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Abstract. Relational rule learning is typically used in solving classi-
fication and prediction tasks. However, relational rule learning can be
adapted also to subgroup discovery. This paper proposes a proposition-
alization approach to relational subgroup discovery, achieved through
appropriately adapting rule learning and first-order feature construction.
The proposed approach, applicable to subgroup discovery in individual-
centered domains, was successfully applied to two standard ILP problems
(East-West trains and KRK) and a real-life telecommunications applica-
tion.

1 Introduction

Developments in descriptive induction have recently gained much attention.
These involve mining of association rules (e.g., the APRIORI association rule
learning algorithm [1]), subgroup discovery (e.g., the MIDOS subgroup discovery
algorithm [22]), symbolic clustering and other approaches to non-classificatory
induction.

The methodology presented in this paper can be applied to relational sub-
group discovery. As in the MIDOS approach, a subgroup discovery task can be
defined as follows: given a population of individuals and a property of those
individuals we are interested in, find population subgroups that are statistically
‘most interesting’, e.g., are as large as possible and have the most unusual sta-
tistical (distributional) characteristics with respect to the property of interest.
This paper aims at solving a slightly modified subgroup discovery task that can
be stated as follows. Again, the input is a population of individuals and a prop-
erty of those individuals we are interested in, and the output are population
subgroups that are statistically ‘most interesting’: are as large as possible, have
the most unusual statistical (distributional) characteristics with respect to the
property of interest and are sufficiently distinct for detecting most of the target
population.

Notice an important aspect of the above two definitions. In both, there is a
predefined property of interest, meaning that both aim at characterizing popu-
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lation subgroups of a given target class. This property indicates that rule learn-
ing may be an appropriate approach for solving the task. However, we argue
that standard propositional rule learning [6,16] and relational rule learning al-
gorithms [19] are unsuitable for subgroup discovery. The main drawback is the
use of the covering algorithm for rule set construction. Only the first few rules
induced by a covering algorithm may be of interest as subgroup descriptions
with sufficient coverage, thus representing a ‘chunk’ of knowledge characterizing
a sufficiently large population of covered examples. Subsequent rules are induced
from smaller and strongly biased example subsets, i.e., subsets including only
positive examples not covered by previously induced rules. This bias prevents a
covering algorithm to induce descriptions uncovering significant subgroup prop-
erties of the entire population. A remedy to this problem is the use of a weighted
covering algorithm, as demonstrated in this paper, where subsequently induced
rules with high coverage allow for discovering interesting subgroup properties of
the entire population.

This paper investigates how to adapt classification rule learning approaches
to subgroup discovery, by exploiting the information about class membership in
training examples. This paper shows how this can be achieved by appropriately
modifying the covering algorithm (weighted covering algorithm) and the search
heuristics (weighted relative accuracy heuristic). The main advantage of the pro-
posed approach is that each rule with high weighted relative accuracy represents
a ‘chunk’ of knowledge about the problem, due to the appropriate tradeoff be-
tween accuracy and coverage, achieved through the use of the weighted relative
accuracy heuristic.

The paper is organized as follows. In Section 2 the background for this work
is explained: propositionalization through first-order feature construction, irrele-
vant feature elimination, the standard covering algorithm used in rule induction,
the standard heuristics as well as the weighted relative accuracy heuristic, prob-
abilistic classification and rule evaluation in the ROC space. Section 3 presents
the proposed relational subgroup discovery algorithm. Section 4 presents the
experimental evaluation in two standard ILP problems (East-West trains and
KRK) and a real-life telecommunications application. Section 5 concludes by
summarizing the results and presenting plans for further work.

2 Background

This section presents the backgrounds: propositionalization through first-order
feature construction, irrelevant feature elimination, the standard covering algo-
rithm used in rule induction, the standard heuristics as well as the weighted
relative accuracy heuristic, probabilistic classification and rule evaluation in the
ROC space.

2.1 Propositionalization through First-Order Feature Construction

The background knowledge used to construct hypotheses is a distinctive feature
of relational rule learning (and inductive logic programming, in general). It is
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well known that relevant background knowledge may substantially improve the
results of learning in terms of accuracy, efficiency, and the explanatory potential
of the induced knowledge. On the other hand, irrelevant background knowledge
will have just the opposite effect. Consequently, much of the art of inductive logic
programming lies in the appropriate selection and formulation of background
knowledge to be used by the selected ILP learner.

By devoting enough effort to the construction of features, to be used as
background knowledge in learning, even complex relational learning tasks can be
solved by simple propositional rule learning systems. In propositional learning,
the idea of augmenting an existing set of attributes with new ones is known
under the term constructive induction. A first-order counterpart of constructive
induction is predicate invention. This work takes the middle ground: we perform
a simple form of predicate invention through first-order feature construction,
and use the constructed features for relational rule learning, which thus becomes
propositional.

Our approach to first-order feature construction can be applied in the so-
called individual-centered domains, where there is a clear notion of individual,
and learning occurs at the level of individuals only. Such domains include clas-
sification problems in molecular biology, for example, where the individuals are
molecules. Often, individuals are represented by a single variable, and the target
predicates are either unary predicates concerning boolean properties of individ-
uals, or binary predicates assigning an attribute-value or a class-value to each
individual. It is however also possible that individuals are represented by tuples
of variables.

In our approach to first-order feature construction, described in [9,12,10],
local variables referring to parts of individuals are introduced by so-called struc-
tural predicates. The only place where nondeterminacy can occur in individual-
centered representations is in structural predicates. Structural predicates intro-
duce new variables. In a given language bias for first-order feature construction,
a first-order feature is composed of one or more structural predicates introduc-
ing a new variable, and of utility predicates as in LINUS [13] (called properties
in [9]) that ‘consume’ all new variables by assigning properties of individuals or
their parts, represented by variables introduced so far. Utility predicates do not
introduce new variables.

Individual-centered representations have the advantage of a strong language
bias, because local variables in the bodies of rules either refer to the individual
or to parts of it. However, not all domains are amenable to the approach we use
in this paper - in particular, we cannot learn recursive clauses, and we cannot
deal with domains where there is not a clear notion of individual (e.g., many
program synthesis problems).

2.2 Irrelevant Feature Elimination

Let L denote the set of all features constructed by a first-order feature construc-
tion algorithm. Some features defined by the language bias may be irrelevant
for the given learning task. Irrelevant features can be detected and eliminated in
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preprocessing. Besides reducing the hypothesis space and facilitating the search
for the solution, the elimination of irrelevant features may contribute to a better
understanding of the problem domain.

It can be shown that if a feature l′ ∈ L is irrelevant then for every complete
and consistent hypothesis H = H(E, L), built from example set E and feature
set L whose description includes feature l′, there exists a complete and consistent
hypothesis H ′ = H(E, L′), built from the feature set L′ = L\{l′} that excludes l′.
This theorem is the basis of an irrelevant feature elimination algorithm proposed
in [15].

Note that usually the term feature is used to denote a positive literal (or a
conjunction of positive literals; let us, for the simplicity of the arguments below,
assume that a feature is a single positive literal). In the hypothesis language,
the existence of one feature implies the existence of two complementary literals:
a positive and a negated literal. Since each feature implies the existence of two
literals, the necessary and sufficient condition for a feature to be eliminated as
irrelevant is that both of its literals are irrelevant.

This observation directly implies the approach taken in this work. First we
convert the starting feature set to the corresponding literal set which has twice as
many elements. After that, we eliminate the irrelevant literals and, in the third
step, we construct the reduced set of features which includes all the features
which have at least one of their literals in the reduced literal set.

It must be noted that direct detection of irrelevant features (without conver-
sion to and from the literal form) is not possible except in the trivial case where
two (or more) features have identical values for all training examples. Only in
this case a feature f exists whose literals f and ¬f cover both literals g and ¬g
of some other feature. In a general case if a literal of feature f covers some literal
of feature g then the other literal of feature g is not covered by the other literal
of feature f . But it can happen that this other literal of feature g is covered
by a literal of some other feature h. This means that although there is no such
feature f that covers both literals of feature g, feature g can still turn out to be
irrelevant.

2.3 Rule Induction Using the Covering Algorithm

Rule learning typically consists of two main procedures: the search procedure
that performs search in order to find a single rule and the control procedure
that repeatedly executes the search. In the propositional rule learner CN2 [5,6],
for instance, the search procedure performs beam search using classification ac-
curacy of the rule as a heuristic function. The accuracy of rule H ← B is equal
to the conditional probability of head H, given that the body B is satisfied:
Acc(H ← B) = p(H|B).

The accuracy measure can be replaced by the weighted relative accuracy, de-
fined in Equation 1. Furthermore, different probability estimates, like the Laplace
[4] or the m-estimate [3,7], can be used for estimating the above probability and
the probabilities in Equation 1.
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Additionally, a rule learner can apply a significance test to the induced rule.
The rule is considered to be significant, if it locates a regularity unlikely to have
occurred by chance. To test significance, for instance, CN2 uses the likelihood
ratio statistic [6] that measures the difference between the class probability dis-
tribution in the set of examples covered by the rule and the class probability
distribution in the set of all training examples. Empirical evaluation in [4] shows
that applying a significance test reduces the number of induced rules (but also
slightly degrades the predictive accuracy).

Two different control procedures are used in CN2: one for inducing an ordered
list of rules and the other for the unordered case. When inducing an ordered list
of rules, the search procedure looks for the best rule, according to the heuristic
measure, in the current set of training examples. The rule predicts the most
frequent class in the set of examples, covered by the induced rule. Before starting
another search iteration, all examples covered by the induced rule are removed.
The control procedure invokes a new search, until all the examples are covered.

In the unordered case, the control procedure is iterated, inducing rules for
each class in turn. For each induced rule, only covered examples belonging to that
class are removed, instead of removing all covered examples, like in the ordered
case. The negative training examples (i.e., examples that belong to other classes)
remain and positives are removed in order to prevent CN2 finding the same rule
again.

2.4 The Weighted Relative Accuracy Heuristic

Weighted relative accuracy can be meaningfully applied both in the descriptive
and predictive induction framework; in this paper we apply this heuristic for
subgroup discovery.

We use the following notation. Let n(B) stand for the number of instances
covered by rule H ← B, n(H) stand for the number of examples of class H, and
n(H.B) stand for the number of correctly classified examples (true positives).
We use p(H.B) etc. for the corresponding probabilities. We then have that rule
accuracy can be expressed as Acc(H ← B) = p(H|B) = p(H.B)

p(B) . Weighted
relative accuracy [14,21], a reformulation of one of the heuristics used in MIDOS
[22], is defined as follows.

WRAcc(H ← B) = p(B).(p(H|B)− p(H)). (1)

Weighted relative accuracy consists of two components: generality p(B), and
relative accuracy p(H|B) − p(H). The second term, relative accuracy, is the
accuracy gain relative to the fixed rule H ← true. The latter rule predicts all
instances to satisfy H; a rule is only interesting if it improves upon this ‘default’
accuracy. Another way of viewing relative accuracy is that it measures the utility
of connecting rule body B with a given rule head H. However, it is easy to obtain
high relative accuracy with highly specific rules, i.e., rules with low generality
p(B). To this end, generality is used as a ‘weight’, so that weighted relative
accuracy trades off generality of the rule (p(B), i.e., rule coverage) and relative
accuracy (p(H|B)− p(H)).
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2.5 Probabilistic Classification

The induced rules can be ordered or unordered. Ordered rules are interpreted as
a decision list [20] in a straight-forward manner: when classifying a new example,
the rules are sequentially tried and the first rule that covers the example is used
for prediction.

In the case of unordered rule sets, the distribution of covered training exam-
ples among classes is attached to each rule. Rules of the form:

H ← B [ClassDistribution]

are induced, where numbers in the ClassDistribution list denote, for each indi-
vidual class H, how many training examples of this class are covered by the rule.
When classifying a new example, all rules are tried and those covering the exam-
ple are collected. If a clash occurs (several rules with different class predictions
cover the example), a voting mechanism is used to obtain the final prediction:
the class distributions attached to the rules are summed to determine the most
probable class.

2.6 Area Under the ROC Curve Evaluation

A point on the ROC curve1 shows classifier performance in terms of false alarm
or false positive rate FPr = FP

TN+FP (plotted on the X-axis) that needs to be
minimized, and sensitivity or true positive rate TPr = TP

TP+FN (plotted on the
Y -axis) that needs to be maximized. In the ROC space, an appropriate tradeoff,
determined by the expert, can be achieved by applying different algorithms, as
well as by different parameter settings of a selected data mining algorithm.

3 Relational Subgroup Discovery

We have devised a relational subgroup discovery system RSD on principles
that employ the following main ingredients: exhaustive first-order feature con-
struction, elimination of irrelevant features, implementation of a relational rule
learner, use of the weighted covering algorithm and incorporation of example
weights into the weighted relative accuracy heuristic.

The input to RSD consists of

– a relational database (further called input data) containing one main ta-
ble (relation) where each row corresponds to a unique individual and one
attribute of the main table is specified as the class attribute, and

– a mode-language definition used to construct first-order features.

The main output of RSD is a set of subgroups whose class-distributions differ
substantially from those of the complete data-set. The subgroups are identified
by conjunctions of symbols of pre-generated first-order features. As a by-product,
1 ROC stands for Receiver Operating Characteristic [11,18]
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RSD also provides a file containing the mentioned set of features and offers to
export a single relation (as a text file) with rows corresponding to individuals and
fields containing the truth values of respective features for the given individual.
This table is thus a propositionalized representation of the input data and can
be used as an input to various attribute-value learners.

3.1 RSD First-Order Feature Construction

The design of an algorithm for constructing first-order features can be split into
three relatively independent problems.

– Identifying all first-order literal conjunctions that by definition form a feature
(see [9], briefly described in Section 2.1), and at the same time comply to
user-defined constraints (mode-language). Such features do not contain any
constants and the task can be completed independently of the input data.

– Extending the feature set by variable instantiations. Certain features are
copied several times with some variables substituted to constants ‘carefully’
chosen from the input data.

– Detecting irrelevant features (see [15], briefly described in Section 2.2) and
generating propositionalized representations of the input data using the gen-
erated feature set.

Identifying Features. Motivated by the need to easily recycle language-bias
declarations already present for numerous ILP problems, RSD accepts declara-
tions very similar to those used by the systems Aleph [2] or Progol [17], including
variable typing, moding, setting a recall parameter etc, used to syntactically con-
strain the set of possible features. For example, a structural predicate declaration
in the well-known domain of East-West trains would be such as

:-modeb(1, hasCar(+train, -car)).

where the recall number 1 determines that a feature can address at most one car
of a given train. Property predicates are those with no output variables (labeled
with the minus sign). The head declaration always contains exactly one variable
of the input mode (e.g. +train in our example).

Various settings such as the maximal feature length denoting the maximal
number of literals allowed in a feature, maximal variable depth etc. can also be
specified, otherwise their default value is assigned.

RSD will produce the exhaustive set of features satisfying the mode and
setting declarations. No feature produced by RSD can be decomposed into a
conjunction of two features.

Employing Constants. As opposed to Aleph or Progol declarations, RSD does
not use the # sign to denote an argument which should be a constant. In the
mentioned systems, constants are provided by a single saturated example, while
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RSD extract constants from the whole input data. The user can instead utilize
the reserved property predicate instantiate/1, which does not occur in the
background knowledge, to specify a variable which should be substituted with a
constant. For example, out of the following declarations

:-modeh(1, train(+train)).
:-modeb(1, hasCar(+train, -car)).
:-modeb(1, hasLoad(+car, -load)).
:-modeb(1, hasShape(+load, -shape).
:-modeb(3, instantiate(+shape)).

exactly one feature will be generated2:

f1(A) :- hasCar(A,B),hasLoad(B,C),hasShape(C,D),instantiate(D).

However, in the second step, after consulting the input data, f1 will be sub-
stituted by 3 features (due to the recall parameter 3 in the last declaration)
where the instantiate/1 literal is removed and the D variable is substituted
with 3 most frequent constants out of all values of D which make the body of f1
provable in the input data. One of them will be

f1(A) :- hasCar(A,B),hasLoad(B,C),hasShape(C,rectangle).

Filtering and Applying Features. RSD implements the simplest scheme of
feature filtering from [15]. This means that features with complete of empty
coverage on the input data will be retracted from the feature set. In the current
implementation, RSD does not check for irrelevance of a feature caused by the
presence of other features. As the product of this third, final step of feature
construction, the system exports an attribute representation of the input data
based on the truth values of respective features, in a file of parametrizable format.

3.2 RSD Rule Induction Algorithm

A part of RSD is a subgroup discovery program which can accept data propo-
sitionalized by the feature constructor described above. The algorithm acquires
some basic principles of the CN2 rule learner [6], which are however adapted
in several substantial ways to meet the interests of subgroup discovery. The
principal modifications are outlined below.

The Weighted Covering Algorithm. In the classical covering algorithm for
rule set induction, only the first few induced rules may be of interest as subgroup
2 Strictly speaking, the feature is solely the body of the listed clause. However, clauses

such as the one listed will also be called features in the following as this will cause
no confusion.
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descriptors with sufficient coverage, since subsequently induced rules are induced
from biased example subsets, i.e., subsets including only positive examples not
covered by previously induced rules. This bias constrains the population for
subgroup discovery in a way that is unnatural for the subgroup discovery process
which is, in general, aimed at discovering interesting properties of subgroups of
the entire population. In contrast, the subsequent rules induced by the proposed
weighted covering algorithm allow for discovering interesting subgroup properties
of the entire population.

The weighted covering algorithm performs in such a way that covered positive
examples are not deleted from the current training set. Instead, in each run of
the covering loop, the algorithm stores with each example a count how many
times (with how many rules induced so far) the example has been covered.
Weights derived from these example counts then appear in the computation of
WRAcc. Initial weights of all positive examples ej equals w(ej , 0) = 1. Weights
of covered positive examples decrease according to the formula w(ej , i) = 1

i+1 ,
where w(ej , i) is the weight of example ej being covered i times3.

Modified WRAcc Heuristic with Example Weights. The modification
of CN2 reported in [21] affected only the heuristic function: weighted relative
accuracy was used as search heuristic, instead of the accuracy heuristic of the
original CN2, while everything else stayed the same. In this work, the heuristic
function was further modified to enable handling example weights, which provide
the means to consider different parts of the instance space in each iteration of
the weighted covering algorithm.

In the WRAcc computation (Equation 1) all probabilities are computed by
relative frequencies. An example weight measures how important it is to cover
this example in the next iteration. The initial example weight w(ej , 0) = 1 means
that the example hasn’t been covered by any rule, meaning ‘please cover this
example, it hasn’t been covered before’, while lower weights mean ‘don’t try too
hard on this example’. The modified WRAcc measure is then defined as follows

WRAcc(H ← B) =
n′(B)
N ′ (

n′(H.B)
n′(B)

− n′(H)
N ′ ). (2)

where N ′ is the sum of the weights of all examples, n′(B) is the sum of the
weights of all covered examples, and n′(H.B) is the sum of the weights of all
correctly covered examples.

To add a rule to the generated rule set, the rule with the maximum WRAcc
measure is chosen out of those rules in the search space, which are not yet present
in the rule set produced so far (all rules in the final rule set are thus distinct,
without duplicates).
3 Whereas this approach is referred to as additive, another option is the multiplicative

approach, where, for a given parameter γ < 1, weights of covered examples decrease
as follows: w(ej , i) = γi. Note that the weighted covering algorithm with γ = 1
would result in finding the same rule over and over again, whereas with γ = 0 the
algorithm would perform the same as the standard CN2 algorithm.
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Probabilistic Classification and Area under the ROC Curve Evalua-
tion. The method, which is used for evaluation of predictive performance of the
subgroup discovery results employs the combined probabilistic classifications of
all subgroups (a set of rules as a whole). If we always choose the most likely
predicted class, this corresponds to setting a fixed threshold 0.5 on the positive
probability: if the positive probability is larger than this threshold we predict
positive, else negative. A ROC curve can be constructed by varying this thresh-
old from 1 (all predictions negative, corresponding to (0,0) in the ROC space)
to 0 (all predictions positive, corresponding to (1,1) in the ROC space). This re-
sults in n+1 points in the ROC space, where n is the total number of examples.
Equivalently, we can order all examples by decreasing the predicted probabil-
ity of being positive, and tracing the ROC curve by starting in (0,0), stepping
up when the example is actually positive and stepping to the right when it is
negative, until we reach (1,1)4. The area under this ROC curve indicates the
combined quality of all subgroups. This method can be used with a test set or in
cross-validation: the resulting curve is not necessarily convex, but the area under
the curve still indicates the quality of the combined subgroups for probabilistic
prediction5.

4 Experimental Evaluation

4.1 Materials

We have performed experiments with RSD on two popular ILP data sets: the
King-Rook-King illegal chess endgame positions (KRK) and East-West trains.

We applied RSD also to a real-life problem in telecommunications. The data
(described in detail in [23]) represent incoming calls to an enterprise, which were
transferred to a particular person by the telephone receptionist. The company
has two rather independent divisions (‘datacomm’, ‘telecomm’) and people in
each of them may have a technical or commercial role. These two binary divi-
sions define four classes of incoming calls (‘data tech’, ‘data comm’, ‘tele tech’,
‘tele comm’), depending on the person the call was redirected to. The fifth class
(‘other’) labels the calls (of smaller interest) going to other employees than those
mentioned. The problem is to define subgroups of incoming calls usually falling
into a given class. The motivation for subgroup discovery in this domain is to
select people within a given class that can substitute each other in helping the
caller.

Table 1 lists the basic properties of the experimental data.

4.2 Procedures

We have applied the RSD algorithm with each of the data sets in the following
manner.
4 In the case of ties, we make the appropriate number of steps up and to the right at

once, drawing a diagonal line segment.
5 A description of this method applied to decision tree induction can be found in [8].
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Table 1. Basic properties of the experimental data.

Domain Individual No. of examples No. of classes
KRK KRK position 1000 2
Trains Train 20 2
Telecommunication Incoming call 1995 5

Table 2. The language bias and number of generated features for each of the experi-
mental domain.

KRK Trains Tele
No. of body declarations 10 16 11

Max. clause lenght 3 8 8
Max var. depth 2 4 4

No. of features before instantiations 42 219 4
No. of features after instantiations 42 2429 3729

– First, we generated a set of features and, except for the KRK domain, we
expanded the set with features containing variable instantiations.

– Then the feature sets were used to produce a propositional representation of
each of the data sets.

– From propositional data we induced rules with the RSD subgroup discovery
algorithm as well as with the standard coverage approach.

– Finally, we compared the pairs of rule sets in terms of properties that are of
interest for subgroup discovery.

– In one domain we evaluated the induced rule sets also from the point of view
of predictive classification. To do so, we performed a classification test on
the unseen part of the data, where rules were interpreted by the method of
probabilistic classification, suing a ROC plot to evaluate the results.

4.3 Results

Feature Construction. Table 2 shows the values of the basic parameters of the
language-bias declarations provided to the feature constructor for each given do-
main as well as the number of generated features before and after the expansion
due to variable instantiations.

Table 3 below presents a few examples of features generated for each of the
three domains together with a verbal interpretation.

Subgroup Discovery. The following experiment compares the results of the
search for interesting subgroups by means of four techniques described in detail
in the previous sections:

– Standard covering algorithm with rule accuracy as a selection measure (Cov
+ Acc).

– Example weighting (i.e., weighted covering algorithm) with rule accuracy as
a selection measure (We + Acc).
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Table 3. Examples of generated features.

KRK f6(A):-king1 rank(A,B),rook rank(A,C),adj(C,B).
meaning first king’s rank adjacent to rook’s rank
Trains f5(A):-hasCar(A,B),carshape(B,ellipse),carlength(B,short).
meaning has a short elliptic car

Tele f3(A):-call date(A,B),day is(B,mon).
meaning call accepted on Monday

f301(A):-ext number(A,B),prefix(B,[0,4,0,7]).
meaning caller’s number starts with 0407

Table 4. Average values of significance and coverage of the resulting rules of subgroup
discovery conducted by four different combinations of techniques.

KRK Cov + WRAcc We + WRAcc Cov + Acc We + Acc
Avg. Significance 10.48 15.23 8.76 11.80
Avg. Coverage 16.84% 17.11% 8.56% 14.97%

Trains Cov + WRAcc We + WRAcc Cov + Acc We + Acc
Avg. Significance 1.49 1.69 0.60 1.28
Avg. Coverage 26.66% 17.00% 6.67% 14.16%

Tele Cov + WRAcc We + WRAcc Cov + Acc We + Acc
Avg. Significance 9.92 11.55 3.17 4.87
Avg. Coverage 5.78% 3.2% 0.0012% 0.0012%

– Standard covering algorithm with weighted relative accuracy as a selection
measure (Cov + WRAcc).

– Example weighting with weighted relative accuracy as a selection measure
(We + WRAcc).

The resulting rule sets are evaluated on the basis of average rule significance
and average rule coverage. The significance of a rule is measured as in the CN2
algorithm [6], i.e., as the value of

∑

i

fi log
fi

pi
(3)

where for each class i, pi denotes the number of instances classified into i within
the whole data set, and fi denotes the number of such classified instances in the
subset, where the rule’s body holds true.

Table 4 shows the average significance and coverage values of rules produced
in the three respective domains by each of the four combination of techniques,
while Figure 1 shows the significance values for all individual rules.

By making pairwise comparisons we can investigate the influence of replac-
ing the standard covering algorithm (Cov) by the weighted covering algorithm
We), and the affects of replacing the standard accuracy heuristic (Acc) with the
weighted relative accuracy heuristic (WRAcc). The following observations can
be made from the quantitative results.
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Fig. 1. The significance of individual rules produced by each of the four combina-
tions of techniques in the three data domains. Rules are sorted decreasingly by their
significance value. Note that the number of rules produced by the example weighting
algorithm (We) is parameterizable by the setting of the weight-decay rate and the total
weight threshold for stopping the search. We used the same threshold for all We-based
experiments.
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– Example weighting increases the average rule significance with respect to the
standard covering algorithm for both cases of combination with the accuracy
or weighted relative accuracy measure, in all three data domains. This follows
from Table 4 above as well as from Figure 1.

– The use of weighted relative accuracy heuristic increases the average rule
coverage with respect to the case of using the accuracy measure. This holds
for both cases of combination with the standard covering algorithm or the
technique of example weighting, in all three data domains. This follows from
Table 4 (it is particularly striking in the Telecommunication domain).

– A consequence of the previous observation is that in the standard covering
algorithm, the use of weighted relative accuracy leads to smaller output rule
sets. This can be verified in Figure 1.

– It may seem surprising that the combination Cov + WRAcc yields a higher
average rule coverage than We + WRAcc for Trains and Telecommunication.
However, note that it does not make sense to compare coverage results across
Cov/We. The reason is that the rule generation process using We (gradually
tending to produce more specific rules) is stopped at an instant dictated by
the user-specified threshold parameter for the sum of all examples’ weights.
Thus the coverage values are to be compared between methods both using
Cov, and between methods both using We with the same threshold value
setting.

Classification. Although the aim of RSD is to merely discover rules repre-
senting interesting subgroups, such rules may as well be used for classification
purposes. For a binary classification problem, we can interpret the rule set as
explained in Section 3 to obtain a probabilistic classifier which is then evaluated
by means of the area under the ROC curve value. For the two binary-class KRK
data set we have thus repeated the rule induction process with only a part of
the propositionalized data (750 examples in KRK) and compare RSD rules with
the standard covering algorithm.

We have made the comparisons of the performance of the four methods in
terms of the area under the ROC curve only in the KRK domain. The reasons
for this decision are that

– the Trains domain is too small for splitting the training examples into a
training set and a separate test set, and

– the Telecommunications domain is a multi-class problem where the area
under ROC curve elevation can not be applied in a straight-forward way.

Table 5 lists the area under ROC values achieved by each of the four com-
binations of methods on the KRK domain6. The values have been obtained by
using the subgroup description rules for probabilistic classification as described
in Section 3. The corresponding ROC curves are shown in Figure 2. It can be
observed the using the WRAcc heuristic improved the predictive performance
6 Note that we have used a separate test set for evaluating the results - the more

elaborate evaluation using cross-validation is left for further work.
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Table 5. The area under ROC values for 4 possible combinations of methods on the
KRK domain.

KRK Cov + WRAcc We + WRAcc Cov + Acc We + Acc
Area Under ROC 0.93 0.84 0.92 0.80
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Fig. 2. The ROC curves for 4 possible combinations of methods on the KRK domain.

both with the standard coverage approach and the example weighting approach.
We also observe that using example weighting yielded smaller predictive accu-
racies than standard coverage in both combinations with WRAcc and Acc. Our
explanation is that due to the chosen parameterization of slow weight decrease
and low total weight threshold we obtained an overly complex predictive model,
composed of too many rules, leading to poorer predictive performance. The
chosen parameterization was motivated by the aim of obtaining an exhaustive
description of possibly interesting subgroups, but alternative, prediction-aimed
settings as well as filtering based on significance measures are part of the future
experimentation.

5 Conclusions

We have developed the system RSD which discovers interesting subgroups in
classified relational data. The strategy followed by the system begins with con-
verting the relational data into a single relation via first-order feature construc-
tion. RSD can ‘sensitively’ extract constants from the input data and employ
them in the feature definitions. It can also detect and remove some irrelevant
features, but so far only in a relatively simplified way. Finally, to identify in-
teresting subgroups, RSD takes advantage of the method of example-weighting
(used in the so-called weighted covering algorithm) and employing the WRAcc
measure as a heuristic for rule evaluation.

In three experimental domains, we have shown that example weighting im-
proves the average significance of discovered rules with respect to the standard
covering algorithm. Also, the use of weighted relative accuracy increases the av-
erage coverage (generality) of resulting rules. The combined effect of the two
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techniques is thus an important contribution to the problem of subgroup discov-
ery.

From the classification point of view, we observed that the WRAcc heuristic
improved the predictive performance on the tested domain compared to the sim-
ple accuracy measure heuristic. On the other hand, example-weighting yielded a
smaller predictive performance compared to the standard coverage approach.
This is in our opinion due to the chosen parameterization of the algorithm
motivated by the need of exhaustive description. In future work we will use
test the results using cross-validation. We will also experiment with alternative,
prediction-aimed settings.

Acknowledgements

The work reported in this paper was supported by the Slovenian Ministry of
Education, Science and Sport, the IST-1999-11495 project Data Mining and
Decision Support for Business Competitiveness: A European Virtual Enterprise,
the British Council project Partnership in Science PSP-18, and the ILPnet2
Network of Excellence in Inductive Logic Programming.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discov-
ery of association rules. In U.M. Fayyad, G. Piatetski-Shapiro, P. Smyth and R.
Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, 307–328.
AAAI Press, 1996.

2. A. Srinivasan and R.D. King. Feature construction with Inductive Logic Program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. Data Mining and Knowledge Discovery, 3(1):37–57, 1999.

3. B. Cestnik. Estimating probabilities: A crucial task in machine learning. In
L. Aiello, editor, Proc. of the 9th European Conference on Artificial Intelligence,
147–149. Pitman, 1990.

4. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.
In Y. Kodratoff, editor, Proc. of the 5th European Working Session on Learning,
151–163. Springer, 1989.

5. P. Clark and T. Niblett. Induction in noisy domains. In I. Bratko and N. Lavrač,
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