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Abstract. SubgroupMiner is an advanced subgroup mining system supporting 
multirelational hypotheses, efficient data base integration, discovery of causal 
subgroup structures, and visualization based interaction options. When search-
ing for dependencies between subgroups and a target group, spatial subgroups 
with multirelational descriptions are explored. Search strategies of data mining 
algorithms are efficiently integrated with queries in an object-relational query 
language and executed in a database to enable scalability for spatial data.  

1 Introduction: Mining Spatial Subgroups 

The goal of spatial data mining is to discover spatial patterns and to suggest hypothe-
ses about potential generators of such patterns. In this paper we focus on spatial pat-
terns from the perspective of the subgroup mining paradigm. Subgroup Mining 
[7],[8],[9] is used to analyse dependencies between a target variable and a large num-
ber of explanatory variables. Interesting subgroups are searched that show some type 
of deviation, e.g. subgroups with an over proportionally high target share for a value 
of a discrete target variable, or a high mean for a continuous target variable.  

This paper introduces the SubgroupMiner, an advanced subgroup mining system 
supporting multirelational hypotheses, efficient data base integration, discovery of 
causal subgroup structures, and visualization based interaction options. The goal is to 
provide a spatial mining tool applicable in a wide range of circumstances.  

In this paper we focus on a representational issue that is at the heart of the whole 
approach: Representing spatial subgroups using an object-relational query language 
by embedding part of the search algorithm in a spatial database system (SDBS). Thus 
the data mining and the visualization in a Geographic Information System (GIS) share 
the same data. While this approach embraces the full complexity and richness of the 
spatial domain, most approaches to Spatial Data Mining export and pre-process the 
data from a SDBS. Our approach results in significant improvements in all stages of 
the knowledge discovery cycle:  
1. Data Access: Subgroup Mining is partially embedded in a spatial database, where 

analysis is performed. No data transformation is necessary and the same data is 



used for analysis and mapping in a GIS. This is important for the applicability of 
the system since pre-processing of spatial data is error-prone and complex. 

2. Pre-processing and analysis: SubgroupMiner handles both numeric and nominal 
target attributes. For numeric explanatory variables on-the-fly discretisation is per-
formed. Spatial and non-spatial joins are executed dynamically.  

3. Post-processing and Interpretation: Similar subgroups are clustered according to 
degree of overlap of instances to identify multicollinearities. A Bayesian network 
between subgroups can be inferred to support causal analysis. 

4. Visualisation. SubgroupMiner is dynamically linked to a GIS, so that spatial sub-
groups are visualized on a map. This allows the user to bring in background know-
ledge into the exploratory process, to perform several forms of interactive sensitiv-
ity analysis and to explore the relation to further variables and spatial features. 

 
The paper is organized as follows. In Section 2, the representation of spatial data and 
spatial subgroups is discussed. Section 3 focuses on database integration using a 
sufficient statistics approach. Due to space restrictions, we will not elaborate on post-
processing and visualization in this paper, but Section 4 puts the discussion into con-
text by presenting an application example. Finally related work is summarized.  

2 Representation of Spatial Data and of Spatial Subgroups 

Representation of spatial data. Most modern Geographic Information Systems use 
an underlying Database Management System for data storage and retrieval. While 
both relational and object-oriented approaches exist, a hybrid approach based on 
object-relational databases is becoming increasingly popular. Its main features are: 
1. A spatial data base S is a set of relations R1,...,Rn such that each relation Ri in S has 

a geometry attribute Gi or an attribute Ai such that Ri can be linked (joined) to a re-
lation Rk in S having a geometry attribute Gk. 

2. A geometry attribute Gi consists of ordered sets of x-y-coordinates defining points, 
lines, or polygons. 

3. Different types of spatial objects (e.g. streets, buildings) are organized in different 
relations Ri, called geographical layers. Each layer can have its own set of attrib-
utes A1,..., An, called thematic data, and at most one geometry attribute G.  

This representation extends a purely relational scheme since the geometry attribute is 
non-atomic. One of its strengths is that a query can combine spatial information with 
attribute data describing objects located in space. 

For querying multirelational spatial data a spatial database adds an operation called 
the spatial join. A spatial join links two relations each having a geometry attribute 
based on distance or topological relations (disjoint, meet, equal, inside, contains, 
covers, coveredBy, overlap) [2]. For supporting spatial joins efficiently, special pur-
pose indexes like KD-trees or Quadtrees are used.  

 
Pre-processing vs. dynamic approaches. A GIS representation is a multi-relational 
description using non-atomic data types (the geometry) and applying operations from 



computational geometry to compute the relation between spatial objects. Since most 
machine learning approaches rely on single-relational data with atomic data types 
only, they are not directly applicable to this type of representation. To apply them, a 
possibility is to pre-process the data and to join relevant variables from secondary 
tables to a single target table with atomic values only. The join process may include 
spatial joins, and may use aggregation. The resulting table can be analysed using 
standard methods like decision trees or regression. While this approach may often be 
practical, it simply sidesteps the challenges posed by multi-object-relational datasets. 

In contrast, Malerba et al. [17] pre-process data stored in a object-relational data-
base to represent it in a deductive database. Thus, spatial intersection between objects 
is represented in a derived relation intersects(X,Y). The resulting representa-
tion is still multi-relational, but only atomic values are permitted, and relationships in 
Euclidean space are reduced to qualitative relationships.  
Extracting data from a SDBS S to another format has its disadvantages:  
1. The set of possible joins L between relations in S constrain the hypothesis space H. 

Since all spatial joins between geographical layers according to the topological re-
lations described by Egenhofer [2] are meaningful, the set L is prohibitively large. 
If L includes the distance relation with a real-valued distance parameter, there are 
infinitely many possible joins. Thus, for practical and theoretical reasons, after pre-
processing only part of the original space H will be represented in the transformed 
space H´, so that the best hypothesis in H may not be part of H´.  

2. Conversely, much of the pre-processing, which is often expensive in terms of com-
putation and storage, may be unnecessary since that part of the hypothesis space 
may never be explored, e.g. because of early pruning.  

3. Pre-processing leads to redundant data storage, and in applications where data can 
change due to adding, deleting or updating, we suffer the usual problems of non-
normalized data storage well-known from the database literature.  

4. Storing the respective data in different formats makes a tight integration between a 
GIS and the data mining method much more difficult to achieve.  
 

An advantage of pre-processing is that once the data is pre-processed the calculation 
has not to be repeated, e.g. by constructing join indices [3]. However, a dynamic 
approach can get similar benefits from caching search results, and still have the origi-
nal hypothesis space available.  

For these reasons, our approach to spatial data mining relies on using a SDBS 
without transformation and pre-processing. Tables are dynamically joined. Variables 
are selected during the central search of a data mining algorithm, and inclusion de-
pends on intermediate results of the process. Expensive spatial joins are performed 
only for the part of the hypothesis space that is really explored during search.  

 
Spatial subgroups. Subgroups are subsets of analysis objects described by selection 
expressions of a query language, e.g. simple conjunctional attributive selections, or 
multirelational selections joining several tables. Spatial subgroups are described by a 
spatial query language that includes operations on the spatial references of objects. A 
spatial subgroup, for instance, consists of the enumeration districts of a city inter-



sected by a river. A spatial predicate (intersects) operates on the coordinates of the 
spatially referenced objects enumeration districts and rivers.  
 
Hypothesis Language. The domain is an object-relational database schema S = {R1, 
..., Rn} where each Ri can have at most one geometry attribute Gi. Multirelational 
subgroups are represented by a concept set C = {Ci}, where each Ci consists of a set 
of conjunctive attribute-value-pairs {Ci.A1=v1,..., Ci.An=vn} from a relation in S, a set 
of links L={Li} between two concepts Cj, Ck in C via their attributes Am, Ak, where the 
link has the form Ci.Am θ Ck.Am , and θ can be ‘=’, a distance or topological predicate 
(disjoint, meet, equal, inside, contains, covered by, covers, overlap, interacts). 

 
For example, the subgroup “districts with high rate of migration and unemployment 
crossed by the M60” is represented as 

C={{district.migration=high,district.unemplyoment=high}, {road.name=’M60’}} 
L= {{ interacts(district.geometry, road.geometry)}} 

Existential quantifiers of the links are problematic when many objects are linked, e.g. 
many persons living in a city or many measurements of a person. Then the condition 
that one of these objects has a special value combination will often not result in a 
useful subgroup. In this case, conditions based on aggregates such as counts, shares 
or averages will be more useful [12], [14]. 

These aggregation conditions are included by aggregation operations (avg, count, 
share, min, max, sum) for an attribute of a selector. An average operation on a nu-
merical attribute additionally needs labeled intervals to be specified. 

C = (district.migration = high; building.count(id) = high) 
L = (spatially_interact(district.geometry, building.geometry)) 

 Extension: Districts with many buildings. 
 For buildings.count(id), labels low, normal, high and intervals are specified. 

 
Multirelational subgroups have first been described in Wrobel [23] in an ILP setting. 
Our hypothesis language is more powerful due to numeric target variables, aggrega-
tions, and spatial links. Moreover, all combinations of numeric and nominal variables 
in the independent and dependent variables are permitted in the problem description. 
Numeric independent variables are discretised on the fly. This increases applicability 
of subgroup mining. 
 
Representation of spatial subgroups in query languages. Our approach is based on 
an object-relational representation. The formulation of queries depends on non-
atomic data-types for the geometry, spatial operators based on computational geome-
try, grouping and aggregation. None of these features is present in basic relational 
algebra or Datalog. An interesting theoretical framework for the study of spatial data-
bases are constraint databases [15], which can be formulated as (non-trivial) exten-
sions of relational algebra or Datalog. However, using SQL is more direct and much 
more practical for our purposes. The price to pay is that SQL extended by object-
relational features is less amendable for theoretical analysis (but see [16]). For calcu-
lating spatial relationships spatial extensions of DBMS like Oracle Spatial can be 
used. 



For database integration, it is necessary to express a multirelational subgroup as 
defined above as a query of a database system. The result of the query is a table rep-
resenting the extension of the subgroup description. One part of this query defines the 
subset of the product space according to the l concepts and l-1 link conditions. The 
from part includes the l (not necessarily different) tables and the where part the l-1 
link conditions (as they are given as strings or default options in the link specifica-
tion; spatial extensions of SQL apply a special syntax for the spatial operations). 
Additionally the where part includes the conditions associated to the definition of 
selectors of concepts. Then the aggregation conditions are applied and finally the 
product space is projected to the target table (using the DISTINCT feature of SQL). 

The complexity of the SQL statement is low for a single relational subgroup. Only 
the attributive selectors must be included in the where part of the query. For multire-
lational subgroups without aggregates and no distinction of multiple instances, the 
from part must manage possible duplicate uses of tables, and the where part includes 
the link conditions (transformed from the link specification) and the attributive selec-
tors. For aggregation queries, a nested two-level select statement is necessary, first 
constructing the multirelational attributive part and then generating the aggregations. 
Multiple instances of objects of one table are treated by including the table in the 
from part several times and the distinction predicate in the where part. 

The space of subgroups to be explored within a search depends on the specification 
of a relation graph which includes tables (object classes) and links. For spatial links 
the system can automatically identify geometry attributes by which spatial objects are 
linked, since there is at most one such attribute. A relation graph constrains the multi-
relational hypothesis space in a similar way as attribute selection constrains it for 
single relations. 

3. Database Integration of Subgroup Mining 

Subgroup mining search. This paper focuses on database integration of spatial sub-
group mining. The basic subgroup mining algorithm is well-documented and only 
summarized here. Different subgroup patterns (e.g. for continuous or discrete target 
variables), search strategies and quality functions are described in [8], [9]. 

The search is arranged as an iterated general to specific, generate and test proce-
dure. In each iteration, a number of parent subgroups is expanded in all possible 
ways, the resulting specialized subgroups are evaluated, and the subgroups are se-
lected that are used as parent subgroups for the next iteration step, until a prespecified 
iteration depth is achieved or no further significant subgroup can be found. There is a 
natural partial ordering of subgroup descriptions. According to the partial ordering, a 
specialization of a subgroup either includes a further selector to any of the concepts 
of the description or introduces an additional link to a further table. 

The statistical significance of a subgroup is evaluated by a quality function. As a 
standard quality function, SubgroupMiner uses the classical binomial test to verify if 
the target share is significantly different in a subgroup: 
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This z-score quality function based on comparing the target group share in the sub-
group (p) with the share in its complementary subset balances four criteria: size of 
subgroup (n), relative size of subgroup with respect to total population size (N), dif-
ference of the target shares (p-p0), and the level of the target share in the total popula-
tion (p0). The quality function is symmetric with respect to the complementary sub-
group. It is equivalent to the χ2-test of dependence between subgroup S and target 
group T, and the correlation coefficient for the (binary) subgroup and target group 
variables. For continuous target variables and the deviating mean pattern, the quality 
function is similar, using mean and variance instead of share p and binary case vari-
ance p0(1-p0). 

Evaluation of contingency tables. To evaluate a subgroup description, a contin-
gency table is statistically analyzed (tab 1). It is computed for the extension of the 
subgroup description in the target object class. To get these numbers, a multirela-
tional query is forwarded to the database. Contingency tables must be calculated in an 
efficient way for the very many subgroups evaluated during a search task.  

Tab 1. Contingency table for target migration=high vs. unemployment=high. 

Target  
migration = high ¬migration = high  

unemployment=high, 16 19 35 
¬unemployment=high 47 496 543 

Subgroup 

 63 515 578 
 
Sufficient statistics approach. We use a two-layer implementation [22], where 

evaluation of contingency tables is done in SQL, while the search manager is imple-
mented in Java. A sufficient statistics approach is applied by which a single SQL 
query provides the aggregates that are sufficient to evaluate all successor subgroups. 
In the data server layer, within one pass over the database all contingency tables are 
calculated that are needed for the next search level. Thus not each single hypothesis 
queries the database, but a (next) population of hypotheses is treated concurrently to 
optimize data access and aggregation needed by these hypotheses. The search man-
ager receives only aggregated data from the database so that network traffic is re-
duced. Besides offering scaling potential, such an approach includes the advantage of 
development ease, portability, and parallelization possibilities. 
Construction of query. The central component of the query is the selection of the 
multirelational parent subgroup. This is why representation of multirelational spatial 
subgroup in SQL is required. To generate the aggregations (cross tables) for a parent 
subgroup, a nested select-expression is applied for multirelational parents. From the 
product table, first the expansion attribute(s), key-attribute for the primary table and 
target attribute are projected and aggregates calculated for the projection. Then the 
cross tables (target versus expansion attribute) are calculated. Efficient calculation of 



several cross tables, however, is difficult in SQL-implementations. An obvious solu-
tion could be based on building the union of several group-by operations (of target 
and expansion attributes). Although, in principle, several parallel aggregations could 
be calculated in one scan over the database, this is not optimised in SQL implementa-
tions. Indeed each union operation unnecessarily performs an own scan over the da-
tabase. Therefore, to achieve a scalable implementation (at least for single relational 
and some subtypes of multirelational or spatial applications), the group-by operation 
has been replaced by explicit sum operations including case statements combining the 
different value combinations. Thus for each parent, only one scan over the database 
(or one joined product table) is executed. Further optimisations are achieved by com-
bining those parents that are in the same joined product space (to eliminate unneces-
sary duplicate joins).  

4 Application and Experiments 

Application to UK Census Data. In this section we put the previous discussion in 
context. We describe a practical example that shows the interaction between spatial 
subgroup mining and a GIS mapping tool. The application has been developed within 
the IST-SPIN!-project, that integrates a variety of spatial analysis tools into a spatial 
data mining platform based on Enterprise Java Beans [18,19]. Besides Subgroup 
Mining these are Spatial Association rules [17], Bayesian Markov Chain Monte Carlo 
and the Geographical Analysis Machine GAM [20].  

Our application are UK 1991 census data for Stockport, one of the ten districts in 
Greater Manchester, UK. Census data provide aggregated information on demo-
graphic attributes such as persons per household, cars per household, unemployment, 
migration, long-term-illness. Their lowest level of aggregation are so called enumera-
tion districts. Also available are detailed geographical layers, among them streets, 
rivers, buildings, railway lines, shopping areas. Data are provided to the project by 
the partners Manchester University and Manchester Metropolitan University.  

Assume we are interested in enumeration districts with a high migration rate. We 
want to find out how those enumeration districts are characterized, and especially 
what distinguishes them from other enumeration districts not having a high migration 
rate. Spatial subgroup discovery helps to answer this question by searching the hy-
pothesis space for interesting deviation patterns with respect to the target attribute.  

The target attribute T is then high migration rate. A concept C found in the search 
is Enumeration districts with high unemployment crossed by a railway line. Note that 
this subgroup combines spatial and non-spatial features. The deviation pattern is that 
the proportion of districts satisfying the target T is higher in districts that satisfy pat-
tern C than in the overall population (p(T|C)>p(T)). 
 



 
Fig 1. Overview on subgroups found showing the subgroup description (left). Bottom right side 
shows a detail view for the overlap of the concept C (e.g. located near a railway line) and the 
target attribute T (high unemployment rate). The window on the right top plots p(T|C) against 
p(C) for the subgroup selected on the left and shows isolines as theoretically discussed in [8]. 

Another – this time purely spatial – subgroup found is Enumeration district 
crossed by motorway M60. This spatial subgroup induces a homogenous cluster tak-
ing the form of a physical spatial object. Spatial objects can often act as causal prox-
ies for causally relevant attributes not part of the search space. 

A third – this time non-spatial – subgroup found is Enumeration districts with low 
rate of households with 2 cars and low rate of married people. By spotting the sub-
group on the map we note that is a spatially inhomogeneous group, but with its center 
of gravity directed towards the center of Stockport. 

The way data mining results are presented to the user is essential for their appro-
priate interpretation. We use a combination of cartographic and non-cartographic 
displays linked together through simultaneous dynamic highlighting of the corre-
sponding parts. The user navigates in the list of subgroups (fig. 1), which are dynami-
cally highlighted in the map window (fig. 2). As a mapping tool, the SPIN!-platform 
integrates the CommonGIS system [1], whose strengths lies in the dynamic manipula-
tion of spatial statistical data. Figure 1 and 2 show an example for the migrant sce-
nario, where the subgroup discovery method reports a relation between districts with 
high migration rate and high-unemployment. 

 
Scalability Results. Spatial analysis is computationally demanding. In this section we 
summarize preliminary results on scalability. The simplest subgroup query provides 
all the information sufficient for the evaluation of all single relational successors of a 
set of single relational parent subgroup descriptions. These descriptions are con-



structed for one iteration step of specialization in the target object class including 
only attributes from this target class. Especially when the target object class contains 
many attributes that are used for descriptions of subgroups and the other (secondary) 
object classes contain much fewer attributes, these descriptions will constitute the 
main part of the search space. 
 
 

 
Fig. 2. Enumeration districts satisfying the subgroup description C (high unemployment rate 
and crossed by a railway line) are highlighted with a thicker black line. Enumeration districts 
also satisfying the target (high migration rate) are displayed in a lighter color. 

The performance requirements will strongly increase when multirelational subgroups 
are evaluated, because joins of several tables are needed. Two types of multirelational 
queries can be distinguished following two specialization possibilities. A multirela-
tional subgroup can be specialized by adding a further conjunctive selector to any of 
its concepts or by adding a further concept in the concept sequence via a new link. 
The multirelational case involving many new links still requires many dynamic joins 
of tables and is not generally scalable. 

The one-scan solution is nearly linear in the number of tuples in the one relational 
case (independent of the number of attributes, if this number is small thus that the 
cross table calculation is dominated by the organization of the scan. For many attrib-
utes, computation time is also proportional in the total number of discrete attribute 
values), and calculating sufficient statistics needs for large databases several orders 
less time than the version based on union operators which needs many scans. A de-



tailed analysis of computation times for the different query versions and types of 
multirelational applications is performed in a technical report [11]. 

A further optimisation is achieved by substituting the parallel cross table calcula-
tion in SQL by a stored procedure, which is run (as the SQL query) in the database. It 
sequentially scans the (product) table and incrementally updates the cells of the cross 
tables. We are currently evaluating the performance of this solution compared with 
the SQL implementation. The SQL implementation, however, is easy portable to 
other data base systems. Only some specific expressions (case statement) must be 
adapted. 

5 Related work 

Subgroup mining methods have been first extended for multirelational data by 
Wrobel [22]. SubgroupMiner allows flexible link conditions, an extended definition 
of multirelational subgroups including numeric targets, aggregate operations in links, 
spatial predicates, and is database integrated. 

Knobbe et al. [12] and Krogel et al. [14], although in a non-spatial domain, apply 
a static pre-processing step that transforms a multirelational representation into a 
single table. Then, standard data mining methods such as decision trees can be ap-
plied. Static pre-processing typically has the disadvantages summarized in sec. 2 and 
must be restricted to avoid generating impractically large propositional target data-
sets.  

Malerba and Lisi [17] apply an ILP approach for discovering association rules be-
tween spatial objects using first order logic (FOL) both for data and subgroup de-
scription language. They operate on a deductive relational database (based on Data-
log) that extracts data from a spatial database. This transformation includes the pre-
calculation of all spatial predicates, which as before ([12]) can be unnecessarily com-
plex. Also the logic-based approach cannot handle numeric attributes and needs dis-
cretizations of numerical attributes of (spatial) objects. On the other side, the expres-
sive power of Datalog allows to specify prior knowledge, e.g. in the form of rules or 
hierarchies. Thus the hypothesis language is in this respect more powerful than the 
hypothesis language in SubgroupMiner. In [17] the same UK census data set is used, 
as both approaches are developed within the scope of the IST-10536-SPIN! project 
[4]. 

In [12] it is pointed out that aggregations (count, min, avg, sum etc.) are more 
powerful than ILP approaches to propositionalisation, which typically induce binary 
features, expressed in FOL restricting to existence aggregates.  

Ester et al. [3] define neigborhood graphs and neighborhood indices as novel data 
structures useful for speeding up spatial queries, and show how several data mining 
methods can be built upon them. Koperski et al. [13] propose a two-level search for 
association rules, that first calculates coarse spatial approximations and performs 
more precise calculations to the result set of the first step. 

Several approaches to extend SQL to support mining operations have been pro-
posed, e.g. to derive sufficient statistics minimizing the number of scans [5]. Espe-
cially for association rules, a framework has been proposed to integrate the query for 



association rules in database queries [6]. For association rules, also architectures for 
coupling mining with relational database systems have been examined [21]. Siebes 
and Kersten [23] discuss approaches to optimize the interaction of subgroup mining 
(KESO) with DBMSs. While KESO still requires a large communication overhead 
between database system and mining tool, database integration for subgroup mining 
based on communicating sufficient aggregates has not been implemented before. 

6 Conclusion and Future Work 

Two-layer database integration of multirelational subgroup-mining search strategies 
has proven as an efficient and portable architecture. Scalability of subgroup mining 
for large datasets has been realized for single relational and multi-relational applica-
tions with a not complex relation graph. The complexity of a multirelational applica-
tion mainly depends of the number of links, the number of secondary attributes to be 
selected, the depth of the relation graph, and the aggregation operations. Scalability is 
also a problem, when several tables are very large. Some spatial predicates are expen-
sive to calculate. Then sometimes a grid for approximate (quick) spatial operations 
can be selected that is sufficiently accurate for data mining purposes.  

We are currently investigating caching options to combine static and dynamic 
links, so that links can be declared as static in the relation graph. The join results are 
stored and need not be calculated again. The specification of textual link conditions 
and predicates in the relation graph that are then embedded into a complex SQL 
query has proven as a powerful tool to construct multirelational spatial applications. 

Spatial analysis requires further advancements of subgroup mining systems. Basic 
subgroup mining methods discover correlations or dependencies between a target 
variable and explanatory variables. Spatial subgroups typically overlap with attribu-
tive subgroups. For the actionability of spatial subgroup mining results, it is important 
to analyze the causal relationships of these attributive and spatial variables. These 
relationships are analyzed by constraint-based Bayesian network techniques. Details 
of the causal analysis methods for subgroup mining are presented in [10].  
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