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Abstract. Rule learning is typically used in solving classification and
prediction tasks. However, learning of classification rules can be adapted
also to subgroup discovery. This paper shows how this can be achieved by
modifying the CN2 rule learning algorithm. Modifications include a new
covering algorithm (weighted covering algorithm), a new search heuristic
(weighted relative accuracy), probabilistic classification of instances, and
a new measure for evaluating the results of subgroup discovery (area
under ROC curve). The main advantage of the proposed approach is that
each rule with high weighted accuracy represents a ‘chunk’ of knowledge
about the problem, due to the appropriate tradeoff between accuracy
and coverage, achieved through the use of the weighted relative accuracy
heuristic. Moreover, unlike the classical covering algorithm, in which only
the first few induced rules may be of interest as subgroup descriptors with
sufficient coverage (since subsequently induced rules are induced from
biased example subsets), the subsequent rules induced by the weighted
covering algorithm allow for discovering interesting subgroup properties
of the entire population. Experimental results on 17 UCI datasets are
very promising, demonstrating big improvements in number of induced
rules, rule coverage and rule significance, as well as smaller improvements
in rule accuracy and area under ROC curve.

1 Introduction

Classical rule learning algorithms were designed to construct classification and
prediction rules [5, 11]. In addition to this area of machine learning, referred to as
predictive induction, developments in descriptive induction have recently gained
much attention. These involve mining of association rules (e.g., the APRIORI
association rule learning algorithm [1]), subgroup discovery (e.g., the MIDOS
subgroup discovery algorithm [17]), and other approaches to non-classificatory
induction.

The methodology presented in this paper can be applied to subgroup dis-
covery. As in the MIDOS approach, a subgroup discovery task can be defined
as follows: given a population of individuals and a property of those individu-
als we are interested in, find population subgroups that are statistically ‘most



interesting’, e.g., are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest.

This paper investigates how to adapt classical classification rule learning
approaches to subgroup discovery, by exploiting the information about class
membership in training examples. This paper shows how this can be achieved
by appropriately modifying the well-known CN2 rule learning algorithm [4, 5, 3],
which we have implemented in Java and incorporated in the WEKA data mining
environment [16]. The modified CN2 algorithm and its experimental evaluation
in selected domains of the UCI Repository of Machine Learning Databases [12]
are outlined. The experimental results are very promising, demonstrating big
improvements in number of induced rules, rule coverage and rule significance, as
well as smaller improvements in rule accuracy.

This paper is organized as follows. In Section 2 the background for this work
is explained: the standard CN2 rule induction algorithm, including the covering
algorithm and standard CN2 heuristics, as well as the weighted relative accu-
racy heuristic and probabilistic classification. Section 3 presents the modified
CN2 algorithm, called CN2-SD, adapting the CN2 algorithm for subgroup dis-
covery. Section 4 presents the experimental evaluation in selected UCI domains.
Section 5 concludes by summarizing the results and presenting plans for further
work.

2 Background

This section presents the backgrounds: classical CN2 rule induction algorithm,
including the covering algorithm and standard CN2 heuristics, as well as the
weighted relative accuracy heuristic, probabilistic classification and rule evalua-
tion in the ROC space.

The CN2 Rule Induction Algorithm. CN2 is an algorithm for inducing
propositional classification rules [4, 5]. CN2 consists of two main procedures: the
search procedure that performs beam search in order to find a single rule and
the control procedure that repeatedly executes the search.

The search procedure performs beam search using classification accuracy
of the rule as a heuristic function. The accuracy of the propositional classifi-
cation rule ifCond thenClass is equal to the conditional probability of class
Class, given that the condition Cond is satisfied: Acc(ifCond thenClass) =
p(Class|Cond).

We replaced the accuracy measure with the weighted relative accuracy, de-
fined in Equation 1 below. Furthermore, different probability estimates, like the
Laplace [3] or the m-estimate [2, 6], can be used in CN2 for estimating the above
probability and the probabilities in Equation 1. The standard CN2 algorithm
used in this work uses the Laplace estimate.

Additionally, CN2 can apply a significance test to the induced rule. The rule
is considered to be significant, if it locates regularity unlikely to have occurred
by chance. To test significance, CN2 uses the likelihood ratio statistic [5] that



measures the difference between the class probability distribution in the set of
examples covered by the rule and the class probability distribution in the set of all
training examples. Empirical evaluation in [3] shows that applying a significance
test reduces the number of induced rules (and also slightly reduces the predictive
accuracy).

Two different control procedures are used in CN2: one for inducing an ordered
list of rules and the other for the unordered case. When inducing an ordered list
of rules, the search procedure looks for the best rule, according to the heuristic
measure, in the current set of training examples. The rule predicts the most
frequent class in the set of examples, covered by the induced rule. Before starting
another search iteration, all examples covered by the induced rule are removed.
The control procedure invokes a new search, until all the examples are covered.

In the unordered case, the control procedure is iterated, inducing rules for
each class in turn. For each induced rule, only covered examples belonging to that
class are removed, instead of removing all covered examples, like in the ordered
case. The negative training examples (i.e., examples that belong to other classes)
remain and positives are removed in order to prevent CN2 finding the same rule
again.

The Weighted Relative Accuracy Heuristic. Weighted relative accuracy
can be meaningfully applied both in the descriptive and predictive induction
framework; in this paper we apply this heuristic for subgroup discovery.

We use the following notation. Let n(Cond) stand for the number of in-
stances covered by a rule Class ← Cond, n(Class) stand for the number of
examples of class Class, and n(Class.Cond) stand for the number of correctly
classified examples (true positives). We use p(Class.Cond) etc. for the corre-
sponding probabilities. We then have that rule accuracy can be expressed as
Acc(Class ← Cond) = p(Class|Cond) = p(Class.Cond)

p(Cond) . Weighted relative accu-
racy [10, 15] is defined as follows.

WRAcc(Class ← Cond) = p(Cond).(p(Class|Cond)− p(Class)). (1)

Weighted relative accuracy consists of two components: generality p(Cond),
and relative accuracy p(Class|Cond)− p(Class). The second term, relative ac-
curacy, is the accuracy gain relative to the fixed rule Class ← true. The latter
rule predicts all instances to satisfy Class; a rule is only interesting if it improves
upon this ‘default’ accuracy. Another way of viewing relative accuracy is that
it measures the utility of connecting rule body Cond with a given rule head
Class. However, it is easy to obtain high relative accuracy with highly specific
rules, i.e., rules with low generality p(Cond). To this end, generality is used as
a ‘weight’, so that weighted relative accuracy trades off generality of the rule
(p(Cond), i.e., rule coverage) and relative accuracy (p(Class|Cond)−p(Class)).

Probabilistic Classification. The induced rules can be ordered or unordered.
Ordered rules are interpreted as a decision list [14] in a straight-forward manner:



when classifying a new example, the rules are sequentially tried and the first rule
that covers the example is used for prediction.

In the case of unordered rule sets, the distribution of covered training exam-
ples among classes is attached to each rule. Rules of the form:

if Cond then Class [ClassDistribution]

are induced, where numbers in the ClassDistribution list denote, for each indi-
vidual class, how many training examples of this class are covered by the rule.
When classifying a new example, all rules are tried and those covering the exam-
ple are collected. If a clash occurs (several rules with different class predictions
cover the example), a voting mechanism is used to obtain the final prediction:
the class distributions attached to the rules are summed to determine the most
probable class. If no rule fires, a default rule is invoked which predicts the ma-
jority class of uncovered training instances.

3 The CN2-SD Algorithm for Subgroup Discovery

The main modifications of the CN2 algorithm, making it appropriate for sub-
group discovery, involve the implementation of the weighted covering algorithm,
incorporation of example weights into the weighted relative accuracy heuristic,
probabilistic classification also in the case of the ‘ordered’ induction algorithm,
and area under ROC curve rule set evaluation.

The Weighted Covering Algorithm. In the classical covering algorithm only
the first few induced rules may be of interest as subgroup descriptors with suffi-
cient coverage, since subsequently induced rules are induced from biased example
subsets, i.e., subsets including only positive examples not covered by previously
induced rules. This bias constrains the population for subgroup discovery in a
way that is unnatural for the subgroup discovery process which is, in general,
aimed at discovering interesting properties of subgroups of the entire population.
In contrast, the subsequent rules induced by the weighted covering algorithm al-
low for discovering interesting subgroup properties of the entire population.

The weighted covering algorithm is modified in such a way that covered
positive examples are not deleted from the current training set. Instead, in each
run of the covering loop, the algorithm stores with each example a count how
many times (with how many rules induced so far) the example has been covered.
Weights derived from these example counts then appear in the computation of
WRAcc. We have implemented two approaches.

Multiplicative weights. In the first approach, weights decrease multiplica-
tively. For a given parameter γ < 1, weights of covered examples decrease
as follows: e(i) = γi, where e(i) is the weight of an example being covered i
times. Note that the weighted covering algorithm with γ = 1 would result in
finding the same rule over and over again, whereas with γ = 0 the algorithm
would perform the same as the standard CN2 algorithm.



Additive weights. In the second approach, weights of covered examples are
modified as follows: e(i) = 1

i+1 .

Modified WRAcc Heuristic with Example Weights. The modification
of CN2 reported in [15] affected only the heuristic function: weighted relative
accuracy was used as search heuristic, instead of the accuracy heuristic of the
original CN2, while everything else stayed the same. In this work, the heuristic
function was further modified to enable handling example weights, which provide
the means to consider different parts of the instance space in each iteration of
the weighted covering algorithm.

In the WRAcc computation (Equation 1) all probabilities are computed by
relative frequencies. An example weight measures how important it is to cover
this example in the next iteration. The initial example weight e(0) = 1 means
that the example hasn’t been covered by any rule, meaning ‘please cover this
example, it hasn’t been covered before’, while lower weights mean ‘don’t try too
hard on this example’. The modified WRAcc measure is then defined as follows

WRAcc(Class ← Cond) =
n′(Cond)

N ′ (
n′(Class.Cond)

n′(Cond)
− n′(Class)

N ′ ). (2)

where N ′ is the sum of the weights of all examples, n′(Cond) is the sum of the
weights of all covered examples, and n′(Class.Cond) is the sum of the weights
of all correctly covered examples.

Probabilistic classification. Each CN2 rule returns a class distribution in
terms of numbers of examples covered, as distributed over classes. The CN2
algorithm uses class distribution in classifying unseen instances only in the case of
unordered rule sets, where rules are induced separately for each class. In the case
of ordered decision lists, the first rule that fires provides the classification. In our
modified CN2-SD algorithm, the same probabilistic classification is used in both
classifiers, due to overlapping rules. This means that the terminology ‘ordered’
and ‘unordered’, which in CN2 distinguished between decision list and rule set
induction, has a different meaning in our setting: the ‘unordered’ algorithm refers
to learning classes one by one, while the ‘ordered’ algorithm refers to finding best
rule conditions and assigning the majority class in the head.

4 Experimental evaluation

We experimentally evaluated our approach on 17 data sets from the UCI Repos-
itory of Machine Learning Databases [12]. In Table 1, the selected data sets are
summarised in terms of the number of attributes, the number of examples, and
the percentage of examples of the majority class. These data sets have been
widely used in other comparative studies. Since our re-implementation of CN2
currently does not support continuous attributes and can not handle missing



values, all continuous attributes have been discretised and data sets that con-
tain no missing values have been chosen. The discretisation described in [8] was
performed using the WEKA tool [16]. Moreover, all of the data sets have two
classes, either originally or by selecting one class as ‘positive’ and joining all the
other in a ‘negative’ class (in Table 1, the selected positive class is indicated by
[{ClassName}]); this was done for the purpose of enabling the area under ROC
curve evaluation.

Table 1. Characteristics of data sets used in the experiments.

# Data set #Attributes #Examples Majority class (%)

1 Anneal[{3}] 38 898 76.16
2 Australian 14 690 55.5
3 Balance[{L}] 4 625 46.08
4 Car[{unacc}] 6 1728 70.02
5 Credit-g 20 1000 70
6 Diabetes 8 768 65.1
7 Glass[{build wind non-float}] 9 214 35.51
8 Heart-stat 13 270 55.56
9 Ionosphere 34 351 64.1
10 Iris[{Iris-setosa}] 4 150 33.33
11 Lymph[{metastases}] 18 148 54.72
12 Segment[{brickface}] 19 2310 14.29
13 Sonar 60 208 53.36
14 Tic-tac-toe 9 958 65.34
15 Vehicle[{bus}] 18 846 25.77
16 Wine[{2}] 13 178 39.89
17 Zoo[{mammal}] 17 101 40.59

The performance of different variants of the CN2 rule induction algorithm was
measured using 10-fold stratified cross-validation. In particular, we compared the
CN2-SD subgroup discovery algorithm with the standard CN2 algorithm (CN2-
standard, described in [4, 5, 3]) and the CN2 algorithm using WRAcc (CN2-
WRAcc, described in [15]). All these variants of the CN2 algorithm were first
re-implemented in the WEKA data mining environment [16], because the use of
the same system makes the comparisons more impartial.

The results of these comparisons are presented in Tables 2 and 3, comparing
CN2-SD with CN2-standard and CN2-WRAcc in terms of accuracy (Table 2),
and size of the rule set (number of rules including the default rule), average
example coverage and likelihood ratio1 per rule (Table 3). Tables for the ordered
algorithm are skipped due to space restrictions, and due to the fact that the
unordered algorithm is better suited to the philosophy of subgroup discovery
due to its aim at inducing independent individual rules. The results of the CN2-
SD algorithm were computed using both the multiplicative weights (with γ =
0.5, 0.7, 0.9) and the additive weights. All other parameters of the CN2 algorithm
were set to their default values (beam-size = 5, significance-threshold = 99%).

The experimental results show that CN2-SD achieves improvements across
the board. Additive weights result in about half the number of rules on av-

1 The likelihood ratio is used in CN2 for testing the significance of the induced rule
[5]. For two-class problems this statistic is distributed approximately as χ2 with one
degree of freedom.



Table 2. Accuracy with standard deviation (Acc ± sd) for different variants of the
unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add. weight.)

Acc ± sd Acc ± sd Acc ± sd Acc ± sd Acc ± sd Acc ± sd

1 98.33 ± 0.11 94.54 ± 0.20 94.77 ± 0.19 95.21 ± 0.19 93.88 ± 0.21 94.65 ± 0.21
2 38.55 ± 0.53 85.51 ± 0.35 84.93 ± 0.35 84.93 ± 0.35 84.78 ± 0.35 84.93 ± 0.35
3 75.68 ± 0.39 81.76 ± 0.38 85.12 ± 0.38 86.40 ± 0.38 86.40 ± 0.38 83.68 ± 0.39
4 97.74 ± 0.11 95.08 ± 0.33 95.14 ± 0.33 90.28 ± 0.32 89.53 ± 0.33 85.53 ± 0.34
5 74.40 ± 0.43 69.90 ± 0.43 70.70 ± 0.43 70.80 ± 0.43 70.50 ± 0.43 69.90 ± 0.43
6 68.62 ± 0.45 72.79 ± 0.42 72.14 ± 0.42 73.18 ± 0.42 74.22 ± 0.42 72.92 ± 0.42
7 80.37 ± 0.38 79.91 ± 0.40 68.22 ± 0.46 69.16 ± 0.45 69.63 ± 0.45 68.69 ± 0.46
8 66.30 ± 0.47 71.85 ± 0.46 76.67 ± 0.41 78.52 ± 0.39 81.11 ± 0.39 78.15 ± 0.41
9 85.76 ± 0.33 85.76 ± 0.33 86.04 ± 0.33 86.89 ± 0.31 87.75 ± 0.31 83.48 ± 0.34
10 99.33 ± 0.05 99.33 ± 0.05 100.00 ± 0.07 99.33 ± 0.10 99.33 ± 0.10 98.00 ± 0.14
11 86.49 ± 0.33 75.68 ± 0.39 83.78 ± 0.37 83.11 ± 0.37 83.11 ± 0.37 81.08 ± 0.38
12 90.22 ± 0.26 87.88 ± 0.31 97.71 ± 0.13 97.71 ± 0.13 97.58 ± 0.15 97.53 ± 0.15
13 71.15 ± 0.49 61.06 ± 0.50 66.83 ± 0.49 67.79 ± 0.47 67.31 ± 0.48 65.38 ± 0.48
14 98.33 ± 0.08 70.56 ± 0.42 84.45 ± 0.38 85.07 ± 0.38 88.41 ± 0.37 83.92 ± 0.39
15 87.47 ± 0.29 80.73 ± 0.36 89.60 ± 0.33 89.95 ± 0.33 90.19 ± 0.33 88.89 ± 0.34
16 85.39 ± 0.33 91.57 ± 0.27 93.26 ± 0.25 93.82 ± 0.25 93.82 ± 0.25 92.13 ± 0.29
17 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Average 82.60 ± 0.30 82.58 ± 0.33 85.26 ± 0.31 85.42 ± 0.31 85.74 ± 0.31 84.05 ± 0.33

Table 3. Average size (S), coverage (CVG) and likelihood ratio (LHR) of rules for
different versions of the unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add. weight.)

S CVG LHR S CVG LHR S CVG LHR S CVG LHR S CVG LHR S CVG LHR

1 26 49.3 68.8 26 58.1 61.2 14 115.6 100.9 14 126.3 130.7 13 190.7 136.1 8 150.5 193.0
2 58 36.0 21.5 6 156.8 89.9 10 181.0 136.6 9 239.7 170.5 8 296.0 189.8 6 269.7 211.6
3 113 9.5 11.6 42 24.7 20.2 17 75.0 28.8 18 72.0 31.3 11 125.0 38.0 9 105.0 43.8
4 84 30.9 45.7 22 128.1 112.9 11 253.2 136.1 11 282.0 167.0 11 422.4 167.0 6 282.0 212.3
5 91 15.1 13.2 14 98.7 25.2 13 151.0 37.9 12 185.1 47.9 15 263.0 48.9 7 191.5 55.4
6 58 26.5 13.2 12 90.6 27.7 11 113.7 39.7 14 102.3 37.0 12 132.0 40.0 9 116.1 42.8
7 23 11.9 12.2 15 16.5 11.9 11 39.8 14.6 15 35.5 15.0 17 62.0 16.1 7 35.1 18.1
8 42 14.6 14.2 11 57.3 18.4 16 51.8 29.4 16 69.6 36.4 20 79.7 36.4 11 66.1 42.4
9 42 19.7 19.5 26 23.5 21.5 27 40.6 39.7 25 47.7 44.9 26 63.0 43.6 13 49.6 52.4
10 11 16.3 30.0 11 16.3 30.0 14 21.8 27.4 14 21.8 27.4 14 24.4 27.4 10 21.8 33.8
11 17 14.6 18.2 10 21.3 19.9 16 27.1 24.1 16 29.2 24.1 23 39.3 25.1 10 28.2 30.7
12 184 21.6 94.6 38 103.2 139.4 11 337.1 345.1 8 398.5 390.0 7 440.0 437.1 6 407.0 509.6
13 36 7.8 12.5 22 15.8 13.5 28 19.4 13.7 32 20.8 14.7 41 34.8 14.6 12 24.0 17.9
14 30 38.9 76.4 27 55.5 44.0 20 83.7 62.6 18 94.2 63.4 15 117.6 74.9 11 101.8 68.2
15 82 19.6 32.7 38 34.1 28.3 14 154.6 101.3 14 166.3 107.3 15 218.0 107.3 9 189.7 131.5
16 28 10.0 16.0 18 13.8 20.5 21 20.0 19.8 20 20.9 20.0 21 27.6 20.5 11 21.9 25.5
17 3 50.5 68.2 3 50.5 68.2 3 50.5 68.2 3 50.5 68.2 3 50.5 68.2 3 50.5 68.2

Avg 54.6 23.1 33.5 20.0 56.8 44.3 15.1 102.1 72.2 15.2 115.5 82.1 16.0 152.1 87.8 8.7 124.2 103.4

erage obtained by multiplicative weights. Average rule coverage is optimal for
multiplicative weights with high γ, improving on the average coverage of CN2-
standard rules with a factor of 6 and on CN2-WRAcc with a factor of 3. We
conclude that both rules obtained with additive weights and with multiplicative
weights with high γ are highly overlapping, due to the relatively modest decrease
of example weights.

In addition, there is also a big increase in the average likelihood ratio: while
the ratios achieved by CN2-standard are already significant at the 99% level,



this is further pushed up by CN2-SD with maximum values achieved by addi-
tive weights. An interesting question, to be verified with further experiments,
is whether the weighted versions of the CN2 algorithm improve the significance
of the induced subgroups also in the case when CN2 rules are induced without
applying the significance test.

In summary, CN2-SD produces substantially smaller rule sets, where individ-
ual rules have higher coverage and significance. These three factors are important
for subgroup discovery: smaller size enables better understanding, higher cover-
age means larger support, and rules should describe discovered subgroups that
are significantly different from the entire population.

The increased accuracy of CN2-SD compared to CN2-standard and CN2-
WRAcc (see Table 2) improves on the findings in [15], where the rule size de-
creased at the expense of a small drop in accuracy. It should be noted that the
results of CN2-standard and CN2-WRAcc cannot be directly compared to those
reported in [15] due to the following reasons: first, different datasets were se-
lected in the two experiments, second, attribute discretisation was performed,
third, minor differences in the algorithm implementations exist, and finally, re-
sults in this paper were obtained for binarised learning problems. Our hypothesis,
that needs to be verified in further work, is that the improved results reported
in this paper may be due to the binarised problem domains for which WRAcc
may be better suited than for multi-class domains.

5 Conclusions

We have presented a novel approach to adapting standard classification rule
learning to subgroup discovery. To this end we have appropriately adapted the
covering algorithm, the search heuristics and the probabilistic classification pro-
cedure. Experimental results on 17 UCI datasets are very promising, demon-
strating big improvements in number of induced rules, rule coverage and rule
significance, as well as smaller improvements in rule accuracy.

In further work we will investigate the behaviour of CN2-SD in multi-class
problems. We are also planning to evaluate the approach using the area under
the ROC convex hull metric which is more appropriate for subgroup discovery
than the standard accuracy metric. See the appendix for some ROC results.
Finally, we plan to use our adapted procedure for subgroup discovery for solving
practical problems, in which expert evaluations of induced subgroup descriptions
will be of ultimate interest.
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Appendix: Area under ROC convex hull evaluation

A point on the ROC curve (ROC: Receiver Operating Characteristic) [9, 13]
shows classifier performance in terms of false alarm or false positive rate FPr =

FP
TN+FP (plotted on the X-axis) that needs to be minimized, and sensitivity 2 or
true positive rate TPr = TP

TP+FN (plotted on the Y -axis) that needs to be max-
imized. In the ROC space, an appropriate tradeoff, determined by the expert,
can be achieved by applying different algorithms, as well as by different param-
eter settings of a selected data mining algorithm or by taking into the account
different misclassification costs. The ROC space is appropriate for measuring the
success of subgroup discovery, since subgroups whose TPr/FPr tradeoff is close
to the diagonal can be discarded as insignificant. The area under the ROC curve
(AUC) can be used as a quality measure for comparing the success of different
learners.

In subgroup discovery there are two ways in which a rule learner can give
rise to a ROC curve.

AUC-Method-1. The first method treats each rule as a separate subgroup
which is plotted in the ROC space with its true and false positive rates. We
then calculate the convex hull of this set of points, selecting the subgroups
which perform optimally under a particular range of operating characteris-
tics. The area under this ROC convex hull (AUC) indicates the combined
quality of the optimal subgroups.3

AUC-Method-2. The second method employs the combined probabilistic clas-
sifications of all subgroups, as indicated below. If we always choose the most
likely predicted class, this corresponds to setting a fixed threshold 0.5 on the
positive probability: if the positive probability is larger than this threshold
we predict positive, else negative. A ROC curve can be constructed by vary-
ing this threshold from 1 (all predictions negative, corresponding to (0,0)
in the ROC space) to 0 (all predictions positive, corresponding to (1,1) in

2 Sensitivity measures the fraction of positive cases that are classified as positive,
whereas specificity measures the fraction of negative cases classified as negative. If
TP denotes true positives, TN true negatives, FP false positives, FN false negatives,
Pos all positives, and Neg all negatives, then Sensitivity = TPr = TP

TP+FN
= TP

Pos
,

and Specificity = TN
TN+FP

= TN
Neg

, and FalseAlarm = FPr = 1 − Specificity =
FP

TN+FP
= FP

Neg
.

3 In fact, we would have two convex hulls as some subgroups shift the distribution to
the positive class and others shift it to the negative class. This method does not take
account of overlapping subgroups.



the ROC space). This results in n + 1 points in the ROC space, where n is
the total number of classified examples. Equivalently, we can order all the
examples by decreasing predicted probability of being positive, and tracing
the ROC curve by starting in (0,0), stepping up when the example is actu-
ally positive and stepping to the right when it is negative, until we reach
(1,1).4 The area under this ROC curve indicates the combined quality of
all subgroups (i.e., the quality of the entire rules set). This method can be
used with a test set or in cross-validation, but the resulting curve is not
necessarily convex. A detailed description of this method can be found in
[7].

Table 4. Area under the ROC curve with standard deviation (AUC ± sd) for different
variants of the unordered algorithm using 10-fold stratified cross-validation.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add. weight.)

AUC ± sd AUC ± sd AUC ± sd AUC ± sd AUC ± sd AUC ± sd

1 99.41 ± 0.01 99.72 ± 0.00 99.24 ± 0.01 98.84 ± 0.01 98.51 ± 0.01 98.17 ± 0.01
2 35.10 ± 0.11 87.83 ± 0.05 83.15 ± 0.05 84.12 ± 0.04 84.32 ± 0.05 84.97 ± 0.04
3 86.22 ± 0.03 89.00 ± 0.03 93.89 ± 0.02 93.69 ± 0.02 93.56 ± 0.02 91.82 ± 0.03
4 99.93 ± 0.00 96.55 ± 0.02 94.67 ± 0.02 93.86 ± 0.02 93.00 ± 0.02 86.78 ± 0.02
5 70.10 ± 0.09 72.11 ± 0.06 71.38 ± 0.07 71.31 ± 0.07 72.68 ± 0.07 70.12 ± 0.06
6 69.52 ± 0.08 78.93 ± 0.05 79.89 ± 0.04 79.93 ± 0.05 80.14 ± 0.05 79.43 ± 0.05
7 68.23 ± 0.08 73.85 ± 0.12 70.71 ± 0.16 72.59 ± 0.15 72.91 ± 0.15 72.67 ± 0.14
8 74.75 ± 0.09 74.56 ± 0.07 82.96 ± 0.08 83.83 ± 0.11 86.16 ± 0.11 84.76 ± 0.09
9 93.81 ± 0.03 90.21 ± 0.06 90.66 ± 0.06 91.48 ± 0.06 91.80 ± 0.06 91.36 ± 0.05
10 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
11 94.34 ± 0.04 89.16 ± 0.08 88.15 ± 0.07 91.14 ± 0.06 90.76 ± 0.06 88.53 ± 0.08
12 99.73 ± 0.01 99.79 ± 0.00 98.99 ± 0.01 98.69 ± 0.02 98.19 ± 0.02 98.05 ± 0.02
13 65.32 ± 0.12 60.61 ± 0.10 69.35 ± 0.13 72.04 ± 0.15 71.19 ± 0.16 65.10 ± 0.16
14 100.00 ± 0.00 81.00 ± 0.08 92.97 ± 0.03 92.37 ± 0.04 91.96 ± 0.04 90.24 ± 0.04
15 97.27 ± 0.02 92.41 ± 0.03 94.38 ± 0.03 94.60 ± 0.02 94.18 ± 0.02 93.43 ± 0.02
16 94.14 ± 0.05 96.30 ± 0.06 95.39 ± 0.05 95.53 ± 0.05 95.53 ± 0.05 92.16 ± 0.09
17 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Average 85.17 ± 0.04 87.18 ± 0.05 88.58 ± 0.05 89.06 ± 0.05 89.11 ± 0.05 87.51 ± 0.05

4 In the case of ties, we make the appropriate number of steps up and to the right at
once, drawing a diagonal line segment.


