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Abstract. In this paper, we describe a personalized recommender system that 
uses web mining techniques for recommending a student which (next) links to 
visit within an adaptable educational hypermedia system. We present a specific 
mining tool and a recommender engine that we have integrated in the AHA! 
system in order to help the teacher to carry out the whole web mining process. 
We report on several experiments with real data in order to show the suitability 
of using both clustering and sequential pattern mining algorithms together for 
discovering personalized recommendation links. 

1   Introduction 

Adaptive and intelligent web-based educational systems (AIWBES) provide an 
alternative to the traditional just-put-it-on-the-web approach in the development of 
web-based educational courseware [4]. Their main objective is to adapt and 
personalize learning to the needs of each student. The task of delivering personalized 
content is often framed in terms of a recommendation task in which the system 
recommends items to an active user [17]. Recommender systems help users find and 
evaluate items of interest. Such systems have become powerful tools in many 
domains from electronic commerce to digital libraries and knowledge management 
[23]. Some recommender systems have also been applied to AIWBES for 
recommending lessons (learning objects or concepts) that students should study next 
[19] or for providing course recommendation about courses offered that contribute to 
the student’s progress towards career goals [8]. 

Recommender systems can use data mining techniques for making recom-
mendations using knowledge learnt from the action and attributes of users [23]. The 
objective of data mining is to discover new, interesting and useful knowledge using a 
variety of techniques such as prediction, classification, clustering, association rule 
mining and sequential pattern discovery. Currently, there is an increasing interest in 
data mining and educational systems, making educational data mining a new and 
growing research community [20][21]. The data mining approach to personalization 
uses all the available information about users/students on the web site (in the web 
course) in order to learn user models and to use these models for personalization. 
These systems can use different recommendation techniques in order to suggest 
online learning activities or optimal browsing pathways to students, based on their 
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preferences, knowledge and the browsing history of other students with similar 
characteristics.  

In this work, we are going to describe the use of data mining techniques for links 
recommendation in AIWBES. The task of links recommendation in web-based 
education can be seen as a special type of adaptive navigation support due to the fact 
that they share the same goal of helping students to find an optimal path through the 
learning material [4]. Adaptive educational hypermedia systems can adaptively sort, 
annotate, or partly hide the links to make it easier to choose or to recommend to the 
students where they should go from a certain point. This technology is one of the 
most popular in AIWBES and there are a lot of systems that use it, such as ELM-ART 
[28] (and its descendents), AHA! [7], KBS-Hyperbook [11], etc. The originality of 
our personalized recommender system consists in the use of data mining together with 
hyperlink adaptation. Only a few other recommender systems use data mining for 
recommending links [8]. 

This paper is arranged in the following way: first we describe the related 
background and two architectures for personalization based on-web usage mining. 
Then, we describe the data mining tool and links recommender engine that we have 
developed and integrated into the AHA! system. Finally, we describe the experiments 
that we have carried out, conclusions and future work. 

2   Background 

Recommendation and personalization techniques can be classified into three different 
categories [17]: rule-based filtering systems, content-filtering systems and 
collaborative filtering systems. Rule-based filtering systems rely on manually or 
automatically generated decision rules that are used to recommend items to users. 
Content-based filtering systems recommend items that are considered sufficiently 
similar to the content descriptions in the user profile. Collaborative filtering systems, 
also referred to as social filtering, match the rating of a current user for items with 
those of similar users in order to produce recommendations for items not yet rated or 
seen. Some recent techniques used in collaborative filtering are based on data mining 
in order to infer recommendation rules or build recommendation models from large 
data sets [23]. Some of the most common data mining techniques in these 
recommender applications are clustering, sequence and association mining. 

- Clustering is a process of grouping objects into classes of similar objects [13]. It 
is an unsupervised classification or partitioning of patterns (observations, data 
items, or feature vectors) into groups or subsets (clusters). This technique 
groups records together based on their location and connectivity within an n-
dimensional space. The principle of clustering is maximizing the similarity 
inside an object group and minimizing the similarity between the object groups. 
There are many clustering methods [13], including hierarchical and function-
based algorithms. One of the most well-known and commonly used is the k-
means algorithm [16] that tries to minimize the distance of the objects to the 
centroid or mean point of each cluster.  
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- Sequential modeling or sequential pattern mining [10] discovers inter-session 
patterns. It is a more restrictive form of association rule [1] in which the 
accessed items’ order is taken into account (the association rule discovers all the 
relationships without restrictions). Sequential pattern mining was first 
introduced into the study of customer purchase sequences, as follows [2]: Given 
a set of sequences, where each sequence consists of a list of elements and each 
element consists of items, and given a user-specified minimum support 
threshold, sequential pattern mining tries to find all frequent subsequences, i.e., 
the subsequences whose occurrence frequency in the set of sequences is no less 
than the minimum support. Normally, a web server log file is used to discover 
sequences of resource requests. The problem of mining sequences in web 
navigational patterns refers to the identification of those web document 
references which are shared through time by a large number of user sequences, 
where a user sequence is a time-ordered set of visits. There are several popular 
pattern discovery algorithms [10] such as AprioriAll, GSP, SPADE, PrefixSpan, 
CloSpan and FreSpan. 

Although personalized recommendation approaches that use data mining 
techniques are first proposed and applied in E-commerce for product purchase, there 
are also several works about the application of different data mining techniques 
within recommender systems in E-learning. The extraction of sequential patterns has 
been used to find patterns that are used in the process of recommending relevant 
concepts to students [19]. Sequential rules can also guide a learning resource 
recommendation service based on simple sequencing specification [24]. Clustering 
can be used to find clusters of students with similar learning characteristics and to 
promote group-based collaborative learning in a research paper recommender system 
[26]. Association rules and clustering methods have been used for recommending a 
list of web pages on an e-learning web site [27]. A recommender agent which uses 
association rules has been used to recommend online learning activities or shortcuts 
on a course web site based on a learner’s access history [14][30]. Fuzzy association 
rules have been used in a personalized e-learning material recommender system [15]. 
Finally, association rules have been used to provide feedback to the courseware 
author and to recommend how to improve the courses [9][22]. 

3   Architectures for Personalized Recommendation Systems 

The overall process of Web personalization based on Web usage mining generally 
consists of three phases: data preparation, pattern discovery and recommendation. The 
first two phases are performed off-line and the last phase on-line [17]. Data 
preparation transforms web log files and profiles into data with the appropriate 
format. Pattern discovery uses a data mining technique, such as clustering, sequential 
pattern and association rule mining. Finally, recommendation uses the discovered 
patterns to provide personalized links or contents. 

In this work, we distinguish between two different architectures of recommender 
systems based on web usage mining (see Figure 1).  
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Fig. 1. Architectures for recommender systems based on web usage mining 

• Basic Architecture of Web-based Recommender Systems. This is a simple 
architecture of a recommender system that only uses the student’s information 
stored in web log files. These systems use only one mining algorithm, usually a 
sequential mining algorithm (see Figure 1 above), over  all user navigation sessions 
to discover the most frequent navigational pattern that can predict the student’s 
navigation and next page request. One problem of this type of system is that the 
new student obtains the same recommendations based solely on his current 
navigation. 

• Advanced Architecture of Web-based Recommender Systems. This is a more 
advanced architecture of recommender systems that also uses additional 
information about the students (such as profiles). These systems use several mining 
algorithms (see Figure 1 down), for example, clustering and sequential pattern 
mining. In this way they can discover clusters of students showing common 
behavior and/or knowledge and then they can discover the sequential patterns of 
each cluster. This type of recommender can personalize the recommendations. 
First, it classifies the new students in one of the groups of students (clusters). Then, 
it only uses the sequential patterns of the corresponding group to personalize the 
recommendations based on other similar students and his current navigation. 
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4   The AHA!-Based Mining and Recommender System  

Most of the current data mining tools such as DBMiner [6], SPSS Clementine [5] and 
Weka [29] can be too complex for educators to use and their features go well beyond 
the scope of what an educator may want to do. These tools should have more easy-to-
use interfaces to simplify the algorithm configuration and execution, and they have 
provided specialized visualization facilities to make their results meaningful to 
educators and courseware designers [20]. For this reason, we have developed a 
specific data mining tool in order to help the teacher to carry out the web mining 
process. We have integrated this tool and its corresponding recommendation engine 
into the well known AHA! [7] (Adaptive Hypermedia Architecture). In this way the 
whole process can be carried out in a same e-learning system, and the feedback and 
results obtained can be directly applied to the courses (see Figure 2).  

 

Fig. 2. Data mining tool and recommender engine integrated into AHA! system 

As we can see in Figure 2, both the user’s data (student log and profile files) and 
the learning model data (recommendation and cluster files) are stored in XML files in 
the AHA! server file system. This system can work as both the basic architecture and 
advanced architecture described in the previous section. And there are two main 
modules; the off-line module (mining tool) and the on-line module (recommender 
links engine) that we are going to describe in detail in the next two sub-sections. 

4.1   Mining Tool 

The mining tool is a Java Applet, just like other AHA! authoring tools [7] such as 
Concept Editor, Test Editor, etc. The author of the course can execute it when enough 
information from new students has been collected. The user interface of the mining 
tool is simple, easy to use and specifically oriented to discover sequential patterns and 
to recommend personalized links. Its main window consists of a menu and two 
information areas (see Figure 3). At the top, we can see the information panel that  
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Fig. 3. Main window of the AHA! mining tool 

shows general information about the program and algorithms execution. At the 
bottom, we can see the sequential pattern panel, where the discovered sequences are 
shown. 

First, the author has to create a new data file starting from the student’s log files. 
We have to preprocess the AHA! log files in order to group them into a single data 
file with the most appropriate format to be mined. In our case, it is not necessary to do 
user and session identification since all users must log in using their unique ID, and 
AHA! also stores the session information in log files. AHA! stores all log information 
for each student in one XML file (the date and time at which the page was accessed, 
the session identification and the name of the web page). The author only has to select 
one of his/her courses in AHA! and one method for selecting students (all 
automatically, manual and clustering) in order to create a data file. The totally 
automatic method selects all the students in the course. The manual method shows a 
list with all the students in the courses so that the author can select a group of specific 
students. The clustering method automatically creates several data files instead of 
only one data file. We have used the k-means algorithm [16], which is the most 
popular clustering algorithm and where the user only has to specify the number of 
clusters (k) to find. In order to do clustering, we have used two of the students’ 
variables: the number of pages visited and the average knowledge obtained from these 
pages. This information has been obtained from the AHA! XML user profile files 
(also one per student, containing visited and knowledge attributes for each concept of 
the course). It is important to note that in the used AHA! courses each concept has an 
associated XHTML web page. Each of the clusters obtained corresponds to a specific 
student’s model and is stored in an XML file. In this file we store the centroid of each 
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cluster (in some sense representing a typical user of the cluster). In our case we store 
the number of pages visited and the average knowledge of the centroid, as we can see 
in the next XML file example with two clusters: 
 

<?xml version="1.0" encoding="UTF-8"?> 
<ListOfClusters NumberOfClusters="2"> 
  <cluster NumberOfPagesVisited="2"  
      AverageLevelOfKnowledge="45">0</cluster> 
  <cluster NumberOfPagesVisited="16" 
      AverageLevelOfKnowledge="99">1</cluster> 
</ListOfClusters> 

  
Finally, one data file (for all automatic and manual methods) or several data files 

(for the clustering method) are created in the KEEL format [3]. This is a text file 
format that is similar to and compatible with the well-known Weka format [29]. The 
log information of each student is grouped together in this file or these files according 
to the clusters in which they have been classified. 

Then, the author can select one data file in order to execute sequential pattern 
mining algorithms. There are several algorithms available such as AprioriAll [2], GSP 
[25] and PrefixSpan [18], which are some of the most popular pattern discovering 
algorithms. The author can execute the selected algorithm directly or, if he wants, he 
can change its default parameters values. AprioriAll and PrefixSpan algorithms only 
have one parameter (minimum support threshold that is the minimum number of 
sessions in which the rule has to appear). The GSP algorithm has a second parameter 
(maximum number of gaps that is the maximum number of gaps between two links to 
be considered in the same sequence). When the algorithm finishes its execution, the 
sequences discovered are shown in the sequential pattern panel of the main tool 
window (see Figure 3). These sequences can be saved into a text file and they can also 
be visualized better using the sequence view window. Analyzing these sequences, the 
teacher can have an idea about what the most general students’ browsing behavior 
during their learning process is.  

Finally, the author can recommend links starting from the sequences obtained. In 
order to do so, we have first split all the sequences with lengths over two in 2-length 
sub-sequences or rules using two different methods: path recommendation or shortcut 
recommendation [12]. Path recommendation splits the sequences in all the possible 
rules (every two pages directly connected in the sequence) and the shortcut 
recommendation splits the sequence in only one rule (the first and the last page in the 
sequence). So, a recommendation link is composed of a 2-length sequence considered 
as a rule with only one element in the antecedent and one in the consequent (the 
antecedent represents the page in which the recommendation will be shown and the 
consequent is the link recommended to the student). All the generated recom-
mendation links are shown to the author so that he/she can validate them and select 
which recommendations will be used by the recommender engine (see Figure 4). The 
author has to select links/rules (all, none or a specific group) in order to filter the most 
appropriate recommendations depending on the antecedent and consequent concepts, 
and the confidence and support values. The confidence of the rules indicates how 
strong the rules are, whereas the support of the rules indicates their coverage. 
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Fig. 4. Recommendation links window 

Finally, the selected recommendations are saved into the AHA! system in a XML 
file as in the following example file: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<RecommendedLinks> 
 <Concept name="tutorial.welcome"> 
   <Recommendation text="installation"  
    autogenerated="true" group="all" color="blue"  
    interst="57">tutorial.installation</Recommendation> 
   <Recommendation text="readme"  
    autogenerated="true" group="all" color="blue"  
    interest="14">tutorial.readme</Recommendation> 
 </Concept> 
</RecommendedLinks> 
 

We can see in the previous example file that there two recommended links to the 
concept/page “welcome” of the course “tutorial”. The value of the “recommendation” 
label indicates the name of the destination web page/concept (“installation” and 
“readme” respectively). And the meaning of the attributes are: “text” (text of the 
hyperlink, by default is the concept of the rule consequent), “autogenerated” (boolean 
value that indicates if the recommendation has been generated by data mining or not), 
“group” (indicates if the recommendation is for all students or for a specific cluster), 
“color” (color used by the a triangular image, for example: blue color for all students 
and red color for clusters), “interest” (the confidence value of the rule). 
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4.2   Recommendation Engine 

We have developed our recommendation engine as another AHA! View class [7], just 
like the other Views such as MainView, TOCView, ConceptbarView, etc. So, in order 
for a course to be able to use the new RecommendedLinksView, it is necessary to add 
it in the corresponding LayoutConfig.xml file of the course. Then, when a student 
logs in to the AHA! Course, the recommender engine is activated each time that the 
student visits a web page (concept).  

The recommendation engine considers the active students in conjunction with the 
XML recommendation file to provide personalized recommendations. First, if there 
are clusters in the XML recommendation file, then the engine has to classify the 
current student to determine the most likely cluster. We have to communicate with the 
AHA! engine to obtain the current student Profile (to know the current number of 
pages visited and average knowledge of the student). Then, we use the centroid 
minimum distance method [16] for assigning the student to the cluster whose centroid 
is closest to that student (XML cluster file). Finally, we make the recommendation 
according to the rules in the cluster. So, only the rules of the corresponding cluster (or 
all the rules if there aren’t clusters) are used to match the current web page (concept) 
in order to obtain the current list of recommended links. 

 

Fig. 5. AHA! Tutorial with recommended links added 
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In Figure 5 we can see the interface of the AHA! tutorial with a list of recommended 
links in which the student “cristobal” is located on the “welcome” page and the 
recommender engine recommends going to the “installation” page (strong recommend- 
dation) and to the “readme” page (normal recommendation). We can see that we have 
adaptively sorted, annotated and partly hidden [4] the list of recommended links. First, 
we only show the links that the current student matches on the current page. Next, the 
links are sorted depending on their confidence value (on a decreasing scale). Then, we 
annotate the links with triangular icons that can vary in  color depending on what data 
have been used to obtain them (blue for all the data, green to a specific data cluster) 
and can vary their number depending on the value of the confidence (1 triangle or 
normal recommendation to values lower than 0.33, 2 triangles or strong 
recommendation to values higher than 0.33 and lower than 0.66, and 3 triangles or very 
strong recommendation to values over 0.66). 

5   Experimental Results 

The data used in this study are real data collected from the on-line AHA! Tutorial 
(http://aha.win.tue.nl/tutorial/) that consists of 34 web pages or concepts. Although 
we have the usage data of about two hundred users available, we have selected only a 
group of good users (users who read a significant part of the tutorial). We have used a 
total number of 78 students with 118 sessions and 684 records in total. These students 
are mainly TU/E (Eindhoven University of Technology) students taking a course in 
adaptive hypermedia and some other Internet users interested in the AHA! system. 
So, all students used in this work are familiar with adaptive hypermedia. 

We have carried out three experiments that we describe in the following section. 
In the first experiment, we have executed the three available sequential mining 

algorithms (AprioriAll [2], GSP [24] and PrefixSpan [17]), using all the data in order 
to find out which is the best for our problem. We have compared the shortcut 
recommendation rules discovered (number of rules discovered and the average value 
of the support and confidence of the rules) by the three algorithms varying the 
minimum support threshold (from 0.3 to 0.03).  

Table 1. Number/average support/average confidence of rules discovered using all data 

 Min.Sup.=0.3 Min.Sup.=0.15 Min.Sup.=0.07 Min.Sup.=0.03 
AprioriAll 3/0.35/0.55 7/0.24/0.43 22/0.13/0.40 70/0.07/0.32 

GSP(gap=1) 2/0.39/0.55 6/0.24/0.43 20/0.16/0.43 62/0.11/0.40 
PrefixSpan 2/0.39/0.55 6/0.24/0.43 14/0.18/0.43 61/0.12/0.41 

 
As we can see in Table 1, there are not many differences between the three 

algorithms (specifically with higher minimum support values). However, GSP and 
PrefixSpan discover a lower number of rules with higher support and confidence 
values. In our problem of links recommendation, it is important to show the students 
only good links (a small number of rules with a higher value of support and 
confidence). So, although the three algorithms show similar results, the GSP and 
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PrefixSpan are a bit better than the AprioriAll algorithm. And as far as the minimum 
support threshold is concerned, we can see that in order not to obtain a lot of rules, a 
good range is between 0.3 and 0.1. 

In the second experiment, we have executed the clustering algorithm in order to 
find the best number of clusters with our data. We have executed the k-means 
algorithm [14] varying the k value (number of clusters) from 2 to 5. Table 2 shows the 
number of students, sessions and records that are obtained in each one of the clusters. 

Table 2. Number of students/sessions/records in each data cluster 

No clusters  All data     
Number of st./se./r. 78/118/684     

Cluster K = 2 Cluster 1 Cluster 2    
Number of st./se./r. 48/60/383 30/58/301    

Cluster K = 3 Cluster 1 Cluster 2 Cluster 3   
Number of st./se./r. 18/34/120 32/45/299 28/39/265   

Cluster K = 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4  
Number of st./se./r. 23/38/233 12/16/99 11/21/87 32/43/265  

Cluster K = 5 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Number of st./se./r. 14/30/106 12/25/81 6/14/40 4/12/26 42/47/449 

 
In our problem of grouping students in different clusters, it is important for the 

obtained data to be balanced (equal number in each cluster). That is, the number of 
students, sessions and records must be uniform in all the clusters. In this way, we can 
later obtain a similar number of sequence rules for each data cluster. We can see in 
Table 2 that the data are more balanced when we use a low number of clusters (2 and 
3 clusters). But when we increase the number of clusters (4, 5 and more) then there 
are more differences between clusters (some clusters have a lot of data and others 
very few data). So, two or three clusters give us  well balanced data . 

In the third experiment, we have done a comparison study between the basic 
architecture (only sequential mining) and the advanced architecture (clustering and 
sequential mining). We have compared the shortcut recommendation rules discovered 
(number of rules discovered and the average value of the support and confidence of 
the rules) by the PrefixSpan algorithm varying the minimum support threshold (from 
0.3 to 0.1),on one hand using all data, and on the other hand the same algorithm using 
the data obtained from k-means algorithm for 2 and 3 clusters.  

We can see in Table 3 that the number of rules discovered using each data cluster 
is not always less (sometimes even more) than using all the data, as we might have  
expected. However, their support and confidence values are always higher and this is 
very important in our problem. So, the advanced architecture can discover a similar 
number of rules to basic architecture but with higher values of confidence and 
support. Finally, in order to see if there are differences in the rules obtained from data 
clusters we are going to show and describe some examples of rules discovered using 
two data clusters (k=2) and the PrefixSpan algorithm (Min.Sup.=0.15). 
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Table 3. Number/Average Support/ Average Confidence of rules discovered using PrefixSpan 
over all data and over different number of clusters 

 Min.Sup.=0.3 Min.Sup.=0.15 Min.Sup.=0.1 
No Clusters  (All data) 2/0.39/0.55 6/0.22/0.43 12/0.20/0.39 

K = 2  (Cluster 1) 1/0.40/0.57 6/0.28/0.46 10/0.24/0.47 
K = 2  (Cluster 2) 1/0.40/0.63 8/0.23/0.48 14/0.26/0.45 
K = 3  (Cluster 1) 2/0.39/0.64 7/0.31/0.53 16/0.21/0.51 
K = 3  (Cluster 2) 1/0.39/0.55 6/0.32/0.55 11/0.26/0.53 
K = 3  (Cluster 3) 2/0.40/0.62 8/0.32/0.56 13/0.25/0.49 

Table 4. Examples of rules discovered 

Num Antecedent => Consequenc
e 

Support Confidence Cluster 

1 readme install 0.23 0.41 1 
2 domainmodel concept 0.25 0.60 2 
3 author pages 0.27 0.32 1 
 author pages 0.21 0.42 2 

4 welcome install 0.48 0.63 1 
 welcome install 0.40 0.52 2 

 
We can see in Table 4 that there are some rules that only appear in one cluster (rule 

1 and 2), and there are other rules that appear in both clusters (rule 3 and 4) but with 
different support and confidence values. Cluster number 1 represents sporadic 
students who only want to sort out one question about AHA! (its centroid has 
NumberOfPagesVisited=2 and AverageLevelOfKnowledge=45) and cluster number 2 
represents active students really interested in reading all the AHA! Tutorial (its 
centroid has NumberOfPagesVisited=16 and AverageLevelOfKnowledge=99). Rule 
number 1 shows that sporadic students go from “readme” web page to “install” web 
page (these students are looking for some specific question about the AHA! 
installation). Rule number 2 shows that active students go from the “domainmodel” 
web page to the “concept” web page (these students are reading/learning about the 
AHA! core). Rule number 3 shows that both type of students go from the “author” 
web page to the “pages” web page, but it is a higher number for the active students 
and the confidence is higher too (these students are reading/learning about the AHA! 
page format) than for sporadic students. Rule number 4 shows that both types of 
students go from the “welcome” web page to the “install” web page, but a higher 
number of sporadic students do so and  with higher confidence  (they are looking for 
some specific question about the AHA! installation) than active students.  

6   Conclusions and Future Work 

In this paper, we have described a personalized recommender system that uses web 
mining to recommend the next links to visit in an AIWBES. We have developed a 
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specific mining tool and a recommender engine in order to help the teacher to carry 
out the web mining process. Although we have integrated the tools in the AHA! 
system [7] with minor modifications (mainly to handle the file and data format and to 
communicate with the engine of the system), it can in principle also be used in other 
web-based educational systems. We have carried out several experiments with real 
user data from the on-line AHA! tutorial in order to show the performance of the 
implemented algorithms. And we have shown the suitability of an advanced 
recommender system that uses the clustering and sequential pattern mining algorithms 
together to discover personalized recommendation links. 

In the future, we want to carry out more experiments with a still larger number of 
students and using more information about the students’ profiles for doing clustering. 
We can also integrate other sequence mining algorithms [10] such as SPADE, 
FreeSpan, CloSpan and PSP, and other clustering algorithm without requiring the user 
to specify any parameter. We plan to evaluate the quality of the recommendations 
based on feedback from students as well as on results using a testing set of data. 
Finally, it would be very useful to develop a real-time feedback loop between data 
mining and the recommendation system. We can use, for example, intelligent agents 
for doing on-line data mining automatically and for communicating with the 
recommender systems. In this way the system could work completely autonomously. 
The agents can mine data only when they detect enough volume of new data. And the 
authors do not have to preprocess and apply mining algorithms; they only have to 
supervise the new recommender links if they want. 
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