
E. Duval, R. Klamma, and M. Wolpers (Eds.): EC-TEL 2007, LNCS 4753, pp. 292–306, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Personalized Links Recommendation Based on Data
Mining in Adaptive Educational Hypermedia Systems

Cristóbal Romero1, Sebastián Ventura1, Jose Antonio Delgado1, and Paul De Bra2

1 Córdoba University, Campus Universitario de Rabanales, 14071, Córdoba, Spain
{cromero,sventura,i92deosj}@uco.es

2 Eindhoven University of Technology (TU/e), PO Box 513, Eindhoven, The Netherlands
debra@win.tue.nl

Abstract. In this paper, we describe a personalized recommender system that
uses web mining techniques for recommending a student which (next) links to
visit within an adaptable educational hypermedia system. We present a specific
mining tool and a recommender engine that we have integrated in the AHA!
system in order to help the teacher to carry out the whole web mining process.
We report on several experiments with real data in order to show the suitability
of using both clustering and sequential pattern mining algorithms together for
discovering personalized recommendation links.

1 Introduction

Adaptive and intelligent web-based educational systems (AIWBES) provide an
alternative to the traditional just-put-it-on-the-web approach in the development of
web-based educational courseware [4]. Their main objective is to adapt and
personalize learning to the needs of each student. The task of delivering personalized
content is often framed in terms of a recommendation task in which the system
recommends items to an active user [17]. Recommender systems help users find and
evaluate items of interest. Such systems have become powerful tools in many
domains from electronic commerce to digital libraries and knowledge management
[23]. Some recommender systems have also been applied to AIWBES for
recommending lessons (learning objects or concepts) that students should study next
[19] or for providing course recommendation about courses offered that contribute to
the student’s progress towards career goals [8].

Recommender systems can use data mining techniques for making recom-
mendations using knowledge learnt from the action and attributes of users [23]. The
objective of data mining is to discover new, interesting and useful knowledge using a
variety of techniques such as prediction, classification, clustering, association rule
mining and sequential pattern discovery. Currently, there is an increasing interest in
data mining and educational systems, making educational data mining a new and
growing research community [20][21]. The data mining approach to personalization
uses all the available information about users/students on the web site (in the web
course) in order to learn user models and to use these models for personalization.
These systems can use different recommendation techniques in order to suggest
online learning activities or optimal browsing pathways to students, based on their

 Personalized Links Recommendation Based on Data Mining 293

preferences, knowledge and the browsing history of other students with similar
characteristics.

In this work, we are going to describe the use of data mining techniques for links
recommendation in AIWBES. The task of links recommendation in web-based
education can be seen as a special type of adaptive navigation support due to the fact
that they share the same goal of helping students to find an optimal path through the
learning material [4]. Adaptive educational hypermedia systems can adaptively sort,
annotate, or partly hide the links to make it easier to choose or to recommend to the
students where they should go from a certain point. This technology is one of the
most popular in AIWBES and there are a lot of systems that use it, such as ELM-ART
[28] (and its descendents), AHA! [7], KBS-Hyperbook [11], etc. The originality of
our personalized recommender system consists in the use of data mining together with
hyperlink adaptation. Only a few other recommender systems use data mining for
recommending links [8].

This paper is arranged in the following way: first we describe the related
background and two architectures for personalization based on-web usage mining.
Then, we describe the data mining tool and links recommender engine that we have
developed and integrated into the AHA! system. Finally, we describe the experiments
that we have carried out, conclusions and future work.

2 Background

Recommendation and personalization techniques can be classified into three different
categories [17]: rule-based filtering systems, content-filtering systems and
collaborative filtering systems. Rule-based filtering systems rely on manually or
automatically generated decision rules that are used to recommend items to users.
Content-based filtering systems recommend items that are considered sufficiently
similar to the content descriptions in the user profile. Collaborative filtering systems,
also referred to as social filtering, match the rating of a current user for items with
those of similar users in order to produce recommendations for items not yet rated or
seen. Some recent techniques used in collaborative filtering are based on data mining
in order to infer recommendation rules or build recommendation models from large
data sets [23]. Some of the most common data mining techniques in these
recommender applications are clustering, sequence and association mining.

- Clustering is a process of grouping objects into classes of similar objects [13]. It
is an unsupervised classification or partitioning of patterns (observations, data
items, or feature vectors) into groups or subsets (clusters). This technique
groups records together based on their location and connectivity within an n-
dimensional space. The principle of clustering is maximizing the similarity
inside an object group and minimizing the similarity between the object groups.
There are many clustering methods [13], including hierarchical and function-
based algorithms. One of the most well-known and commonly used is the k-
means algorithm [16] that tries to minimize the distance of the objects to the
centroid or mean point of each cluster.

294 C. Romero et al.

- Sequential modeling or sequential pattern mining [10] discovers inter-session
patterns. It is a more restrictive form of association rule [1] in which the
accessed items’ order is taken into account (the association rule discovers all the
relationships without restrictions). Sequential pattern mining was first
introduced into the study of customer purchase sequences, as follows [2]: Given
a set of sequences, where each sequence consists of a list of elements and each
element consists of items, and given a user-specified minimum support
threshold, sequential pattern mining tries to find all frequent subsequences, i.e.,
the subsequences whose occurrence frequency in the set of sequences is no less
than the minimum support. Normally, a web server log file is used to discover
sequences of resource requests. The problem of mining sequences in web
navigational patterns refers to the identification of those web document
references which are shared through time by a large number of user sequences,
where a user sequence is a time-ordered set of visits. There are several popular
pattern discovery algorithms [10] such as AprioriAll, GSP, SPADE, PrefixSpan,
CloSpan and FreSpan.

Although personalized recommendation approaches that use data mining
techniques are first proposed and applied in E-commerce for product purchase, there
are also several works about the application of different data mining techniques
within recommender systems in E-learning. The extraction of sequential patterns has
been used to find patterns that are used in the process of recommending relevant
concepts to students [19]. Sequential rules can also guide a learning resource
recommendation service based on simple sequencing specification [24]. Clustering
can be used to find clusters of students with similar learning characteristics and to
promote group-based collaborative learning in a research paper recommender system
[26]. Association rules and clustering methods have been used for recommending a
list of web pages on an e-learning web site [27]. A recommender agent which uses
association rules has been used to recommend online learning activities or shortcuts
on a course web site based on a learner’s access history [14][30]. Fuzzy association
rules have been used in a personalized e-learning material recommender system [15].
Finally, association rules have been used to provide feedback to the courseware
author and to recommend how to improve the courses [9][22].

3 Architectures for Personalized Recommendation Systems

The overall process of Web personalization based on Web usage mining generally
consists of three phases: data preparation, pattern discovery and recommendation. The
first two phases are performed off-line and the last phase on-line [17]. Data
preparation transforms web log files and profiles into data with the appropriate
format. Pattern discovery uses a data mining technique, such as clustering, sequential
pattern and association rule mining. Finally, recommendation uses the discovered
patterns to provide personalized links or contents.

In this work, we distinguish between two different architectures of recommender
systems based on web usage mining (see Figure 1).

 Personalized Links Recommendation Based on Data Mining 295

Fig. 1. Architectures for recommender systems based on web usage mining

• Basic Architecture of Web-based Recommender Systems. This is a simple
architecture of a recommender system that only uses the student’s information
stored in web log files. These systems use only one mining algorithm, usually a
sequential mining algorithm (see Figure 1 above), over all user navigation sessions
to discover the most frequent navigational pattern that can predict the student’s
navigation and next page request. One problem of this type of system is that the
new student obtains the same recommendations based solely on his current
navigation.

• Advanced Architecture of Web-based Recommender Systems. This is a more
advanced architecture of recommender systems that also uses additional
information about the students (such as profiles). These systems use several mining
algorithms (see Figure 1 down), for example, clustering and sequential pattern
mining. In this way they can discover clusters of students showing common
behavior and/or knowledge and then they can discover the sequential patterns of
each cluster. This type of recommender can personalize the recommendations.
First, it classifies the new students in one of the groups of students (clusters). Then,
it only uses the sequential patterns of the corresponding group to personalize the
recommendations based on other similar students and his current navigation.

296 C. Romero et al.

4 The AHA!-Based Mining and Recommender System

Most of the current data mining tools such as DBMiner [6], SPSS Clementine [5] and
Weka [29] can be too complex for educators to use and their features go well beyond
the scope of what an educator may want to do. These tools should have more easy-to-
use interfaces to simplify the algorithm configuration and execution, and they have
provided specialized visualization facilities to make their results meaningful to
educators and courseware designers [20]. For this reason, we have developed a
specific data mining tool in order to help the teacher to carry out the web mining
process. We have integrated this tool and its corresponding recommendation engine
into the well known AHA! [7] (Adaptive Hypermedia Architecture). In this way the
whole process can be carried out in a same e-learning system, and the feedback and
results obtained can be directly applied to the courses (see Figure 2).

Fig. 2. Data mining tool and recommender engine integrated into AHA! system

As we can see in Figure 2, both the user’s data (student log and profile files) and
the learning model data (recommendation and cluster files) are stored in XML files in
the AHA! server file system. This system can work as both the basic architecture and
advanced architecture described in the previous section. And there are two main
modules; the off-line module (mining tool) and the on-line module (recommender
links engine) that we are going to describe in detail in the next two sub-sections.

4.1 Mining Tool

The mining tool is a Java Applet, just like other AHA! authoring tools [7] such as
Concept Editor, Test Editor, etc. The author of the course can execute it when enough
information from new students has been collected. The user interface of the mining
tool is simple, easy to use and specifically oriented to discover sequential patterns and
to recommend personalized links. Its main window consists of a menu and two
information areas (see Figure 3). At the top, we can see the information panel that

 Personalized Links Recommendation Based on Data Mining 297

Fig. 3. Main window of the AHA! mining tool

shows general information about the program and algorithms execution. At the
bottom, we can see the sequential pattern panel, where the discovered sequences are
shown.

First, the author has to create a new data file starting from the student’s log files.
We have to preprocess the AHA! log files in order to group them into a single data
file with the most appropriate format to be mined. In our case, it is not necessary to do
user and session identification since all users must log in using their unique ID, and
AHA! also stores the session information in log files. AHA! stores all log information
for each student in one XML file (the date and time at which the page was accessed,
the session identification and the name of the web page). The author only has to select
one of his/her courses in AHA! and one method for selecting students (all
automatically, manual and clustering) in order to create a data file. The totally
automatic method selects all the students in the course. The manual method shows a
list with all the students in the courses so that the author can select a group of specific
students. The clustering method automatically creates several data files instead of
only one data file. We have used the k-means algorithm [16], which is the most
popular clustering algorithm and where the user only has to specify the number of
clusters (k) to find. In order to do clustering, we have used two of the students’
variables: the number of pages visited and the average knowledge obtained from these
pages. This information has been obtained from the AHA! XML user profile files
(also one per student, containing visited and knowledge attributes for each concept of
the course). It is important to note that in the used AHA! courses each concept has an
associated XHTML web page. Each of the clusters obtained corresponds to a specific
student’s model and is stored in an XML file. In this file we store the centroid of each

298 C. Romero et al.

cluster (in some sense representing a typical user of the cluster). In our case we store
the number of pages visited and the average knowledge of the centroid, as we can see
in the next XML file example with two clusters:

<?xml version="1.0" encoding="UTF-8"?>
<ListOfClusters NumberOfClusters="2">
 <cluster NumberOfPagesVisited="2"
 AverageLevelOfKnowledge="45">0</cluster>
 <cluster NumberOfPagesVisited="16"
 AverageLevelOfKnowledge="99">1</cluster>
</ListOfClusters>

Finally, one data file (for all automatic and manual methods) or several data files

(for the clustering method) are created in the KEEL format [3]. This is a text file
format that is similar to and compatible with the well-known Weka format [29]. The
log information of each student is grouped together in this file or these files according
to the clusters in which they have been classified.

Then, the author can select one data file in order to execute sequential pattern
mining algorithms. There are several algorithms available such as AprioriAll [2], GSP
[25] and PrefixSpan [18], which are some of the most popular pattern discovering
algorithms. The author can execute the selected algorithm directly or, if he wants, he
can change its default parameters values. AprioriAll and PrefixSpan algorithms only
have one parameter (minimum support threshold that is the minimum number of
sessions in which the rule has to appear). The GSP algorithm has a second parameter
(maximum number of gaps that is the maximum number of gaps between two links to
be considered in the same sequence). When the algorithm finishes its execution, the
sequences discovered are shown in the sequential pattern panel of the main tool
window (see Figure 3). These sequences can be saved into a text file and they can also
be visualized better using the sequence view window. Analyzing these sequences, the
teacher can have an idea about what the most general students’ browsing behavior
during their learning process is.

Finally, the author can recommend links starting from the sequences obtained. In
order to do so, we have first split all the sequences with lengths over two in 2-length
sub-sequences or rules using two different methods: path recommendation or shortcut
recommendation [12]. Path recommendation splits the sequences in all the possible
rules (every two pages directly connected in the sequence) and the shortcut
recommendation splits the sequence in only one rule (the first and the last page in the
sequence). So, a recommendation link is composed of a 2-length sequence considered
as a rule with only one element in the antecedent and one in the consequent (the
antecedent represents the page in which the recommendation will be shown and the
consequent is the link recommended to the student). All the generated recom-
mendation links are shown to the author so that he/she can validate them and select
which recommendations will be used by the recommender engine (see Figure 4). The
author has to select links/rules (all, none or a specific group) in order to filter the most
appropriate recommendations depending on the antecedent and consequent concepts,
and the confidence and support values. The confidence of the rules indicates how
strong the rules are, whereas the support of the rules indicates their coverage.

 Personalized Links Recommendation Based on Data Mining 299

Fig. 4. Recommendation links window

Finally, the selected recommendations are saved into the AHA! system in a XML
file as in the following example file:

<?xml version="1.0" encoding="UTF-8"?>
<RecommendedLinks>
 <Concept name="tutorial.welcome">
 <Recommendation text="installation"
 autogenerated="true" group="all" color="blue"
 interst="57">tutorial.installation</Recommendation>
 <Recommendation text="readme"
 autogenerated="true" group="all" color="blue"
 interest="14">tutorial.readme</Recommendation>
 </Concept>
</RecommendedLinks>

We can see in the previous example file that there two recommended links to the
concept/page “welcome” of the course “tutorial”. The value of the “recommendation”
label indicates the name of the destination web page/concept (“installation” and
“readme” respectively). And the meaning of the attributes are: “text” (text of the
hyperlink, by default is the concept of the rule consequent), “autogenerated” (boolean
value that indicates if the recommendation has been generated by data mining or not),
“group” (indicates if the recommendation is for all students or for a specific cluster),
“color” (color used by the a triangular image, for example: blue color for all students
and red color for clusters), “interest” (the confidence value of the rule).

300 C. Romero et al.

4.2 Recommendation Engine

We have developed our recommendation engine as another AHA! View class [7], just
like the other Views such as MainView, TOCView, ConceptbarView, etc. So, in order
for a course to be able to use the new RecommendedLinksView, it is necessary to add
it in the corresponding LayoutConfig.xml file of the course. Then, when a student
logs in to the AHA! Course, the recommender engine is activated each time that the
student visits a web page (concept).

The recommendation engine considers the active students in conjunction with the
XML recommendation file to provide personalized recommendations. First, if there
are clusters in the XML recommendation file, then the engine has to classify the
current student to determine the most likely cluster. We have to communicate with the
AHA! engine to obtain the current student Profile (to know the current number of
pages visited and average knowledge of the student). Then, we use the centroid
minimum distance method [16] for assigning the student to the cluster whose centroid
is closest to that student (XML cluster file). Finally, we make the recommendation
according to the rules in the cluster. So, only the rules of the corresponding cluster (or
all the rules if there aren’t clusters) are used to match the current web page (concept)
in order to obtain the current list of recommended links.

Fig. 5. AHA! Tutorial with recommended links added

 Personalized Links Recommendation Based on Data Mining 301

In Figure 5 we can see the interface of the AHA! tutorial with a list of recommended
links in which the student “cristobal” is located on the “welcome” page and the
recommender engine recommends going to the “installation” page (strong recommend-
dation) and to the “readme” page (normal recommendation). We can see that we have
adaptively sorted, annotated and partly hidden [4] the list of recommended links. First,
we only show the links that the current student matches on the current page. Next, the
links are sorted depending on their confidence value (on a decreasing scale). Then, we
annotate the links with triangular icons that can vary in color depending on what data
have been used to obtain them (blue for all the data, green to a specific data cluster)
and can vary their number depending on the value of the confidence (1 triangle or
normal recommendation to values lower than 0.33, 2 triangles or strong
recommendation to values higher than 0.33 and lower than 0.66, and 3 triangles or very
strong recommendation to values over 0.66).

5 Experimental Results

The data used in this study are real data collected from the on-line AHA! Tutorial
(http://aha.win.tue.nl/tutorial/) that consists of 34 web pages or concepts. Although
we have the usage data of about two hundred users available, we have selected only a
group of good users (users who read a significant part of the tutorial). We have used a
total number of 78 students with 118 sessions and 684 records in total. These students
are mainly TU/E (Eindhoven University of Technology) students taking a course in
adaptive hypermedia and some other Internet users interested in the AHA! system.
So, all students used in this work are familiar with adaptive hypermedia.

We have carried out three experiments that we describe in the following section.
In the first experiment, we have executed the three available sequential mining

algorithms (AprioriAll [2], GSP [24] and PrefixSpan [17]), using all the data in order
to find out which is the best for our problem. We have compared the shortcut
recommendation rules discovered (number of rules discovered and the average value
of the support and confidence of the rules) by the three algorithms varying the
minimum support threshold (from 0.3 to 0.03).

Table 1. Number/average support/average confidence of rules discovered using all data

 Min.Sup.=0.3 Min.Sup.=0.15 Min.Sup.=0.07 Min.Sup.=0.03
AprioriAll 3/0.35/0.55 7/0.24/0.43 22/0.13/0.40 70/0.07/0.32

GSP(gap=1) 2/0.39/0.55 6/0.24/0.43 20/0.16/0.43 62/0.11/0.40
PrefixSpan 2/0.39/0.55 6/0.24/0.43 14/0.18/0.43 61/0.12/0.41

As we can see in Table 1, there are not many differences between the three

algorithms (specifically with higher minimum support values). However, GSP and
PrefixSpan discover a lower number of rules with higher support and confidence
values. In our problem of links recommendation, it is important to show the students
only good links (a small number of rules with a higher value of support and
confidence). So, although the three algorithms show similar results, the GSP and

302 C. Romero et al.

PrefixSpan are a bit better than the AprioriAll algorithm. And as far as the minimum
support threshold is concerned, we can see that in order not to obtain a lot of rules, a
good range is between 0.3 and 0.1.

In the second experiment, we have executed the clustering algorithm in order to
find the best number of clusters with our data. We have executed the k-means
algorithm [14] varying the k value (number of clusters) from 2 to 5. Table 2 shows the
number of students, sessions and records that are obtained in each one of the clusters.

Table 2. Number of students/sessions/records in each data cluster

No clusters All data
Number of st./se./r. 78/118/684

Cluster K = 2 Cluster 1 Cluster 2
Number of st./se./r. 48/60/383 30/58/301

Cluster K = 3 Cluster 1 Cluster 2 Cluster 3
Number of st./se./r. 18/34/120 32/45/299 28/39/265

Cluster K = 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Number of st./se./r. 23/38/233 12/16/99 11/21/87 32/43/265

Cluster K = 5 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Number of st./se./r. 14/30/106 12/25/81 6/14/40 4/12/26 42/47/449

In our problem of grouping students in different clusters, it is important for the

obtained data to be balanced (equal number in each cluster). That is, the number of
students, sessions and records must be uniform in all the clusters. In this way, we can
later obtain a similar number of sequence rules for each data cluster. We can see in
Table 2 that the data are more balanced when we use a low number of clusters (2 and
3 clusters). But when we increase the number of clusters (4, 5 and more) then there
are more differences between clusters (some clusters have a lot of data and others
very few data). So, two or three clusters give us well balanced data .

In the third experiment, we have done a comparison study between the basic
architecture (only sequential mining) and the advanced architecture (clustering and
sequential mining). We have compared the shortcut recommendation rules discovered
(number of rules discovered and the average value of the support and confidence of
the rules) by the PrefixSpan algorithm varying the minimum support threshold (from
0.3 to 0.1),on one hand using all data, and on the other hand the same algorithm using
the data obtained from k-means algorithm for 2 and 3 clusters.

We can see in Table 3 that the number of rules discovered using each data cluster
is not always less (sometimes even more) than using all the data, as we might have
expected. However, their support and confidence values are always higher and this is
very important in our problem. So, the advanced architecture can discover a similar
number of rules to basic architecture but with higher values of confidence and
support. Finally, in order to see if there are differences in the rules obtained from data
clusters we are going to show and describe some examples of rules discovered using
two data clusters (k=2) and the PrefixSpan algorithm (Min.Sup.=0.15).

 Personalized Links Recommendation Based on Data Mining 303

Table 3. Number/Average Support/ Average Confidence of rules discovered using PrefixSpan
over all data and over different number of clusters

 Min.Sup.=0.3 Min.Sup.=0.15 Min.Sup.=0.1
No Clusters (All data) 2/0.39/0.55 6/0.22/0.43 12/0.20/0.39

K = 2 (Cluster 1) 1/0.40/0.57 6/0.28/0.46 10/0.24/0.47
K = 2 (Cluster 2) 1/0.40/0.63 8/0.23/0.48 14/0.26/0.45
K = 3 (Cluster 1) 2/0.39/0.64 7/0.31/0.53 16/0.21/0.51
K = 3 (Cluster 2) 1/0.39/0.55 6/0.32/0.55 11/0.26/0.53
K = 3 (Cluster 3) 2/0.40/0.62 8/0.32/0.56 13/0.25/0.49

Table 4. Examples of rules discovered

Num Antecedent => Consequenc
e

Support Confidence Cluster

1 readme install 0.23 0.41 1
2 domainmodel concept 0.25 0.60 2
3 author pages 0.27 0.32 1
 author pages 0.21 0.42 2

4 welcome install 0.48 0.63 1
 welcome install 0.40 0.52 2

We can see in Table 4 that there are some rules that only appear in one cluster (rule

1 and 2), and there are other rules that appear in both clusters (rule 3 and 4) but with
different support and confidence values. Cluster number 1 represents sporadic
students who only want to sort out one question about AHA! (its centroid has
NumberOfPagesVisited=2 and AverageLevelOfKnowledge=45) and cluster number 2
represents active students really interested in reading all the AHA! Tutorial (its
centroid has NumberOfPagesVisited=16 and AverageLevelOfKnowledge=99). Rule
number 1 shows that sporadic students go from “readme” web page to “install” web
page (these students are looking for some specific question about the AHA!
installation). Rule number 2 shows that active students go from the “domainmodel”
web page to the “concept” web page (these students are reading/learning about the
AHA! core). Rule number 3 shows that both type of students go from the “author”
web page to the “pages” web page, but it is a higher number for the active students
and the confidence is higher too (these students are reading/learning about the AHA!
page format) than for sporadic students. Rule number 4 shows that both types of
students go from the “welcome” web page to the “install” web page, but a higher
number of sporadic students do so and with higher confidence (they are looking for
some specific question about the AHA! installation) than active students.

6 Conclusions and Future Work

In this paper, we have described a personalized recommender system that uses web
mining to recommend the next links to visit in an AIWBES. We have developed a

304 C. Romero et al.

specific mining tool and a recommender engine in order to help the teacher to carry
out the web mining process. Although we have integrated the tools in the AHA!
system [7] with minor modifications (mainly to handle the file and data format and to
communicate with the engine of the system), it can in principle also be used in other
web-based educational systems. We have carried out several experiments with real
user data from the on-line AHA! tutorial in order to show the performance of the
implemented algorithms. And we have shown the suitability of an advanced
recommender system that uses the clustering and sequential pattern mining algorithms
together to discover personalized recommendation links.

In the future, we want to carry out more experiments with a still larger number of
students and using more information about the students’ profiles for doing clustering.
We can also integrate other sequence mining algorithms [10] such as SPADE,
FreeSpan, CloSpan and PSP, and other clustering algorithm without requiring the user
to specify any parameter. We plan to evaluate the quality of the recommendations
based on feedback from students as well as on results using a testing set of data.
Finally, it would be very useful to develop a real-time feedback loop between data
mining and the recommendation system. We can use, for example, intelligent agents
for doing on-line data mining automatically and for communicating with the
recommender systems. In this way the system could work completely autonomously.
The agents can mine data only when they detect enough volume of new data. And the
authors do not have to preprocess and apply mining algorithms; they only have to
supervise the new recommender links if they want.

Acknowledgments. The authors1 gratefully acknowledge the financial subsidy
provided by the Spanish Department of Research under TIN2005-08386-C05-02
Project.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of
Items in Large Databases. In: Proceeding SIGMOD, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the Eleventh
International Conference on Data Engineering, pp. 3–14 (1995)

3. Alcalá, J., del Jesús, M.J., Garrell, J.M., Herrera, F., Hervás, C., Sánchez, L.: Proyecto
KEEL: Desarrollo de una Herramienta para el Análisis e Implementación de Algoritmos
de Extracción de Conocimiento Evolutivos. Tendencias de la Minería de Datos en España,
Eds. J. Giraldez, J.C. Riquelme, J.S. Aguilar, pp. 413–423 (2004)

4. Brusilovsky, P., Peylo, C.: Adaptive and Intelligent Web-based Educational Systems.
International Journal of Artificial Intelligence in Education. 13, 156–169 (2003)

5. Clementine (2007), http://www.spss.com/clementine/
6. DBMiner (2007), http://www.dbminer.com
7. De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New

Review of Hypermedia and Multimedia 4, 115–139 (1998)
8. Farzan, R., Brusilovsky, P.: Social Navigation Support in a Course Recommendation

System. In: proceedings of 4th International Conference on Adaptive Hypermedia and
Adaptive Web-based Systems. Dublin, pp. 91–100 (2006)

 Personalized Links Recommendation Based on Data Mining 305

9. García, E., Romero, C., Ventura, S., Castro, C.: Using rules discovery for the continuous
improvement of e-learning courses. In: International Conference Intellligent Data
Engineering and Automated Learning. Burgos, Spain, pp. 887–895 (2006)

10. Han, J., Pei, J., Yan, X.: Sequential Pattern Mining by Pattern-Growth: Principles and
Extensions. StudFuzz 180, 183–220 (2005)

11. Henze, N., Nejdl, W.: Adaptation in open corpus hypermedia. International Journal of
Artificial Intelligence in Education 12(4), 325–350 (2001)

12. Ishikawa, H., Ohta, M., Yokoyama, S., Nakayama, J., Katayama, K.: On the Effectiveness
of Web Usage Mining for Page Recommendation and Restructuring. In: Proceeding of
Web, Web-Services, and Database Systems, pp. 253–267 (2002)

13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31(3), 264–323 (1999)

14. Li, J., Zaïane, O.: Combining Usage, Content, and Structure Data to Improve Web Site
Recommendation. In: Proceedings of International Conference on e-commerce and Web
Technologies, pp. 305–315 (2004)

15. Lu, J.: Personalized E-learning Material Recommender System. In: Proceedings of
International Conference on Information Technology for Application, pp. 374–379 (2004)

16. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate
Observations. In: Proceedings of of 5-th Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297 (1967)

17. Mobasher, B.: Data Mining for Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 1–46.
Springer, Heidelberg (2007)

18. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In:
Proceedings of the Seventeenth International Conference on Data Engineering, pp. 2215–
2224 (2001)

19. Ksristofic, A.: Recommender System for Adaptive Hypermedia Applications. In:
Proceeding of Informatics and Information Technology Student Research Conference,
Bratislava, pp. 229–234 (2005)

20. Romero, C., Ventura, S.: Educational Data Mining: a Survey from 1995 to 2005. Expert
Systems with Applications 1(33), 135–146 (2007)

21. Romero, C., Ventura, S.: Data mining in e-learning. Wit Press (2006)
22. Romero, C., Ventura, S., Bra, P.D.: Knowledge discovery with genetic programming for

providing feedback to courseware author. The Journal of Personalization Research 14(5),
425–464 (2004)

23. Schafer, J.B.: The application of data-mining to recommender systems. In: Wang, J. (ed.)
Encyclopedia of data warehousing and mining, pp. 44–48. Idea Group, Hershey, PA
(2005)

24. Shen, L.P., Shen, R.M.: Learning Content Recommendation Service Based-on Simple
Sequencing Specification. In: Proceedings of Advanced in Web-based Learning, pp. 363–
370 (2004)

25. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. In: Proceedings International Conference on Extending Database
Technology, pp. 3–17 (1996)

26. Tiffany, Y.T., Gordon, M.: Smart Recommendation for an Evolving E-Learning System.
In: Workshop on Technologies for Electronic Documents for Supporting Learning
Australia, pp. 699–710 (2003)

306 C. Romero et al.

27. Wang, F.H., Shao, H.M.: Effective personalized recommendation based on time-framed
navigation clustering and association mining. Expert System with Applications.
Elsevier 27, 365–377 (2004)

28. Weber, G., Brusilovsky, P.: ELM-ART: An adaptive versatile system for Web-based
instruction. International Journal of Artificial Intelligence in Education 12(4), 351–384
(2001)

29. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco (2005)

30. Zaïane, O.: Building A Recommender Agent for e-Learning Systems. In: Proceedings of
the International Conference in Education, New Zealand, pp. 55–59 (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

