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Abstract. This chapter investigates subgroup discovery as a task of
constraint-based mining of local patterns, aimed at describing groups
of individuals with unusual distributional characteristics with respect
to the property of interest. The chapter provides a novel interpretation
of relevancy constraints and their use for feature filtering, introduces
relevancy-based mechanisms for handling unknown values in the exam-
ples, and discusses the concept of relevancy as an approach to avoiding
overfitting in subgroup discovery. The proposed approach to constraint-
based subgroup mining, using the SD algorithm, was successfully applied
to gene expression data analysis in functional genomics.

1 Introduction

One of the formulations of data mining [19] involves the specification of the
language of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can
be divided in two parts: language constraints and evaluation/optimization con-
straints. The first concern the form of patterns (e.g., find if-then rules with a
target class in the rule head), while the second concern the validity of patterns
on a given dataset. The latter can be either evaluation constraints (e.g., find all
rules with support above a given threshold) or optimization constraints (e.g.,
find three best rules with highest confidence).

Constraint-based data mining is now a recognized research topic [3]. The use of
constraints enables more efficient induction as well as focusing the search for pat-
terns likely to be of interest to the end-user. While constraint-based data mining
research has been—until recently—mostly focused on mining frequent itemsets
and association rules, mining frequent episodes and molecular fragments, this
chapter focuses on constraint-based subgroup discovery, i.e., constraint-based
mining of individual if-then rules of the form

Class← Cond

where Class in the rule consequent is a property of interest which is the goal
of investigation (the target class), and rule antecedent Cond is a conjunction of
features (attribute–value pairs).

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 243–266, 2005.
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Having defined the pattern language of if-then rules, we proceed by informally
defining the subgroup discovery task, while the formal definition of constraint-
based subgroup discovery, involving the definition of language constraints and
evaluation/optimization constraints, is the topic of Section 2.

The subgroup discovery task is informally defined as follows [26,7,16]: Given a
population of individuals and a specific property of individuals that we are inter-
ested in, find population subgroups that are statistically ‘most interesting’, e.g.,
are as large as possible and have the most unusual distributional characteristics
with respect to the property of interest.

In the particular task addressed in this chapter the goal of subgroup discovery
is to uncover characteristic properties of population subgroups by building short
rules which are of high quality. In our approach to subgroup discovery high
quality, on the one hand, means that the distribution of classes of instances
covered by the rule are statistically significantly different from the distribution
in the training set in favour of large coverage of the target class instances, and
on the other hand, it means avoidance to overfit the training set.

We restrict the subgroup discovery task to learning from class-labeled data,
and induce individual rules (describing individual subgroups) from labeled train-
ing examples (labeled positive if the property of interest holds, and negative
otherwise), thus targeting the process of subgroup discovery to uncovering prop-
erties of a selected target population of individuals with the given property of
interest. Despite the fact that this form of rules suggests that standard super-
vised classification rule learning could be used for solving the task, the goal of
subgroup discovery is to uncover individual rules/patterns, as opposed to the
goal of standard supervised learning, aimed at discovering rulesets/models to be
used as accurate classifiers of yet unlabeled instances [7].

This chapter introduces the constraint-based subgroup discovery task by
defining the constraints used in the heuristic SD subgroup discovery algorithm
[7].1 We proceed by discussing constraint-based approaches used in data prepro-
cessing: elimination of irrelevant features and handling of unknown values. Both
data preprocessing steps are investigated within the concept of relevancy with
the purpose of increasing the quality of induced rules. By reducing the total
number of features—through the elimination of features that are less relevant—
it enables more effective search for rules with good covering properties while
preventing that inclusion of less relevant features or their conjunctions would
degrade the quality of rules due to overfitting the training set.

We have successfully applied the proposed approaches to data preprocessing
and constraint-based subgroup mining using the SD algorithm on a problem of
gene expression data analysis in functional genomics. Gene expression monitor-
ing by DNA microarrays (gene chips) provides an important source of informa-
tion that can help in understanding many biological processes. The database
we analyze consists of a set of gene expression measurements (examples), each

1 Note that, in contrast with most constraint-based data mining approaches which ex-
haustively enumerate all solutions satisfying the given constraints, the SD algorithm
performs heuristic search.
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corresponding to a large number of measured expression values of a predefined
family of genes (attributes). Each measurement in the database was extracted
from a tissue of a patient with a specific disease; this disease is the class for the
given example. The domain, described in [25,8] and used in our experiments,
is a typical scientific discovery domain characterised by a large number of at-
tributes compared to the number of available examples. As such, this domain is
especially prone to overfitting, as it is a domain with 14 different cancer classes
and only 144 training examples in total, where the examples are described by
16063 attributes presenting gene expression values.

While the standard goal of machine learning is to start from the labeled ex-
amples and construct models/classifiers that can successfully classify new, pre-
viously unseen examples, our main goal is to uncover interesting patterns/rules
that can help to better understand the dependencies between classes (diseases)
and attributes (gene expressions values). The experiments were performed sepa-
rately for each cancer class so that a two-class learning problem was formulated
for each cancer class as a target. For each of these tasks a complete procedure
consisting of feature construction, handling of missing values, elimination of ir-
relevant features, and induction of subgroup descriptions in the form of rules was
repeated. Using the SD subgroup discovery algorithm [7], for each class a single
rule with maximal quality value was selected. The induced short rules, with 2–4
features in the rule consequent, were evaluated on an independent test set. Good
prediction results for classes with relatively many training instances measured
on an independent test set, as well as expert interpretation of induced rules
prove the effectiveness of described methods for avoiding overfitting in scientific
discovery tasks.

The paper is structured as follows. The constraint-based subgroup mining
task is introduced in Section 2. In Section 3 the background is presented: related
work on relevancy, our previous work on relevancy as an approach to feature fil-
tering, as well as the ROC space and the TP/FP space providing a framework
for the analysis of feature relevancy. Section 4 introduces new definitions of rele-
vancy, reinterpreting feature relevancy and rule relevancy in the TP/FP space.
Handling of unknown values within the relevancy concept, aimed at avoiding
overfitting and inducing robust rules, is the topic of Section 5. Section 6 dis-
cusses the particular choice of the language of features and the interpretation of
marginal values as unknown values in the functional genomics domain. Section 7
introduces the functional genomics domain in more detail, where the task is to
distinguish between different cancer types. Experimental results show the bene-
fits of proposed handling of unknown values and feature/rule relevancy filtering
in this scientific discovery task.

2 Constraint-Based Subgroup Discovery with SD

Subgroup discovery is a form of supervised inductive learning of subgroup de-
scriptions of the target class. As in all inductive rule learning tasks, the language
bias is determined by the syntactic restrictions of the pattern language and the
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vocabulary of terms in the language. In this work the hypothesis language is
restricted to simple if-then rules of the form Class← Cond, where Class is the
target class and Cond is a conjunction of features. Features are logical condi-
tions that have values true or false, depending on the values of attributes which
describe the examples in the problem domain: subgroup discovery rule learning
is a form of two-class propositional inductive rule learning, where multi-class
problems are solved through a series of two-class learning problems, so that each
class is once selected as the target class while examples of all other classes are
treated as non-target class examples.

The goal of rule construction are rules with optimal covering properties on
the available example set. A rule with ideal covering properties would be true for
all target class (positive) examples and false for all non-target class (negative)
examples. Target class examples covered by rule R are called true positives (TP ),
while non-target class examples covered by the rule are called false positives
(FP ).2 All remaining non-target class examples not covered by the rule are
called true negatives (TN). An ideal rule would be characterized by TP = P
and TN = N , where P is the set of positive examples, N the set of negative
examples, and E = P ∪N .

In this work, subgroup discovery is performed by the SD algorithm, an itera-
tive beam search rule learning algorithm [7]. The input to SD consists of a set of
examples E and a set of features F that can be constructed for the given exam-
ple set. The output of the SD algorithm is a set of rules with optimal covering
properties on the given example set. The SD algorithm is implemented in the
on-line Data Mining Server (DMS), publicly available at http://dms.irb.hr.3

2.1 The SD Algorithm

The goal of subgroup discovery algorithm SD (presented in [7] and—for com-
pleteness of this paper—outlined also in Figure 1) is to search for rules R that
maximize qg(R) = TP

FP+g , where TP are true positives, FP are false positives,
and g is a generalization parameter. High quality rules will cover many target
class examples and a low number of non-target class examples. The number of
tolerated non-target class cases, relative to the number of covered target class
cases, is determined by parameter g. For low g (g ≤ 1), induced rules will have
high specificity (low false alarm rate) since covering of every single non-target
class example is made relatively very ‘expensive’. On the other hand, by selecting
a high g value (g > 10 for small domains), more general rules will be generated,
covering also non-target class instances.

Algorithm SD takes as its input the complete training set E and the feature set
L, where features l ∈ L are logical conditions constructed from attribute values
2 We should have used the notation TP (R) and FP (R) for positive and negative ex-

amples covered by rule R, but—for simplicity—argument R is occasionally omitted.
3 The publicly available Data Mining Server and its constituent subgroup discovery

algorithm SD can be tested on user submitted domains with up to 250 examples and
50 attributes. The variant of the SD algorithm used in gene expression data analysis
was not limited by these restrictions.
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Algorithm SD: Subgroup Discovery
Input: E = P ∪N (E training set, |E| training set size,

P positive (target class) examples, N negative (non-target class)
examples)

L set of all defined features (attribute values), l ∈ L
Parameter: g (generalization parameter, 0.1 < g, default value 1)

min support (minimal support for rule acceptance)
beam width (maximal number of rules in Beam and New Beam)

Output: S = {TargetClass← Cond} (set of rules R formed of beam width
best conditions Cond)

(1) for all rules in Beam and New Beam (i = 1 to beam width) do
initialize the rule condition to be empty, Cond(i)← {}
initialize rule quality to zero, qg(R)← 0

(2) while there are improvements in Beam do
(3) for all rules in Beam (i = 1 to beam width) do
(4) for all l ∈ L do
(5) form new rule R by forming a new condition as a conjunction of the

condition from Beam and feature l, Cond(i)← Cond(i) ∧ l
(6) compute the quality of a new rule as qg(R) = TP

F P+g

(7) if TP
|E| ≥ min support and if qg(R) is larger than the quality of any

rule in New Beam and if the new rule R is relevant do
(8) replace the worst rule in New Beam with new rule R and

reorder the rules in New Beam with respect to their quality
(9) end for features
(10) end for rules from Beam
(11) Beam← New Beam
(12) end while

Fig. 1. Heuristic beam search rule construction algorithm SD

describing the examples in E. If SD is used in the expert-guided framework,
varying the value of g enables the expert to guide subgroup discovery in the
TP/FP space, trying to minimize FP (plotted on the X-axis) and maximize TP
(plotted on the Y -axis). See Section 3.3 for details on the relationship between
the TP/FP space and the ROC (Receiver Operating Characteristic) space [23].

2.2 Constraints Used in the SD Algorithm

In the constraint-based data mining framework, a formal definition of subgroup
discovery involves a set of constraints that induced subgroup descriptions have
to satisfy. In the SD subgroup discovery algorithm the following constraints are
used to formalize the SD constraint-based subgroup discovery task.

Language constraints

– Individual subgroup descriptions have the form of rules Class ← Cond,
where Class is the property of interest (the target class), and Cond is a
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conjunction of features (conditions based on attribute value pairs) defined
by the language describing the training examples.

– For discrete (categorical) attributes, features have the form Attribute =
value or Attribute �= value, for continuous (numerical) attributes they have
the form Attribute > value or Attribute ≤ value. Note that features can
have values true and false only, that every feature has its logical complement
(for feature f1 being A1 = v1 its logical complement f1 is A1 �= v1, for A2 >
v2 its logical complement is A2 ≤ v2), and that features are different from
binary valued attributes because for every attribute at least two different
features are constructed.
To formalize feature construction, let values vix (x = 1..kip) denote the kip

different values of attribute Ai that appear in the positive examples and wiy

(y = 1..kin) the kin different values of Ai appearing in the negative examples.
A set of features F is constructed as follows:
• For discrete attributes Ai, features of the form Ai = vix and Ai �= wiy

are generated.
• For continuous attributes Ai, similar to [6], features of the form Ai ≤

(vix +wiy)/2 are generated for all neighboring value pairs (vix, wiy), and
features Ai > (vix + wiy)/2 for all neighboring pairs (wiy , vix).
• For integer valued attributes Ai, features are generated as if Ai were

both discrete and continuous, resulting in features of four different forms:
Ai ≤ (vix + wiy)/2, Ai > (vix + wiy)/2, Ai = vix, and Ai �= wiy.

– To simplify rule interpretation and increase rule actionability, subgroup dis-
covery is aimed at finding short rules. This is formalized by a language
constraint that every induced rule R has to satisfy: rule size (i.e., the num-
ber of features in Cond) has to be below a user-defined threshold: size(R) ≤
MaxRuleLength (in the experiments described in Section 7 this threshold
was set to 4).

Evaluation/optimization constraints

– To ensure that induced subgroups are sufficiently large, each induced rule R
must have high support, i.e., sup(R) ≥ MinSup, where MinSup is a user-
defined threshold, and sup(R) is the relative frequency of correctly covered
examples of the target class in examples set E:

sup(R) = p(Class · Cond) =
n(Class · Cond)

|E| =
|TP |
|E|

– Other evaluation/optimization constraints have to ensure that the induced
subgroups are highly significant (ensuring that the class distribution of ex-
amples covered by the subgroup description will be statistically significantly
different from the distribution in the training set). This could be achieved in
a straight-forward way by imposing a significance constraint on rules, e.g., by
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requiring that rule significance sig(R) is above a user-defined threshold.4

Instead, in the SD subgroup discovery algorithm [7] the following rule qual-
ity measure assuring rule significance, implemented as a heuristic in rule
construction, is used:

qg(R) =
|TP |
|FP |+ g

(1)

It was shown in [7] that by using this optimization constraint (choose the
rule with best qg(R) value in beam search of best rule conditions), rules
with a significantly different distribution of covered positives and negatives,
compared to the prior distribution in the training set, are induced. In the
experiments described in Section 7, for every two-class problem the rule with
the best qg(R) value for a fixed value g = 5 has been selected.

3 Background

This section provides the background for this research: some pointers to the
related work on relevancy, the concept of feature relevancy based on p/n pairs of
examples, as well as an introduction to the ROC space and the TP/FP space.

3.1 Related Work on Relevancy

The problem of attribute and feature relevancy has been addressed already in
early inductive concept learning research [20]. This problem is actually encoun-
tered by every inductive learner. Usually, at each step of learning, the choice
of the ‘best’ or ‘most informative’ attribute or feature needs to be made. This
choice is frequently based on the distribution of positive and negative examples
covered by the rule/hypothesis before and after attribute selection [24]. Whereas
in most learning systems the selection of significant or informative features is
part of the learning process, the theory of relevancy presented in this chapter is
aimed at pointing out which features constitute a set of relevant features and
which features are irrelevant and can be discarded, without even entering the
‘best feature’ competition. Such filtering of irrelevant features can thus be done

4 To test significance, the likelihood ratio statistic is used as in CN2 [5] to measure the
difference between the class probability distribution in the set of training examples
covered by the rule and the class probability distribution in the set of all training
examples, computed as follows: 2

�
i n(Classi.Cond). log n(Classi.Cond)

n(Classi)·p(Cond)
, where for

each class Classi, n(Classi.Cond) denotes the number of instances of Classi in the
set where the rule body holds true, n(Classi) is the number of Classi instances,

and p(Cond) (i.e., rule coverage computed as n(Cond)
N

) plays the role of a normal-
izing factor. Note that although for each generated subgroup description one class
is selected as the target class, the significance criterion measures the distributional
unusualness unbiased to any particular class; as such, it measures the significance of
rule condition only: sig(Class← Cond) = sig(Cond).
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in preprocessing of the set of training examples. Whereas most other algorithms
only consider the ‘local training set’ (e.g., a subset of examples covered by the
currently developed rule, or a subset of examples in the currently developed node
of a decision tree) when deciding about the importance/relevance of attributes
or features, we are concerned with finding ‘globally relevant’ features w.r.t. the
entire set of training examples.

The problem of relevancy has recently attracted much attention in the con-
text of feature subset selection in propositional learning [12,18]. An extensive
discussion of different approaches to feature (attribute) subset selection can be
found in [11], which distinguishes between filter and wrapper approaches, and
introduces the notions of totally irrelevant, weakly relevant and strongly relevant
features. In this categorisation, our work belongs to filter approaches which elim-
inate totally irrelevant features in preprocessing. Filtering approaches include,
among others, different versions of the RELIEF algorithm [9,13], the FOCUS
algorithm [1] and an approach to feature selection proposed in [22].

While relevancy of features has extensively been studied, relevancy of rules has
only recently attracted much interest of researchers, especially in the context of
rule filtering and suppression in rule postprocessing. Recent work by Morishita
and Sese [21] shows how to efficiently prune rules via statistical metrics, by
taking into the account convex optimization constraints. An effective approach
to rule suppression has been implemented already in EXPLORA [10] to eliminate
redundant subgroups. Rule/subgroup R2 is evaluated as redundant relative to a
rule R1 with a higher quality q(R1) when q(R2) < affinity(R2, R1) · q(R1) and
the affinity of two subgroups is defined as:

affinity(R2, R1) =
( |R1 ∩R2|

|R2|
)α

=
(

n(Cond1 · Cond2)
n(Cond2)

)α

(2)

where Ri stands for a rule of the form Class← Condi. The parameter α (with
default value 1) can be used to control the number of suppressions. The user can
increase (or decrease) α to get fewer (or more) resulting subgroups.

3.2 Theory of Relevancy Based on p/n Pairs of Examples

The main aim of the theory of relevancy, described in [14,15], is to reduce the
hypothesis space by the elimination of irrelevant features. Consider a two-class
learning problem in which examples e ∈ E are tuples of truth-values of features
F . Training set E is represented as a table where rows correspond to training
examples and columns correspond to features. A sample table is shown in Ta-
ble 1. An element in the table has the value true when the example satisfies the
condition (feature) in the column of the table, otherwise its value is false.

Definition 1: p/n pairs
A p/n pair is a pair of training examples where p ∈ P and n ∈ N .
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Definition 2: Coverage of p/n pairs
Let F denote a set of features. Feature f ∈ F covers a p/n pair iff feature f has
value true for p and value false for n.5

The notion of p/n pairs can be used to prove important properties of features
if the hypothesis language L defining the feature set F is rich enough to allow
for a complete and consistent rules R to be induced from the set of training
examples E.6 Let F ′ ⊆ F . It can be shown that a complete and consistent rule
R can be found using only features from set F ′ iff for each possible p/n pair from
the training set E there exists at least one feature f ∈ F ′ that covers the p/n
pair. The statement, formulated as a theorem for building complete and consis-
tent hypotheses in classification rule learning, was proved in [15]. Its importance
for the theory of relevance is manifold. First, it points out that when deciding
about the relevancy of features it will be significant to detect which p/n pairs
are covered by the feature. Second, it implies that useless features are those that
do not cover any p/n pair. An important property of pairs of features can now
be defined—coverage of features—which was defined in [14,15] as follows.

Definition 3: Coverage of features
Let f ∈ F . Let E(f) denote the set of all p/n pairs covered by feature f . Feature
frel covers feature f (i.e., frel is more relevant than f) iff E(f) ⊆ E(frel).

Example 1. Consider a domain with two positive examples, P = {p1, p2}, two
negative examples N = {n1, n2}, and six features where fi is a logical comple-
ment of fi, illustrated in Table 1.

Table 1. Training examples represented as vectors of truthvalues of features

Examples Features

Ex. Cl. f1 f1 f2 f2 f3 f3

p1 ⊕ false true true false false true
p2 ⊕ false true false true true false
n1 � true false true false true false
n2 � false true false true false true

In this example feature f1 does not cover any p/n pair, E(f1) = ∅, therefore
it can be eliminated as irrelevant for rule learning. Its logical complement f1

5 Notice that in the standard machine learning terminology we could reformulate the
definition of coverage of p/n pairs as follows: feature f covers a p/n pair iff f covers
(has value true for) the positive example p and does not cover (has value false for)
the negative example n.

6 The training set may include noise but there should be no contradictions, i.e. exam-
ples with same attribute values labeled by different class names.
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covers two p/n pairs, E(f1) = {p1/n1, p2/n1}. Feature f2 covers one p/n pair,
E(f2) = {p1/n2} and its logical complement f2 covers only the pair built of p2

and n1. Although f2 is a logical complement of f2, the sets of p/n pairs covered
by f2 and f2 are different, therefore both the feature and its complement are
considered as relevant for rule learning. 
�

3.3 The ROC Space and the TP/FP Space

A point in the ROC space (ROC: Receiver Operating Characteristic) [23] shows
classifier performance in terms of false alarm or false positive rate FPr =

|FP |
|TN |+|FP | = |FP |

|N | (plotted on the X-axis), and sensitivity or true positive rate

TPr = |TP |
|TP |+|FN | = |TP |

|P | (plotted on the Y -axis).
A point (FPr, TPr) depicting rule R in the ROC space is determined by the

covering properties of the rule. The ROC space is appropriate for measuring the
success of subgroup discovery, since rules/subgroups whose TPr/FPr tradeoff
is close to the diagonal can be discarded as insignificant; the reason is that the
rules with TPr/FPr on the diagonal have the same distribution of covered posi-
tives and negatives as the distribution in the training set. Conversely, significant
rules/subgroups are those sufficiently distant from the diagonal. Subgroups that
are optimal under varying TPr/FPr tradeoffs form a convex hull called the
ROC curve. Figure 2 presents seven rules on the convex hull (marked by cir-
cles), including X1 and X2, while two rules B1 and B2 below the convex hull
(marked by +) are of lower quality in terms of their TPr/FPr tradeoff.

Fig. 2. The left-hand side figure shows the ROC space with a convex hull formed of
seven rules that are optimal under varying TPr/FPr tradeoffs, and two suboptimal
rules B1 and B2. The right-hand side presents the positions of the same rules in the
corresponding TP/FP space.

It was shown in [16] that for rule R, the vertical distance from the (FPr, TPr)
point to the ROC diagonal is proportional to the significance of the rule. Hence,
the goal of a subgroup discovery algorithm is to find subgroups in the upper-
left corner area of the ROC space, where the most significant rule would lie in
point (0, 1) representing a rule covering only positive and none of the negative
examples (FPr = 0 and TPr = 1).



Relevancy in Constraint-Based Subgroup Discovery 253

An alternative to the ROC space is the so-called TP/FP space (see the right-
hand side of Figure 2), where FPr on the X-axis is replaced by |FP | and TPr
on the Y -axis by |TP |.7 The TP/FP space is equivalent to the ROC space when
comparing the quality of subgroups induced in a single domain. The reminder
of this paper considers only this simpler TP/FP space representation.

4 Interpretation of Relevancy in the TP/FP Space

The concept of feature coverage introduced in this section is important as a
relevancy constraint used in rule learning. The concept is not valid only for
features but also for conjunctions of features and for complete rules.

Filtering based on absolute and relative relevancy introduced in this section
can be applied in every domain. While the aim of absolute relevancy is to pro-
vide the minimal quality constraint required for every feature (rule), relative
relevancy aims to ensure that only the best among available features will enter
the rule construction process. The definition of relative irrelevancy is very useful
because it does not depend on user-defined constraints. Relevancy-based filtering
is therefore applicable in all feature-based machine learning applications [14]. It
is useful also as a preprocessing filter for other symbolic learners such as decision
tree learners, because complete attributes can be eliminated as irrelevant if all
features generated for these attributes are detected as relatively or absolutely
irrelevant.

4.1 Relative Relevancy

Let us now re-interpret the notions introduced in Sections 3.2 and 3.3 from the
point of view of feature relevancy.

Definition 4: Coverage of features (revisited Definition 3)
Feature frel covers feature f (i.e., feature frel is more relevant than f) iff
true positives of f are a subset of true positives of frel and true negatives
of f are a subset of true negatives of frel, i.e., iff TP (f) ⊆ TP (frel) and
TN(f) ⊆ TN(frel) (see Figure 3).

Definition 5: Relative relevancy
Feature f is relatively irrelevant iff there exists another feature frel such that
frel covers f .

Theorem 1.
If feature frel covers feature f and feature grel covers g then frel ∧ grel covers
f ∧ g.

7 The TP/FP space can be turned into the ROC space by simply normalizing the TP
and FP axes to the [0,1]x[0,1] scale.
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Fig. 3. The concept of relative relevancy illustrated by features f and frel. Feature f
is relatively irrelevant because TP (f) ⊆ TP (frel) and TN(f) ⊆ TN(frel).

It is trivial to prove this theorem by first fixing one of the two conjuncts
grel = g and showing that TP (f∧g) ⊆ TP (frel∧g) and TN(f∧g) ⊆ TN(frel∧g).
Next, the same relationship can be shown also for the case when grel covers g.8


�
Relative relevancy of features is an important concept as feature f is not

necessarily irrelevant because of its low |TP | or |TN | values but because there
exists another more relevant feature with better covering properties. Therefore
a relevancy filter using the concept of relative relevancy of features will never
eliminate a feature that could potentially be relevant in conjunction with other
features, as the more relevant feature which caused its elimination will take its
role in the conjunction. Relative relevance ensures the quality of induced rules
and, even more importantly from the point of view of avoiding overfitting, it
ensures that rule learners will use only the best features available.

Consider now the simplest form of rules, whose conditions consist of a single
feature. Suppose such rules are plotted in the TP/FP space, meaning that each
feature represents a point in the TP/FP space. The more distant a feature is
from the diagonal, the more significant is the feature. ‘Good’ features are those as
close as possible to point (0, P ) in TP/FP space. The left-hand side of Figure 4
presents the concept of relative relevancy. As |TP (f)| ≤ |TP (frel)|, feature

8 Theorem 1 can be proved also for the logical OR operation frel∨grel. Consequently, if
for feature f there exists another feature frel with the property that if in any rule f is
substituted by frel the rule quality measured by the number of correct classifications
|TP | and |TN | does not decrease, then frel can be always used instead of f , and
feature f can be eliminated as irrelevant.
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Fig. 4. The left-hand side figure presents the concept of relative relevancy while the
right-hand side figure presents the concept of absolute relevancy

frel is plotted higher along the TP -axis. As |TN(f)| ≤ |TN(frel)|, therefore
|FP (frel)| ≤ |FP (f)|, and feature frel is plotted more to the left (closer to the
TP -axis) along the FP -axis than feature f .

Figure 4 shows feature f , a shaded area in the upper-left corner of f showing
a part of the TP/FP space of features frel that are potentially more relevant
than f , and a shaded area in the lower-right corner of frel showing the part of
the space of features that are potentially irrelevant due to the existence of frel.
Note that not all features left-up of f are more relevant and not all features
right-down of frel are irrelevant, but only those that satisfy Definition 4.

4.2 Total Relevancy

In addition to irrelevant features defined through relative relevancy, also totally
irrelevant features—those which are totally useless for distinguishing between
the classes—can be eliminated in preprocessing.

Definition 6: Total irrelevancy
Feature f with |TP (f)| = 0 or |TN(f)| = 0 is totally irrelevant.

4.3 Absolute Relevancy

In order for a feature to be acceptable as a building block of rule conditions
representing some genuine dependencies between classes and attribute values,
the feature itself must have appropriate covering properties on the training set.
These can be defined in terms of user-defined support constraints.

Definition 7: Absolute irrelevancy
Feature f that has either |TP (f)| < MinTP or |TN(f)| < MinTN is absolutely
irrelevant, for MinTP and MinTN being user defined constraints.

For low values of MinTP and MinTN , feature f with |TP (f)| < MinTP is
true for a small number of target class examples, and feature g with |TN(g)| <
MinTN is false for a small number of non-target class examples. Such small
numbers may be due to statistical chance so that it seems reasonable not to
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Fig. 5. The selection of the optimal MinTP constraint based on the properties of a
previously detected good rule R

use features with either of these properties in the rule construction process. The
part of the TP/FP space of absolutely irrelevant features is represented by the
shaded area of the right-hand side figure of Figure 4.

Although the significance of rules is proportional to their distance from the
diagonal in the TP/FP space (Figure 2), this property is not appropriate as a
quality criterion for features. As logical combinations of features lying on the
diagonal or very near to it can result in very significant conjunctions of features
(rules), only relative and absolute relevancy constraints defined in this work are
considered as appropriate for feature filtering.

By conjunctions of features, the generated rule will have |TP | equal or smaller
than the smallest |TP | value of the features forming a conjunctive subgroup de-
scription. In contrast, the |TN | value of a rule will be at least as large as the
largest |TN | of the used features. This is the reason why MinTP is typically
selected higher than MinTN (see the right-hand side figure of Figure 4) and
it can be as large as the minimal estimated number of examples that must be
covered by a subgroup of acceptably high quality for the domain. The problem
with absolute irrelevancy is that both MinTP and MinTN are user defined
constraints and that any value, regardless how high it is, can not guarantee that
a feature is actually relevant. A practical suggestion is to start with their low
values of these constraints and after that to experiment with higher values. The
optimal point is just before a significant decrease of covering properties of in-
duced rules can be noticed. A good starting values for gene expression domains
are MinTP = |P |/2 and MinTN =

√|N | which have been used in all the
experiments reported in Section 7. The selection of these constraints is not very
critical for the final result because the majority of absolutely irrelevant features
is detected also as relatively irrelevant. With mentioned MinTP and MinTN
values in gene expression domains more than 90% of absolutely irrelevant fea-
tures were detected as being also relatively irrelevant.
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4.4 Analysis of Absolute Relevancy Constraints in the TP/FP
Space

The major problem of the concept of absolute relevancy is the selection of appro-
priate MinTP and MinTN constraints. In cases when rules are built exclusively
as conjunctions of features (as in the SD algorithm), the problem can be at least
partially solved by the analysis of the MinTP constraint in the TP/FP space.

Let us suppose that in the process of rule construction rule R (that could
be also a single feature) represents the best solution detected so far or that we
are able to estimate its properties based on previous experiments in the domain.
The position of rule R in the TP/FP space is determined by its TP (R) and
FP (R) values. In Figure 5 the line drawn through this point presents the line
connecting all the points in the TP/FP space that have the same rule quality
qg as rule R. For various quality measures the slope of the line is different. For
the qg(R) measure used in the SD algorithm [7] the slope is equal to |TP (R)|

|FP (R)|+g .9

This line cuts the TP axis in point A with value |FP (A)| = 0 and some positive
value |TP (A)|. Setting MinTP = |TP (A)| is a good choice for the MinTP
constant because any conjunctive combination with a feature which has |TP |
value below |TP (A)| can, in an ideal case, lead to a rule lying below point A and
therefore have a lower quality than the already detected rule R. For the qg(R)
measure this value is g · |TP (R)|

|FP (R)|+g .10 It can be noted that a better intermediate
rule R (with higher |TP (R)| and lower |FP (R)| values) enables the selection of
a higher MinTP value, resulting in the elimination of more features and faster
search without a decrease in the final rule quality. This property can be used
so that the MinTP value is adjusted dynamically to the best detected solution
so far. The result is feature relevancy detection during the rule construction
process. For very time consuming algorithms it can be useful to first detect a
good R by a fast heuristic search algorithm in advance before starting the main
rule construction process, ensuring that relevancy filtering can be done before
starting the rule construction process.

The described analysis can not help us to estimate the optimal MinTN value.
In cases when rules are built by disjunctive instead of conjunctive connections of
features, analogous reasoning is valid, which helps to select good MinTN values
but then MinTP should be estimated and selected by the user.

4.5 Relevancy of Rules

The defined relations of relative and absolute relevancy are valid not only for
rules consisting of a single feature but they can be applied to any logical com-
bination of features that can be constructed in the rule induction process, as
well as to complete rules. This property is very important because it can signif-
icantly reduce the time and space complexity of learning algorithms. In the SD
9 For example, for the weighted relative accuracy measure, WRAcc [16], the slope of

the line equals |P |
|N| .

10 When the WRAcc rule quality measure is used, the optimal MinTP value for rule
R equals |TP (R)| − |FP (R)| · |P |

|N| .
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algorithm, the properties of relative and absolute relevancy are tested in each of
its iterations for all the constructed conjunctive combinations of features. In SD,
the MinTP absolute relevancy constraint is implemented by the user-defined
MinSup constraint, while the MinTN constraint is ensured by setting the ab-
solute relevancy threshold for all the generated features.

5 Using the Concept of Relevancy in Handling of
Unknown Values

The concept of relevancy can be used in handling of unknown values based on the
guideline that by the elimination/replacement of unknown values the relevancy of
features should not increase. By following this guideline, the approach proposed in
this section contributes to preventing data overfitting, especially in domains with a
large number of unknownattribute values.The proposed approach is different from
typical procedures for handling unknown values such as considering the unknown
value as an additional regular value or substituting of the unknown value by the
most common or by a proportional fractional value [4].

To ensure that unknown value handling will not increase feature relevancy, an
attribute with an unknown value in a positive example is—in all features con-
structed from this attribute—replaced by value false, while an unknown value
occurring in a negative example is replaced by value true in all features con-
structed from the same attribute.

Table 2. Features generated from an attribute with value unknown (?) have value
false if the example is positive, and value true if the example is negative. Feature
values generated from unknown attribute values are presented in bold.

Examples Attributes Features
Ex. Cl. X Y X = A X 
= A X = P X 
= P Y > 3 Y ≤ 3

p1 ⊕ A 5 true false false true true false
p2 ⊕ ? 4 false false false false true false
p3 ⊕ P ? false true true false false false
n1 � ? 2 true true true true false true
n2 � A ? true false false true true true
n3 � P 1 false true true false false true

Example 2. Consider a domain with three positive examples, three negative ex-
amples, two attributes (one discrete and one continuous-valued), four features
generated for the discrete attribute, and two (out of possibly many) features
for the attribute with continuous values. The domain is presented in Table 2.
It can be noticed that for known attribute values a feature and its complement
always have different truth values, but for unknown attribute values all features
have the same value: false if the example is positive and true if the example is
negative. 
�
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6 Using the Concept of Relevancy in Gene Expression
Data Preprocessing

In some domains, like in the gene expression domain, there is a possibility
to choose between different types of attributes and when confronted with this
choice, the preference should be given to those leading to more relevant features.

6.1 Choice of the Language of Features

Gene expression scanners measure signal intensity as continuous values which
form an appropriate input for data analysis. The problem is that for continu-
ous valued attributes there can be potentially many boundary values separating
the classes, resulting in many different features for a single attribute. There is
also a possibility to use presence call (signal specificity) values computed from
measured signal intensity values by the Affymetrix GENECHIP software. The
presence call has discrete values A (absent), P (present), and M (marginal).
Subgroup discovery as well as filtering based on feature and rule relevancy are
applicable both for signal intensity and/or the presence call attribute values.
Typically, signal intensity values are used [17] because they impose less restric-
tions on the classifier construction process and because the results do not depend
on the GENECHIP software presence call computation. For subgroup discovery
we prefer the later approach based on presence call values. The reason is that
features presented by conditions like Gene = P is true (meaning that Gene is
present, i.e., expressed) or Gene = A is true (meaning that Gene is absent, i.e.,
not expressed) are very natural for human interpretation and that the approach
can help in avoiding overfitting, as the feature space is very strongly restricted,
especially if the marginal value M is encoded as value unknown.

6.2 Handling Unknown Values and Feature Filtering

In the gene expression domain the M value is handled as an unknown value
because we do not want to increase the relevance of features generated from
attributes with M values. As for the other two values, A and P , it holds that two
features for gene X , X = A and X �= P , are identical (see Table 2). Consequently,
for every gene X there are only two distinct features X = A and X = P . As
suggested in Section 5, unknown values coming from marginal attribute values
in positive examples are replaced by value false, while in negative examples they
are replaced by value true.

Example 3. The approach applied in gene expression data analysis is illustrated
in Table 3. The table presents five positive and four negative examples for one of
the target classes in the gene expression domain. Only features generated from
presence call values of three attributes (genes) are presented.

Observe that in this example, following Definition 5 of relative relevancy,
feature X = A is relatively irrelevant because of feature Y = A, and feature
X = P is relatively irrelevant because of feature Z = A. Consequently, both
features generated for gene X can be eliminated as irrelevant. 
�
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Table 3. Training examples represented as vectors of truthvalues of features. Notice
that value M (marginal) is treated as an unknown attribute value.

Examples Genes Features
Ex. Cl. X Y Z X = A X = P Y = A Y = P Z = A Z = P

p1 ⊕ A A A true false true false true false
p2 ⊕ P P A false true false true true false
p3 ⊕ A A P true false true false false true
p4 ⊕ P P A false true false true true false
p5 ⊕ M A A false false true false true false
n1 � A P P true false false true false true
n2 � P P P false true false true false true
n3 � M M A true true true true true false
n4 � P P A false true false true true false

7 Experiments in Functional Genomics

The gene expression domain, described in [25,8] is a domain with 14 differ-
ent cancer classes and 144 training examples in total. Eleven classes have 8
examples each, two classes have 16 examples and only one has 24 examples.
The examples are described by 16063 attributes presenting gene expression val-
ues. In all the experiments we have used gene presence call values (A, P , and
M) to describe the training examples. The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi. There is also an in-
dependent test set with 54 examples. The standard goal of machine learning is to
start from such labeled examples and construct classifiers that can successfully
classify new, previously unseen examples. Such classifiers are important because
they can be used for diagnostic purposes in medicine and because they can help
to understand the dependencies between classes (diseases) and attributes (gene
expressions values).

The experiments were performed separately for each cancer class so that a
two-class learning problem was formulated where the selected cancer class was
the target class and the examples of all other classes formed non-target class
examples. In this way the domain was transformed into 14 inductive learning
problems, each with the total of 144 training examples and between 8 and 24
target class examples. For each of these tasks a complete procedure consist-
ing of feature construction, elimination of irrelevant features, and induction of
subgroup descriptions in the form of rules was repeated. Finally, using the SD
subgroup discovery algorithm [7], for each class a single rule R with maximal
qg(R) value was selected, for qg(R) = |TP |

|FP |+g being the heuristic of the SD algo-
rithm and g = 5 as the generalization parameter default value. The rules for all
14 tasks consisted of 2–4 features. The procedure was repeated for all 14 tasks
with the same default parameter values. The induced rules were tested on the
independent example set.

There are very large differences among the results on the test sets for various
classes (diseases) and the precision higher than 50% was obtained for only 5 out
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of 14 classes. There are only three classes (lymphoma, leukemia, and CNS) with
more than 8 training cases and all of them are among those with high precision
on the test set, while for only two out of eleven classes with 8 training cases
(colorectal and mesothelioma) high precision was achieved. The classification
properties of rules induced for classes with 16 and 24 target class examples
(lymphoma, leukemia and CNS) are comparable to those reported in [25] (see
Table 4), while the results on eight small example sets with 8 target examples
were poor. An obvious conclusion is that the use of the subgroup discovery
algorithm is not appropriate for problems with a very small number of examples
because overfitting can not be avoided in spite of the heuristics used in the
SD algorithm and the additional domain-specific techniques used to restrict the
hypothesis search space. But for larger training sets the subgroup discovery
methodology enabled effective construction of relevant rules.

Table 4. Covering properties on the training and on the independent test set for rules
induced for three classes with 16 and 24 examples. Sensitivity is |TP |

|P | , specificity is
|TN|
|N| , while precision is defined as |TP |

|TP |+|F P | .

Cancer Training set Test set
Sens. Spec. Prec. Sens. Spec. Prec.

lymphoma 16/16 128/128 100% 5/6 48/48 100%
leukemia 23/24 120/120 100% 4/6 47/48 80%
CNS 16/16 128/128 100% 3/4 50/50 100%

7.1 Experiments in Feature Filtering

In the rest of this chapter experiments are performed on three classes with
a sufficient number of training instances—lymphoma, leukemia, and CNS—for
which induction of significant rules was possible. Table 5 shows the summary
of results obtained by different experiments in eliminating irrelevant features.
For absolute relevance default values MinTP = |P |/2 and MinTN =

√|N | as
proposed in Section 4.3 were used.

Task 1. In the real domain with 16063 attributes both concepts of absolute
and relative relevancy were very effective in reducing the number of features.
About 60% of all features were detected as absolutely irrelevant while relative
irrelevancy was even more effective as it managed to eliminate up to 75% of all
the features. Their combination resulted in the elimination of 75%–85% of all
the features. These results are presented in the first row of Table 5. The set of all
features in these experiments was generated so that for each gene (attribute) two
features were constructed (Gene = A and Gene = P ), followed by eliminating
totally irrelevant features (with |TP | = 0 or |TN | = 0), which substantially
reduced the total number of features.
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Table 5. This table presents mean numbers of constructed features for the lymphoma,
leukemia, and CNS domains. Presented are the total number of features (All), the num-
ber of features after the elimination of totally irrelevant features (Total), the number
of features after the elimination of absolutely irrelevant features (Absolute), and the
number of features after the elimination of absolutely and relatively irrelevant features
(Relative). These three values are shown for the following training sets: the real train-
ing set with 16063 genes (with 32126 gene expression activity values, constructed as
Gene = A and Gene = P ), a randomly generated set with 16063 genes, and a set with
32126 genes which is a combination of 16063 real and 16063 random attributes.

Tasks All Total Absolute Relative

Task 1 Real domain
with 16063 att. 32126 23500 9628 4445

Task 2 Randomly generated
domain with 16063 att. 32126 27500 16722 16722

Task 3 Combination of
16063 real and
16063 randomly
generated attributes 64252 51000 26350 15712

Task 2. Another domain with 16063 completely randomly generated attribute
values was also constructed, and the same experiments were repeated on this
artificial domain as for the real gene expression domain. The results (repeated
with five different randomly generated attribute sets) were significantly different:
there were only about 40% of absolutely irrelevant features and practically no
relatively irrelevant features. The results are presented in the second row of
Table 5. Comparing the results for the real and for the randomly generated
domain, especially large differences can be noticed in the performance of relative
relevancy. It is the consequence of the fact that in the real domain there are some
features that are really relevant; they cover many target class examples and a
few non-target class examples and in this way they make many other features
relatively irrelevant. The results prove the importance of relative relevancy for
domains in which strong and relevant dependencies between classes and attribute
values exist.

Task 3. The experiments with feature relevancy continued with another domain
with 32126 attributes, generated as the combination of two previous domains
with 16063 attributes each: the real and the randomly generated domain. The
results are presented in the last row of Table 5. After the elimination of absolutely
irrelevant features the number of features is equal to the sum of features that
remained in the two independent domains with 16063 attributes. In contrast,
relative relevancy was much more effective. Besides eliminating many features
from the real attribute part it was now possible to eliminate also a significant
part of features of randomly generated attributes.

Summary of the experiments. Figure 6 illustrates the results presented in
Table 5 with one added domain with 32126 randomly generated attributes. From
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Fig. 6. Mean numbers of features for the three domains (lymphoma, leukemia, and
CNS) for the following training sets: real training set with 16063 attributes of gene
expression activity values, a randomly generated set with 16063 attributes, a randomly
generated set with 32126 attributes, and a set which is a combination of 16063 real
and 16063 random attributes

this analysis it is obvious that the elimination of features is very effective in real
domains. The same result were confirmed in experiments with domains with only
8 target class examples. It is important that in domains which are combinations
of real and random attributes the proposed feature filtering methodology is effec-
tive: in Task 3 less features remained after feature elimination (15712 features)
than in Task 2 (16722 features). This proves that the presented methodology,
especially relative relevancy, can be very useful in avoiding overfitting by re-
ducing the hypothesis search space through the elimination of non-significant
dependencies between attribute values and classes. This property is important
because it can be assumed that among 16063 real attributes there are many of
them which are irrelevant with respect to the target class.

7.2 Examples of Induced Rules

For three classes (lymphoma, leukemia, and CNS) with more than 8 training
cases the following rules were induced by the constraint-based subgroup dis-
covery approach involving relevancy filtering and handling of unknown values
described in this chapter.

Lymphoma class:
(CD20 receptor EXPRESSED) AND
(phosphatidylinositol 3 kinase regulatory alpha subunitNOT EXPRESSED)
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Leukemia class:
(KIAA0128 gene EXPRESSED) AND
(prostaglandin d2 synthase gene NOT EXPRESSED)
CNS class:
(fetus brain mRNA for membrane glycoprotein M6 EXPRESSED) AND
(CRMP1 collapsin response mediator protein 1 EXPRESSED)

The expert interpretation of the results yields several biological observations:
two rules (for the lymphoma and leukemia classes) are judged as reassuring and
one (the CNS class) has a plausible, albeit partially speculative explanation.
Namely, the best-scoring rule for the lymphoma class in the multi-class cancer
recognition problem contains a feature corresponding to a gene routinely used
as a marker in diagnosis of lymphomas (CD20), while the other part of the
conjunction (phosphatidylinositol, the PI3K gene) seems to be a plausible bi-
ological co-factor. The best-scoring rule for the leukemia class contains a gene
whose relation to the disease is directly explicable (KIAA0128, Septin 6). Both
M6 and CRMP1 appear to have multifunctional roles in shaping neuronal net-
works, and their function as survival (M6) and proliferation (CRMP1) signals
may be relevant to growth promotion and CNS malignancy.

Both good prediction results on an independent test set (Table 4) as well
as expert interpretation of induced rules prove the effectiveness of described
methods for avoiding overfitting in scientific discovery tasks.

8 Conclusions

This chapter reinterprets the theory of relevancy, described in [14,15], as rele-
vancy constraints applied in a constraint-based subgroup discovery. Although
the target is the induction of rules presenting subgroup descriptions, the re-
sults concerning the concept of relevancy are more general and valid for any
feature-based rule learner. The chapter presents the theory of feature relevancy
in the context of ROC analysis and provides an experimental evaluation of the
usefulness of feature elimination in a functional genomics domain. We have im-
plemented domain dependent restrictions by using discrete instead of continuous
attribute values, and domain independent restrictions by the elimination of irrel-
evant features. Interpretation of marginal gene values as unknown values helped
in reducing the feature space and ensured the robustness of induced rules. The
proposed subgroup discovery framework proved to be useful for solving scientific
discovery tasks.

Acknowledgments

This work was supported by the Slovenian Ministry of Higher Education, Science
and Technology, and the Croatian Ministry of Science, Education and Sport.



Relevancy in Constraint-Based Subgroup Discovery 265

References

1. H. Almuallim and T.G. Dietterich. Learning with many irrelevant features, In
Proceedings of the 9th National Conference on Artificial Intelligence, The MIT
Press, 547–552, 1991.

2. R.J. Bayardo, R.Agrawal, and D.Gunopulos. Constraint-based rule mining in large,
dense databases. In Proc. of the 15th Conference on Data Engineering, 188-197,
1999.

3. R.J. Bayardo, editor. Constraints in Data Mining. Special issue of SIGKDD Ex-
plorations, 4(1), 2002.

4. I. Bruha and F. Franek. Comparison of various routines for unknown attribute
value processing. Journal of Pattern Recognition and Artificial Intelligence 10(8):
939–955, 1996.

5. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):
261–283, 1989.

6. U.M. Fayyad and K.B. Irani. On the handling of continuous-valued attributes in
decision tree generation. Machine Learning 8: 87–102, 1992.
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