.cvut. cz/~zelezny/rsd). The combination
of the above mentioned strategies controlled by constraints represents an original
approach to relational subgroup discovery, altough previous work exists incor-
porating some of the techniques mainly in classification rule discovery; e.g., rule
induction with constraints in relational domains including propositionalization
[2, 3], or using rule sets to maximize ROC performance [7].



1.3 Outline of the paper

This paper investigates local patterns in the multi-relational constraint-based
data mining framework. Given this framework, it contributes to the theory of
local patterns by providing the definition of local patterns and proposing a set of
objective and subjective measures for evaluating the quality of induced patterns
(Section 2). These notions are applied to a description task of subgroup discovery,
for which a practical relational subgroup discovery algorithm RSD has been
developed (Section 3). Section 4 discusses the use of constraints in RSD, followed
by the experimental evaluation of the proposed approach to subgroup discovery
in Section 5.

2 Theory of local patterns

This section contributes to the theory of local patterns by providing the definition
of local patterns, and proposing a set of objective and subjective measures for
evaluating the quality of induced patterns.

2.1 Pattern discovery as rule learning

As in classification rule learning, we consider patterns of the form of a (back-
wards) implication:

Class← Cond

Having limited the form of patterns to the above rule form, we limit the scope
of investigation to patterns with a certain property of interest which is the goal
of investigation (the target class, Class) that appears in the rule consequent.
In the selected formalism the rule antecedent (Cond) is a conjunction of fea-
tures (attribute-value pairs) selected from the features describing the training
instances.

In the given scope, pattern discovery is a task at the intersection of predic-
tive and descriptive induction. By inducing rules from labeled training instances
(labeled positive if the property of interest holds, and negative otherwise), the
process of subgroup discovery is targeted to uncovering properties of a selected
target population of individuals with the given property of interest. In this sense,
pattern discovery is a form of supervised learning. The fact that a pattern dis-
covery task aims at characterizing population subgroups of a given target class
suggests that standard classification rule learning could be used for solving the
task. However, pattern discovery is a form of descriptive induction as the task
is to uncover individual rules or patterns of interest, which must be represented
in explicit symbolic form and which must be relatively simple in order to be
recognized as actionable by potential users.

Each pattern can be extended with the information about the rule quality.
Unlike in association rule learning, where rules are equipped with the support



and confidence of a rule, in this paper a standard rule pattern has the following
form:

Class← Cond [TPr, FPr] (1)

where Class is the target property of interest, Cond is a conjunction of features
(attribute-values), TPr is the true positive rate or the sensitivity, computed as

p(Cond|Class) = n(Class.Cond)
Pos

, and FPr is the false alarm or false positive rate,

computed as p(Cond|Class) = n(Class.Cond)
Neg

. In these formulas n(Class.Cond)

is the number of true positives TP (the number of covered instances belonging to
Class), n(Class.Cond) the number of false positives FP (the number of covered
instances not belonging to Class), Pos is the number of positives (instances of
the target class), Neg the number of negatives, and N = Pos + Neg is the size
of the entire population.

2.2 Pattern evaluation measures

One can distinguish between objective and subjective quality measures (measures
of interestingness) [26]. Both the objective and subjective measures need to be
considered in order to solve pattern discovery tasks. Which of the quality criteria
are most appropriate depends on the application. Obviously, for automated rule
induction it is only the objective quality criteria that apply. However, for evalu-
ating the quality of induced patterns and their usefulness for decision support,
the subjective criteria are more important, but also harder to evaluate.

As shown in Section 2.1, each rule can be extended with the information
about the rule quality. While the basic information of rule quality is usually
attached to the induced rule itself, as output of the learning algorithm, other
quality measures are usually computed for a ruleset, in order to evaluate the
output of the induction process as a whole, enabling the comparison of the
performance of different algorithms.

Below is a list of subjective measures of interestingness:

– Usefulness. Usefulness is an aspect of rule interestingness which relates a
finding to the goals of the user [12].

– Operationability. In this paper we have introduced the notion of opera-
tionability, which is one aspect of usefulness.

– Actionability. “A rule is interesting if the user can do something with it to his
or her advantage” [25, 26]. Actionability is a special case of operationability.

– Unexpectedness. A rule is interesting if it is surprizing to the user [26].
– Novelty. A finding is interesting if it deviates from prior knowledge of the

user [12].
– Redundancy. Redundancy amounts to the similarity of a finding with respect

to other findings; it measures to what degree a finding follows from another
one [12], or to what degree multiple findings support the same claims.

When discussing the objective quality measures - in line with the distinc-
tion between predictive induction and descriptive induction - one can distinguish



between the predictive and descriptive quality measures. A typical predictive
quality measure, measuring the quality of a ruleset, is predictive accuracy of a
ruleset, defined as the percentage of correctly predicted instances.1

In contrast with predictive quality measures, descriptive quality measures
evaluate each individual subgroup and are thus appropriate for evaluating the
success of pattern discovery. The following measures turn out to be most appro-
priate for measuring the quality of individual rules: rule size, coverage, support,
accuracy (in different contexts also called precision or confidence), significance
and unusualness. Although the evaluation of each individual rule is of ultimate
importance, their variants that compute the average over the induced set of sub-
group descriptions enable the comparisons of subgroup discovery algorithms (see
[17] for the exact definition of these measures).

To explain rule significance and unusualness, which are the most important
pattern discovery measures, some of the other measures for evaluating the qual-
ity of rules of the form Class ← Cond need to be explained first. Coverage

p(Cond) is a measure of generality, computed as the relative frequency of all

the examples covered by the rule: n(Cond)
N

. Support p(Class.Cond) is computed

as the relative frequency of correctly classified covered examples: n(Class.Cond)
N

.

Rule accuracy p(Class|Cond) (called precision in information retrieval and con-

fidence in association rule learning) is the fraction of predicted positives that
are true positives. Next, we define accuracy gain as the difference between rule
accuracy p(Class|Cond) and default accuracy p(Class) achieved by the trivial
rule Class← true.

– Significance of a rule is computed in terms of the likelihood ratio of a rule,
normalized with the likelihood ratio of the significance threshold (99%). Sig-
nificance (or evidence, in the terminology of [12]) indicates how significant is
a finding if measured by this statistical criterion. In the CN2 algorithm [5],
significance Sig(Class← Cond) is measured in terms of the likelihood ratio
statistic2 of a rule as follows:

2
∑

i

n(Classi.Cond). log
n(Classi.Cond)

n(Classi)
(2)

where for each class Classi, n(Classi.Cond) denotes the number of instances
of Classi in the set where the rule body holds true, and n(Classi) is the
expected number of Classi instances in a set chosen randomly from the
entire instance set in

∑
i n(Classi.Cond) independent trials, so that

n(Classi) = Ni

∑
i n(Classi.Cond)∑

i Ni

where Ni is the total number of Classi instances in the entire instance set.
Note that although for each generated subgroup description one class is

1 For a binary classification problem, ruleset accuracy is computed as TP+TN

N
.

2 In two-class problems this statistic is distributed approximately as χ2 with one degree
of freedom.



selected as the target class, the significance criterion measures the distribu-
tional unusualness unbiased to any particular class – as such, it measures
the significance of rule condition only: Sig(Class← Cond) = Sig(Cond).

– Unusualness of a rule is computed by the weighted relative accuracy of a rule
[15], defined as follows:

WRAcc(Class← Cond) = p(Cond).[p(Class|Cond) − p(Class)]

Weighted relative accuracy can be understood as trading off rule coverage

p(Cond) and accuracy gain p(Class|Cond)− p(Class).

As shown in [17], WRAcc is appropriate for measuring the unusualness of
patterns, because it is proportional to the vertical distance from the diagonal in
the ROC space (for ROC analysis, see [22]). As such, WRAcc also reflects rule
significance - the larger WRAcc is, the more significant the rule is, and vice versa.
As both WRAcc and rule significance measure the distributional unusualness of
a pattern, they are the most important quality measures for pattern discovery, if
the goal of pattern mining is— as is the case in this paper—finding of interesting
population subgroups which are sufficiently large and distributionally unusual.
However, while significance only measures distributional unusualness, computed
in terms of correctly classified covered examples of all classes, WRAcc takes
explicitly the rule coverage into the account, therefore we consider unusualness

to be the most appropriate measure for pattern quality evaluation.
It can be shown that for a given pattern, its WRAcc value is proportional to

the value of the Area Under the ROC Curve (AUC). Consequently, as optimizing
WRAcc means also optimizing AUC, WRAcc proves to be of use not only as a
heuristic appropriate for pattern discovery in descriptive induction, but also for
predictive induction. This claim is supported by the results achieved in [29, 16]
in the comparisons of variants of CN2 and CN2-SD in which WRAcc was used
instead of the rule accuracy heuristic.

3 Background: Relational Subgroup Discovery

Our approach adapts classification rule learning to relational subgroup discovery,
described in [16], achieved by (a) propositionalization through first-order feature
construction, (b) incorporation of example weights into the covering algorithm,
(c) incorporation of example weights into the weighted relative accuracy search
heuristic, (d) probabilistic classification based on the class distribution of covered
examples by individual rules, and (e) area under the ROC curve rule set evalu-
ation. The main advantage of the proposed approach is that each induced rule
with a high weighted relative accuracy represents a ‘chunk’ of knowledge about
the problem, due to the appropriate tradeoff between accuracy and coverage,
achieved through the use of the weighted relative accuracy heuristic.

The input to the RSD algorithm consists of a relational database containing
one main table (relation), where each row corresponds to a unique individual

and one attribute of the main table is specified as the class attribute - this



table defines the training examples, and other tables (relations) defining the
background knowledge. In addition, a mode-language definition is given, which is
used to construct first-order features.

The output of RSD is a set of subgroups whose class distributions differ sub-
stantially from the class distribution in the complete data set. The subgroups
are defined by conjunctions of (automatically generated/defined) first-order fea-
tures. The RSD algorithm proceeds in two stages: first-order feature construction
and rule-based subgroup discovery.

RSD First-order Feature Construction In our approach to first-order fea-
ture construction, based on [8, 13, 18], local variables referring to parts of indi-
viduals are introduced by so-called structural predicates. In a given language bias
for first-order feature construction, a first-order feature is composed of one or
more structural predicates introducing a new variable, and of utility predicates

as in LINUS [14] (called properties in [8]) that ‘consume’ all new variables by
assigning properties of individuals or their parts, represented by variables intro-
duced so far. Utility predicates do not introduce new variables. (Examples of
both types of predicates will be given below.)

The design of an algorithm for constructing first-order features can be split
into two relatively independent problems:

Step 1: Identify features. This step results in identifying all first-order literal
conjunctions that form a feature in the sense explained above, and at the same
time comply to user-defined constraints (mode-language). Such features do not
contain any constants and the task can be completed independently of the input
data.

Step 2: Employ constants. This step results in extending the feature set by
variable instantiations. Certain features are copied several times with some vari-
ables substituted to constants ‘carefully’ chosen from the input data. During
this process, some irrelevant features are detected and removed, based on sev-
eral constraints.

Both steps can be viewed as an exploitation of the combination of pre-set and
user-defined sets of constraints of both syntactic (language-related) and semantic
(data-oriented) character. From this viewpoint, they will be explained in detail
in the devoted Section 4.

RSD Rule Induction Algorithm The core of RSD is a subgroup discovery
algorithm which can accept data propositionalized by the feature constructor
described above. The algorithm inherits some basic principles of the CN2 rule
learner [5], which are adapted in several substantial ways to meet the needs of
subgroup discovery. The principal improvements, making it appropriate for sub-
group discovery, involve the implementation of the weighted covering algorithm,
incorporation of example weights into the weighted relative accuracy heuristic,



probabilistic classification, and the area under the ROC curve rule set evaluation
[16].

4 Using constraints in RSD

The curse of combinatorial dimensionality is present in the principles underlying
both procedural phases of RSD:

– We apply language constraints to define the language of possible subgroup
descriptions. These are applied both in feature generation and rule induction.

– We apply evaluation constraints during rule induction to select the (most)
interesting rules/subgroups.

Consequently, RSD makes heavy use of both syntactic and semantic constraints
exploited by search-space pruning mechanisms. On one hand, some of the con-
straints (such as feature undecomposability) are deliberately enforced by the sys-
tem and pruning based on these constraints is guaranteed not to cause the omis-
sion of any solution. On the other hand, additional contraints (e.g. maximum
variable depth) may be tuned by the user. These are designed with the inten-
tion to most naturally reflect possible user’s heuristic expectations or minimum
requirements on quantitative evaluations of search results.

4.1 Constraints in feature construction

Motivated by language-bias declarations used in ILP systems, RSD accepts lan-
guage declarations very similar to those used by the systems Aleph [27] and
Progol [21], including variable types, modes, setting a recall parameter etc, used
to syntactically constrain the set of possible features. The use of the language
bias declarations are best explained on a simple example. For this purpose we
use the well-known East-West trains domain [20].

Structural predicates. By the mode declaration :-modeb(1, hasCar(+train,

-car)) the user tells the system that the binary background relation hasCar

may be employed in the body of constructed features, so as to provide the
identification of some car of a specified train. The number 1 (“recall”) de-
termines that a feature can address at most one car of a given train. Input
variables are labeled by the + sign, and output variables by the - sign.

Property predicates. Defined as above, but have no output variables.
Head predicate. Its declaration always contains exactly one variable of the in-

put mode (e.g., :-modeh(1, train(+train)). The declaration serves merely
to identify the key of the main individual.3

RSD produces all features satisfying the mode and setting declarations. The
features produced by RSD have to satisfy an important constraint: a feature
may not be decomposable into a conjunction of two features.

3 The head declaration thus may seem overly complicated but contributes to compata-
bility with declarations used with the widely used ILP systems mentioned earlier.
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Fig. 1. The effect of pruning in the syntactic feature construction on efficiency in the
East-West Trains domain. The diagram shows the amount of time needed to produce
the exhaustive set of features for a given maximum feature length when pruning is off
or on.

For example, the feature set based on the modes
:-modeh(1, train(+train)).

:-modeb(2, hasCar(+train, -car)).

:-modeb(1, long(+car)).

:-modeb(1, notSame(+car, +car)).

will contain a feature
f(A):- hasCar(A,B),hasCar(A,C),long(C),long(B),notSame(B,C).

but it will not contain a feature with the body
hasCar(A,B),hasCar(A,C),long(B),long(C)

as such an expression would clearly be decomposable into two separate features.
We do not construct such decomposable expressions, as these are redundant for
the purpose of the subsequent search for rules with conjunctive antecedents.

The language constraint of undecomposability plays a major role: it enables
pruning the search for possible features without losing any solutions. As an
example, Figure 1 illustrates the speedup gained by the pruning on the East-West
Trains domain (evaluation on real-life data will be shown in the experimental
section).

In addition, other language constraints can be specified. These are: the maxi-
mum length of a feature (number of contained literals), maximum variable depth

[21] and maximum number of occurrences of a given predicate symbol. If con-
straints are not specified by the user, the first two acquire a default value while
the last is unlimited.

Unlike Aleph and Progol declarations, RSD does not use the # sign to denote
a constant-value argument. In the mentioned systems, constants are provided by
a single saturated example, while RSD extracts constants from all the input data
(examples). The user can instead utilize the special reserved property predicate
instantiate/1, which does not occur in the background knowledge, to specify a
variable that should be substituted with a constant during feature construction.
For example, from the modes



:-modeh(1, train(+train)).

:-modeb(1, hasCar(+train, -car)).

:-modeb(1, hasLoad(+car, -load)).

:-modeb(1, hasShape(+load, -shape)).

:-modeb(*, instantiate(+shape)).

exactly one feature is generated:
f1(A) :- hasCar(A,B), hasLoad(B,C), hasShape(C,D), instantiate(D).

In the second step, after consulting the input data, f1 will be substituted by a
set of features, in each of which the instantiate/1 literal is removed and the
D variable is substituted with a constant making the body of f1 provable in the
data. Provided they contain a train with a rectangle load, the following feature
will appear among those created out of f1:

f11(A) :- hasCar(A,B), hasLoad(B,C), hasShape(C,rectangle).
A similar principle applies for features with multiple occurences of the
instantiate/1 literal. Arguments of this literal within the feature form a set of
variables ϑ; only those (complete) instantiations of ϑ making the feature’s body
provable on the input database will be considered.

However, not all such features will appear in the resulting set. For the sake of
efficiency, we do not perform feature filtering by a separate postprocessing proce-
dure, but rather discard certain features already during the feature construction
process described above. The following constraints are used: (a) no feature should
have the same value for all examples and (b) no two features should have the
same values for all examples. For the latter case, only the syntactically shortest
feature is chosen to represent the class of semantically equivalent features. In
addition, a minimum number of examples for which a feature has to be true can
be prescribed. This constraint is similar to the minimum support constraints in
mining frequent item sets.

4.2 Constraints in subgroup discovery

In the subgroup discovery phase, a language constraint employed is the pre-
scription of a maximal number of conditions/features in the description of a
subgroup.

Several evaluation functions are considered. These include accuracy, weighted
relative accuracy (WRAcc), significance, and area under the ROC curve. Accu-
racy and WRAcc are used in optimization constraints, i.e., RSD looks for rules
with high accuracy/WRAcc. In fact, they are used as heuristic functions in RSD.
Significance is used in evaluation constraints, i.e., one can prescribe a significance
threshold that rules have to satisfy (expressed as significance at e.g., 99% level).
WRAcc may be used in a similar fashion.

For lack of space we do not provide here a tabular summary of all employed
constraints and the ways of their setting, this can be however found in the RSD
user’s manual available from the above mentioned RSD download page.



5 Experiments

We have experimented with the well-known relational learning benchmark con-
cerning the Mutagenicity of chemicals and we have also applied RSD to the
analysis of a real-life telecommunications dataset. The Mutagenesis data have
been described in detail in many sources, see e.g. [28]. The Telecommunication
application has been described by Železný et al. in [31, 30]; next we give a brief
overview of the data.

5.1 Telecommunications

The data represent incoming calls (1995 items thereof) to an enterprize. Each
such call is answered by a human operator and in the usual case further trans-
ferred to an attendant distinguished by his/her line number. Further re-transfers
may also occur. Each sequence of such transfers is tracked by a computerized
exchange and related data are stored in a logging file. By a suitable transfor-
mation thereof, one may obtain a relation incoming/5, represented by ground
facts of the form incoming(date, time, caller, operator, result). The argu-
ment result either takes a constant value or is a recursively defined function,
so that result ∈ {talk, unavailable, transfer([ln1, ln2, ..., lnn], result)},
where ln1...lnn−1 denote line numbers to which unsuccessful attempts to trans-
fer have been made, and lnn the result of the last transfer attempt.

For example, the ground fact
incoming(date(10,18), time(13,37,29), [0,6,4,8,2,5,6,8,4,9], 32,

transfer([16,12],transfer([26],talk))).

describes a call from the number 0648256849 at 13:37:29 on 10/18 received by
the operator on line 32. The operator first tried to transfer the caller to line
16 without success, and then transferred him/her successfully to line 12. The
person on line 12 further redirected the caller to line 26. After a talk with line
26, the call was terminated.

We divide all instances of incoming transferred calls into classes determined
by the line to which the operator tried to transfer the caller first. We thus obtain
25 classes. Attributes of examples (the main table records) then consist of the
first four arguments of incoming/5 and the class attribute. Finding subgroups
interesting with respect to this class attribute may contribute to purposes of
decision support of the operator. Further, if the subgroup set has sufficient pre-
dictive power, it may partially or completely substitute the operator.

Let us now comment on two of the available background relations. The pred-
icate prefix(Number,Prefix) is true whenever the second (output) argument
is the prefix (of any length) of the first (input) argument. For instance, regarding
the example given above, prefix([0,6,4,8,2,5,6,8,4,9],[0,6,4]) is true.

This background predicate proved useful in previously published results, since
it is able to bind callers from the same area, city, company, office etc. The
predicate gives multiple possible outputs for a given input. When used as part
of a feature definition, it will be the job of the feature constructor to decide
which prefixes should be used (possibly in conjunction with other literals) to



generate features with acceptable coverage measures. Out of the prefixes kept,
the rule inducer chooses those that help identify interesting subgroups.

Another background predicate prev attempt/6 reflects the fact that a line
desired by the caller may often be determined by looking at the caller’s recent
attempts to reach a person, i.e., by inspecting past records (w.r.t. the time-label
of the current example) in the incoming/4 relation. This problem setting is
thus not far from what is known as multi-instance learning [6], where relevant
attribute values describing an instance extend in multiple rows of a single table.

For example, the goal
prev attempt(date(10,18),time(13,37,29),

[0,6,4,8,2,5,6,8,4,9], Line, When, Result).

will succeed with the result
Line=10, When=today, Result = unavailable,

provided the caller 0648256849 failed to reach line 10 on 10/18 before 13:37:29.
Again, the prev attempt/6 may obviously yield multiple outputs for a given
instantiations of the input arguments.

5.2 Expert analysis of induced subgroups: Evaluating novelty

We present the descriptions of some of the discovered subgroup in Telecommu-
nication, with comments from the domain expert on the descriptions in Table 1
and the distributional characteristics of the subgroups.

Expert analysis of the induced rules shows that some of them identify novel
and interesting information. Especially revealing are the comments related to the
changes of class frequency associated with the rules. In the overall distribution,
calls to line 21 are most common. The expert comments that this reflects his
expectations, as the person at line 21 is a marketer, and people interested in
products call this line most frequently. In subgroup Tele1, there is (a) an increase
in line 21 frequency: clients not receiving an ordered package often wait until
Friday and then complain with line 21; and (b) a decrease in line 13 frequency:
the person at line 13 mostly collaborates with dealers who have less business on
Fridays. For subgroup Tele4 there is a) an increase in line 28 frequency: repeated
attempts to reach line 28, and (b) an increase in line 21 frequency: the person
at line 28 works as technical support for products sold by person on line 21.

The use of the undecomposability constraint and the pruning enabled thereby
greatly reduces the time necessary to generate the features. This reduction in-
creases with the maximum feature length, as illustrated in Figure 2.

5.3 Effects of constraints on feature generation

The use of the other feature constraints, i.e., the minimum coverage, unique
coverage and incomplete coverage (the latter two are referred to as filtering)
reduces the number of features generated, as shown in Figure 3. In Mutagenesis,
the maximum feature length was set to 5 and the minimum feature coverage
to 20 instances, obtaining 42 different features. In the Telecom domain, we set



Table 1. Subgroup descriptions in the form H ← B [TP, FP ], definitions of used
features, and subgroup interpretation including expert’s comments.

Tele1: line21(A) ← f40(A) [56,268]
f40(A):-call date(A,B),dow(B,fri).

Calls received on Fridays.
Expert’s evaluation: Not a novel information.

Tele2: line11(A) ← f132(A) [32,0]
f132(A):-ext number(A,B), prefix(B,[8,5,1,3,1,1,1,1]).

Calls received from number 85131111.
Expert’s explanation: The caller is the secretary’s husband. She does not have a
direct-access line, thus this call is transferred by an operator.
Expert’s evaluation: Novel information.
Remark. Although the last literal formally identifies a prefix of the calling
number, it is in fact the complete number of the caller.

Tele3: line21(A) ← f54(A) [81,254]
f54(A):-ext number(A,B),prefix(B,[0,4]).

Calls received from a number that starts with 04.
Expert’s explanation: Prefix 04 is too general (code covers a large area) to find
an explanation.
Expert’s evaluation: Novel information. Uncertain.

Tele4: line28(A) ← f7(A) [22,11]
f7(A):-call date(A,B),call time(A,C),

ext number(A,D), prev attempt(B,C,D,[2,8], last hour, unavailable).

Calls received from a caller who has in the last hour attempted to directly (not
through an operator) reach line 28, which was unavailable.
Expert’s explanation: It is plausible that people try line 28 as the second attempt
when line 21 is unavailable. Subgroup probably mostly covers people with technical
difficulties with a product sold by person on line 21.
Expert’s evaluation: Novel information.

the maximum feature length to 8. In this case, using a minimum coverage of 20
instances yields 138 features.

5.4 Results of subgroup discovery

An example feature in the Mutagenesis domain is f12(A):-atm(A,B),atm chr

(B,C),lteq c(C,0.142) expressing that a drug contains an atom with charge
less or equal to 0.142, or f31(A):-benzene(A,B),benzene(A,C), connected(

C,B), expressing the presence of two connected benzene rings in the chemical. In
telecommunications, an example feature is f99(A):-ext number(A,B),prefix(

B,[0,4,0,7]), meaning that the caller’s number starts with 0407. Another fea-
ture is f115(A):- call date(A,B),call time(A,C),ext number(A,D), prev

attempt(B,C,D,[3,1], today,unavailable), meaning that the caller (of the
current call) has today tried to reach line 31, which was unavailable.

With these features, we use the RSD rule induction algorithm with altered
covering strategy and heuristic function to produce sets of subgroup-describing
rules.
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Fig. 2. The number of existing features (left) and the effect of undecomposability
enabled pruning in the syntactic feature construction on efficiency (right) in the Mu-
tagenesis (top) and Telecommunication (bottom) domain.

The characteristics of the discovered rules are shown in Table 2. Algo refers to
the combination of search heuristic (A-accuracy, W-WRacc (weighted relative
accuracy)) and covering algorithm (C-covering, W-WeCov (weighted covering
with γ = 1)). S = significance, C = coverage, A = area under ROC curve. R : F
= average number of rules/class : average number of features per rule. R′ : F′ =
same as above, only rules on covex hull are considered. The rule generation for
a given class is terminated if the search space has been completely explored or
10 subgroup rules have been generated for that class in Telecommunication (5
in Mutagenesis). Reported results are averages and standard deviations from a
10-fold stratified cross-validation procedure.

The most significant observation about the results in Table 2 is that the
WRAcc heuristic very significantly improves the performance with respect to
the other accuracy heuristics, in terms of all three quality aspects.

Overall, the combination of WRAcc with the strategy of example weighting
yields the best performance. This agrees with the findings in [17], where a more
extensive empirical evaluation was conducted on a collection of (non-relational)
subgroup-discovery problems, comparing the CN2 algorithm with CN2 incorpo-
rating the WRAcc heuristic, and further the CN2-SD system (which incorporates
the WRAcc heuristic and the example weights). These three algorithms roughly
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Fig. 3. The effect of using the constraint of unique and incomplete coverage (“Filtering
ON” line) vs. ignoring this constraint (“Filtering OFF” line) and the user-adjustable
minimum-coverage constrain (left-to-right decay) for Mutagenesis (left) and Telecom-
munication (right). The “No constants” curve (independent of the horizontal axis)
corresponds to the number of features before instantiations to constants (before Step
2 of feature construction), this number is high in Mutagenesis due to many features
inprovable with any instantiation to constants.

Table 2. Characteristics of subgroup-describing rules obtained by the RSD rule in-
duction algorithm in the Mutagenesis and Telecom domains.

Mutagenesis

Performance Complexity

Algo S C A R : F R′ : F′

AC 1.99 11.33% 0.69 10.00 : 2.16 10.00 : 2.16
(0.92) (3.74) (0.07) (0.00 : 0.07) (0.00 : 0.07)

AW 1.33 7.62% 0.58 10.00 : 2.50 10.00 : 2.50
(1.05) (4.88) (0.06) (0.00 : 0.11) (0.00 : 0.11)

WC 4.22 35.81% 0.86 3.70 : 1.73 2.30 : 1.62
(1.22) (6.44) (0.06) (0.82 : 0.33) (0.48 : 0.22)

WW 7.48 40.58% 0.90 10.00 : 2.63 6.50 : 2.43
(1.28) (4.74) (0.04) (0.00 : 0.07) (0.97 : 0.11)

Telecommunication

Performance Complexity

Algo S C A R : F R′ : F′

AC 2.90 0.37% 0.55 7.36 : 2.39 6.88 : 2.47
(0.38) (0.05) (0.02) (0.12 : 0.04) (0.19 : 0.04)

AW 2.25 0.25% 0.55 9.96 : 2.56 9.60 : 2.61
(0.52) (0.04) (0.02) (0.07 : 0.03) (0.07 : 0.03)

WC 11.29 4.98% 0.67 6.12 : 2.17 5.20 : 2.28
(1.71) (0.54) (0.02) (0.16 : 0.04) (0.16 : 0.04)

WW 11.99 4.02% 0.70 9.64 : 2.06 6.68 : 2.29
(1.05) (0.41) (0.01) (0.12 : 0.01) (0.20 : 0.03)



correspond to the methods we denote above (in Table —refsd-results) as AC,
WC, and WW, respectively. The combination of the accuracy heuristic with
example weighting (AW) seems not to perform well in the domains considered.

6 Conclusions

This paper presents an approach to relational subgroup discovery, whose origins
are based on the recent developments in subgroup discovery [33, 9] and propo-
sitionalization through first-order feature construction [8, 13, 18]. It presents the
algorithm RSD which transforms a relational subgroup discovery problem to a
propositional one, through efficiency-conscious first-order feature construction.
Efficiency is boosted through the use of mode declarations and constraints used
for pruning the search in the space of possible features.

Four variants of the RSD algorithm have been tested, by combining the
standard accuracy search heuristic used in the construction of individual rules,
with the standard covering algorithm used in the construction of a set of rules.
The WRAcc heuristic combined with the weighted covering algorithm is the
preferred combination (due to an appropriate tradeoff between rule significance,
coverage and complexity).

We have successfully applied the RSD algorithm in the Mutagenesis bench-
mark and the Telecom domain, a real-life dataset from a telecommunications
company. These results have been evaluated as meaningful by the domain ex-
pert. Both the description of subgroups and their distributional characteristics
make sense in many cases.

The idea of incrementally extending the feature set in dependence on the
quality of the discovered subgroups, seems very much worth investigating in
further work.
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