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Abstract. The aim of this paper is to present a strategy by which
a new philosophy for pattern classification, namely that pertaining to
Dissimilarity-Based Classifiers (DBCs), can be efficiently implemented.
This methodology, proposed by Duin1 and his co-authors (see [3], [4],
[5], [6], [8]), is a way of defining classifiers between the classes, and is
not based on the feature measurements of the individual patterns, but
rather on a suitable dissimilarity measure between them. The problem
with this strategy is, however, the need to compute, store and process
the inter-pattern dissimilarities for all the training samples, and thus, the
accuracy of the classifier designed in the dissimilarity space is dependent
on the methods used to achieve this. In this paper, we suggest a novel
strategy to enhance the computation for all families of DBCs. Rather
than compute, store and process the DBC based on the entire data set,
we advocate that the training set be first reduced into a smaller repre-
sentative subset. Also, rather than determine this subset on the basis of
random selection, or clustering etc., we advocate the use of a Prototype
Reduction Scheme (PRS), whose output yields the points to be utilized
by the DBC. Apart from utilizing PRSs, in the paper we also propose
simultaneously employing the Mahalanobis distance as the dissimilarity-
measurement criterion to increase the DBC’s classification accuracy. Our
experimental results demonstrate that the proposed mechanism increases
the classification accuracy when compared with the “conventional” ap-
proaches for samples involving real-life as well as artificial data sets.
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1 Introduction

The field of statistical Pattern Recognition[1], [2] has matured since its infancy
in the 1950’s, and the aspiration to enlarge the horizons has led to numerous
philosophically-new avenues of research. The fundamental questions tackled in-
volve (among others) increasing the accuracy of the classifier system, minimizing
the time required for training and testing, reducing the effects of the curse of
dimensionality, and reducing the effects of peculiar data distributions.

One of the most recent novel developments in this field is the concept of
Dissimilarity-Based Classifiers (DBCs) proposed by Duin and his co-authors (see
[3], [4], [5], [6], [8]). Philosophically, the motivation for DBCs is the following:
If we assume that “Similar” objects can be grouped together to form a class,
a “class” is nothing more than a set of these “similar” objects. Based on this
idea, Duin and his colleagues argue that the notion of proximity (similarity or
dissimilarity) is actually more fundamental than that of a feature or a class.
Indeed, it is probably more likely that the brain uses an intuitive DBC-based
methodology than that of taking measurements, inverting matrices etc. Thus,
DBCs are a way of defining classifiers between the classes, which are not based
on the feature measurements of the individual patterns, but rather on a suitable
dissimilarity measure between them. The advantage of this methodology is that
since it does not operate on the class-conditional distributions, the accuracy can
exceed the Bayes’ error bound - which is, in our opinion, remarkable2. Another
salient advantage of such a paradigm is that it does not have to confront the
problems associated with feature spaces such as the “curse of dimensionality”,
and the issue of estimating a large numbers of parameters. The problem with this
strategy is, however, the need to compute, store and process the inter-pattern
dissimilarities for (in the worst case) all the training samples, and thus, the
accuracy of the classifier designed in the dissimilarity space is dependent on the
methods used to achieve this.

A dissimilarity representation of a set of samples, T = {x1, · · · , xn}, is based
on pairwise comparisons and is expressed, for example, as an n×n dissimilarity
matrix3 DT,T [·, ·], where the subscripts of D represent the set of elements on
which the dissimilarities are evaluated. Thus each entry DT,T [i, j] corresponds
to the dissimilarity between the pairs of objects 〈xi, xj〉, xi, xj ∈ T . When it
concerns testing any object in the sample space, x, the latter is represented by
a vector of proximities δ(x, Z) to the objects in a specific set Z, which is used
for the testing purposes. Thus, if x = xi, and Z = T , δ(xi, T ) is the ith row
of DT,T [·, ·]. The principle behind DBCs is that a new (testing) sample z, if

2 In our opinion, the theory of DBCs is one of the major contributions to the field
of statistical PR in the last decade. Duin and his colleagues [3] have ventured to
call this paradigm a featureless approach to PR by insisting that there is a clear
distinction between feature-based and non-feature based approaches. We anticipate
that a lot of new research energy will be expended in this direction in the future.

3 If the dissimilarity is not stored, but rather computed when needed, it would be
more appropriate to regard it as a function DT,T (·, ·).
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represented by δ(z, T ), is classified to a specific class if it is sufficiently similar
to one or more objects within that class.

The problem we study in this paper deals with how DBCs between classes rep-
resented in this manner can be effectively computed. The families of strategies
investigated in this endeavour are many. First of all, by selecting a set of proto-
types or support vectors, the problem of dimension reduction can be drastically
simplified. In order to select such a representative set from the training set, the
authors of [4] discuss a number of methods such as random selections, the k-
centers method, and others which will be catalogued presently. Alternatively,
some work has also gone into the area of determining appropriate measures of
dissimilarity using measures such as various Lp Norms (including the Euclidean
and L0.8), the Hausdorff and Modified Hausdorff norm, and some traditional PR-
based measures such as those used in Template matching, and Correlation-based
analysis. These too which will be listed presently4.

1.1 Contributions of the Paper

We claim two modest contributions in this paper based on rigorous tests done
on both established benchmark artificial and real-life data sets:

1. First of all, we show that a PRS5 can also be used as a tool to achieve
an intermediate goal, namely, to minimize the number of samples that are
subsequently used in any DBC system. This subset, will, in turn be utilized to
design the classifier - which, as we shall argue, must be done in conjunction
with an appropriate dissimilarity measure. This, in itself, is novel to the field
when it concerns the applications of PRSs.

2. The second contribution of this paper is the fact that we have shown that
using second-order distance measures, such the Mahalanobis distance, to-
gether with appropriate PRS, has a distinct advantage when they are used
to implement the DBC.

2 Dissimilarity-Based Classification and Prototype
Reduction Schemes

2.1 Foundations of DBCs

Let T = {x1, · · · , xn} ∈ Rp be a set of n feature vectors in a p dimensional
space. We assume that T is a labeled data set, so that T can be decomposed
into, say, c subsets {T1, · · · , Tc} such that ∀i �= j:
(1) Ti = {x1, · · · , xni}, (2) n =

∑c
i=1 ni, (3) T =

⋃c
k=1 Tk, and (4) Ti ∩ Tj = φ.

Our goal is to design a DBC in an appropriate dissimilarity space constructed
with this training data set, and to classify an input sample z appropriately.

4 For want of a better term, DBCs enhanced with these prototype selection methods
and the latter distance measures, will be referred to as “conventional” schemes.

5 Bezdek et al [9], who have composed an excellent survey of the field, report that
there are “zillions!” of methods for finding prototypes (see page 1459 of [9]).
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To achieve this, we assume that from Ti, the training data of class ωi, we
extract a prototype set6, Yi, where,

(1)Yi =
{
y1, · · · , ymi

}
, and (2) m =

∑c
i=1 mi.

Every DBC assumes the use of a dissimilarity measure, d, computed from the
samples, where, d(xi, yj) represents the dissimilarity between two samples xi

and yj . Since, d, is required to be nonnegative, reflexive and symmetric7:
d(xi, yj) ≥ 0 with d(xi, yj) = 0 if xi = yj , and d(xi, yj) = d(yj , xi).
The dissimilarity computed between T and Y leads to a n × m matrix,

DT,Y [i, j], where xi ∈ T and yj ∈ Y . Consequently, an object xi is represented
as a column vector as following :

[d(xi, y1), d(xi, y2), · · · , d(xi, ym)]T , 1 ≤ i ≤ n. (1)

Here, we define the dissimilarity matrix DT,Y [·, ·] to represent a dissimilarity
space on which the p-dimensional object, x, given in the feature space, is repre-
sented as an m-dimensional vector δ(x, Y ), where if x = xi, δ(xi, Y ) is the ith

row of DT,Y [·, ·]. In this paper, the column vector δ(x, Y ) is simply denoted by
δY (x), where the latter is an m-dimensional vector, while x is p-dimensional.

For a training set {xi}n
i=1, and an evaluation sample z, the modified training

set and sample now become {δY (xi)}n
i=1 and δY (z), respectively. From this

perspective, we can see that the dissimilarity representation can be considered
as a mapping by which any arbitrary x is translated into δY (x), and thus, if m
is selected sufficiently small (i.e., m << p), we are essentially working in a space
with much smaller dimensions. The literature reports the use of many traditional
decision classifiers including k -NN rule and the linear/quadratic normal-density-
based classifiers to the task of classifying z using δY (z) in the dissimilarity space.

2.2 Prototype Selection Methods for DBCs

We first consider the reported methods [6], [7], [8] by which each Ti is pruned
to yield a set of representative prototypes, Yi, where, without loss of generality
|Yi| < |Ti|. The intention is to guarantee a good tradeoff between the recognition
accuracy and the computational complexity when the DBC is built on DT,Y (·, ·)
rather than DT,T (·, ·). The reported comparison of [8] has been performed from
the perspective of the resultant error rates and the the number of prototypes
obtained. The experiments were conducted with seven artificial and real-life
data sets. Eight selection methods employed for the experiments were Random,
Random C, KCentres, ModeeSeek, LinProg, PeatSeal, KCentres-LP, and EdiCon.
In the interest of completeness, we briefly explain below (using the notation
introduced above) the methods that are pertinent to our present study.

1. Random : This method involves a random selection of m samples from the
training data set T .

6 Since we are invoking a PRS to obtain Yi from Ti, we do not require that Yi ⊆ Ti.
Rather Yi may be created or selected from Ti, and its computation may also involve
the other sets, Tj , j �= i.

7 Note that d(·, ·) need not be a metric [8].
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2. RandomC : This method involves a random selection of mi samples per class,
ωi, from Ti.

3. KCentres : This method8 consists of a procedure that is applied to each
class separately. For each class ωi, the algorithm is invoked so as to choose
mi samples which are “evenly” distributed with respect to the dissimilarity
matrix DTi,Ti [·, ·]. The algorithm can be summarized as follows:
(a) Select an initial set Yi =

{
y1, · · · , ymi

}
consisting of mi objects, e.g.

randomly chosen from Ti.
(b) For each x ∈ Ti, find its nearest neighbor in Yi. Let Nj, j = 1, · · · , mi, be

a subset of Ti consisting of objects that yield the same nearest neighbor
yj in Yi. This means that Ti = ∪mi

j=1Nj .
(c) For each Nj, find its center cj , which is the object for which the maximum

distance to all other objects in Nj is minimum (this value is called the
radius of Nj).

(d) For each center cj , if cj �= yj , then replace yj by cj in Yi. If any replace-
ment is done, then return to Step (b). Otherwise exit.

(e) Return the final representation set Y consisting of all the final sets Yi.

From the experimental results of [8], the authors seem to have deliberated
that systematic approaches lead to better results than those which rely on ran-
dom selection, especially when the number of prototypes is small. Furthermore,
although there is no single winner (inasmuch as the results depend on the char-
acteristics of the data), they indicate that, in general, the KCentres works well.

The details of the other methods (see [8]) such as ModeSeek, FeatSel, LinProg,
KCentres-LP, and EdiCon are omitted here as they are not directly related to
the premise of our work. Whereas our present work and the above three methods
pursue a pruning in the original feature space, the methods omitted here attempt
the same in the dissimilarity space.

2.3 Dissimilarity Measures Used in DBCs

Fundamental to DBCs is the measure used to quantify the dissimilarity between
two vectors9. The work in [8] reports extensive experiments conducted using
various dissimilarity measures (see Table 2 of [8]). A list of these measures where
we quantify the dissimilarity between v and w ∈ Rq, is given below:

1. City Block Norm : D1 =
∑q

i=1 |vi − wi|.
2. Euclidean Norm : DE(orD2) =

√
(v − w)T (v − w).

3. Max Norm : Dmax = Maxi|vi − wi|.
4. Lp or Minkowski Norm : Dp = (

∑q
i=1 |vi − wi|p)1/p

, p ≥ 1, p �= 2.
5. Hausdorff Norm :

h(A, B) = max
a∈A

min
b∈B

‖a − b‖ (2)

8 This procedure is essentially identical to the k-means clustering algorithm per-
formed in a vector space, and is thus heavily dependent on the initialization.

9 The details of the binary, categorical, ordinal, symbolic and quantitative features
are omitted here, but can be found in [8].
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The measures which were tested in [8] essentially fall into three categories :
(a) The City Block, L0.8, Euclidean, and Max Norm, which are special cases of
the Lp metric for p = 1, 0.8, 2 and ∞ respectively, (b) The Hausdorff Norm, and
its variants, which involve Max-Min computations, and (c) Traditional pattern
recognition norms such as the Template matching and Correlation Norms. The
details of the other measures such as the Median and Cosine, are omitted here
in the interest of compactness, but can be found in [6].

2.4 State-of-the-Art DBC Optimization

Based on the above, in all brevity, we state that the state-of-the-art strategy
applicable for optimizing DBCs involves the following steps:

1. Select the representative set, Y , from the training set T by resorting to one
of the methods given in Section 2.2

2. ComputethedissimilaritymatrixDT,Y [·, ·],usingEq.(1), inwhicheach individ-
ual dissimilarity is computed using one of the measures described in Section 2.

3. For a testing sample z, compute a dissimilarity column vector, δY (z), by
using the same measure used in Step 2 above.

4. Achieve the classification based on invoking a classifier built in the dissimi-
larity space and operating on the dissimilarity vector δY (z).

2.5 State-of-the-Art Prototype Reduction Schemes

In non-parametric pattern classification which use the Nearest Neighbour (NN)
or the k−NN rule, each class is described using a set of sample prototypes, and
the class of an unknown vector is decided based on the identity of the closest
neighbour(s) which are found among all the prototypes.To reduce the number of
training vectors, various PRSs have been reported in the literature - two excellent
surveys are found in [9], [10]. Rather than embark on yet another survey of the
field, we mention here a few representative methods of the “zillions” that have
been reported. One of the first of its kind is the Condensed Nearest Neighbour
(CNN) rule [11]. The reduced set produced by the CNN, however, customar-
ily includes “interior” samples, which can be completely eliminated, without
altering the performance of the resultant classifier. Accordingly, other methods
have been proposed successively, such as the Reduced Nearest Neighbour (RNN)
rule, the Prototypes for Nearest Neighbour (PNN) classifiers [13], the Selective
Nearest Neighbour (SNN) rule, two modifications of the CNN [17] Neighbour
(ENN) rule and the non-parametric data reduction method [12]. Besides these,
the Vector Quantization (VQ) and the Bootstrap [17] techniques and Support
Vector Machines (SVM) [15] have also been reported as being extremely effective
approaches to data reduction.

In selecting prototypes, vectors near the boundaries between the classes have
to be considered to be more significant, and the created prototypes need to be
adjusted towards the classification boundaries so as to yield a higher perfor-
mance. Based on this philosophy, we recently proposed a new hybrid approach
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that involved two distinct phases, namely, selecting and adjusting [18], [19]. To
overcome the computational burden for “large” datasets, we also proposed a
recursive PRS mechanism in [20]. In [20], the data set is sub-divided recursively
into smaller subsets to filter out the “useless” internal points. Subsequently, a
conventional PRS processes the smaller subsets of data points that effectively
sample the entire space to yield subsets of prototypes – one set of prototypes
for each subset. The prototypes, which result from each subset, are then coa-
lesced, and processed again by the PRS to yield more refined prototypes. In this
manner, prototypes which are in the interior of the Voronoi boundaries, and are
thus ineffective in the classification, are eliminated at the subsequent invoca-
tions of the PRS. As a result, the processing time of the PRS is significantly
reduced.

Changing now the emphasis, we observe that with regard to designing classi-
fiers, PRS can be employed as a pre-processing module to reduce the data set
into a smaller representative subset, and have thus been reported to optimize
the design of KNS classifiers in [21], [22]. The details of these are omitted here
as they are irrelevant.

3 Proposed Optimization of DBC’s

We have already seen (in Section 2) that the two fundamental avenues by which
DBCs can be optimized involve those of reducing the size of T 10, and determining
a suitable dissimilarity measure. The drawbacks which the reported methods
have, are the following:

1. The reported methods reduce the set T (to design Y ) by merely selecting
elements from the former.

2. When the reported methods compute the dissimilarity measure between two
vectors, they ignore the second-order properties of the data.

With regard to reducing the size of the representative points, rather than de-
ciding to discard or retain the training points, we permit the user the choice of
either selecting some of the training samples using methods such as the CNN, or
creating a smaller set of samples using the methods such as those advocated in
the PNN, VQ, and HYB. This reduced set effectively serves as a new “represen-
tative” set for the dissimilarity representation. Additionally, we also permit the
user to migrate the resultant set by an LVQ3-type method to further enhance
the quality of the reduced samples. To investigate the computational advantage
gained by resorting to such a PRS preprocessing phase, we observe, first of all,
that the number of the reduced prototypes is fractional compared to that of
the conventional ones, namely those obtained by random selection or clustering-
based operations. Once the reduced prototypes are obtained, the dissimilarity
matrix computation is significantly smaller since the computation is now done
for a much smaller set, i.e., for an n × m matrix, versus an n × n one.

10 In general, increasing the cardinality of the representative subset, drastically im-
proves the average classification accuracy of the resultant DBC.
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We propose to enhance DBC’s by modifying each of the above as follows:

1. Reduce the set T (to design Y ) by invoking a PRS on the former. The
advantages of doing this (over the methods given in Section 2.2) are:

(a) A PRS permits us to obtain Y by either selecting the representative set
or creating it.

(b) By choosing an appropriate PRS, we are able to obtain the representative
samples of each class Yi by also including the information in the other
Yj ’s (j �= i). This is especially true of the classes of PRSs which also
invoke LV Q3-type perturbations on the representative points.

(c) Most PRSs are designed with the specific task of determining the rep-
resentative subset of points so as to maximize the class-discriminating
properties. But incorporating such information in the subset used for
DBCs, we believe that the resultant optimized DBC will be superior to
the corresponding DBC which excludes this information. This is, indeed,
our experience.

2. Compute the dissimilarity measure between two vectors using the Maha-
lanobis distance, where the estimated covariance matrix of each class is ob-
tained by using the training samples of that class in T . The advantages of
doing this (over the methods given in Section 2.3) are:

(a) Defining a well-discriminating dissimilarity measure for a non-trivial
learning problem has always been known to be difficult. Indeed, design-
ing such a measure in a DBC is equivalent to defining good features in
a traditional feature-based classification problem. If a good measure is
found and the training set T is representative, the authors of [8] report
that the performance of the DBC can be enhanced.

(b) The dissimilarity measures used in [8] (refereed to in Section 2.3) do not
utilize the actual spread of the data in the feature space. It is well known
in the field that computing distances and achieving classification using the
available covariance information can lead to results superior to those ob-
tained by ignoring this information. We intend to take advantage of this.

(c) Although the reduced set of points Y is used in the DBC, the information
concerning the spread of the original data points is contained in the sets
{Ti}. Thus, we believe that we can take advantage of this information
by using the DBC obtained by the subset of points in {Yi}, but by
simultaneously incorporating the variance information contained in the
original sets, the Ti’s.

(d) The basic premise for the DBC methodology is that since it does not
operate on the class-conditional distributions, the accuracy can exceed
the Bayes’ errors bound. However, in attempting to achieve this, the
state-of-the-art DBC methods ignore the information contained in the
class-conditional distributions. Since this information can be summarized
in the moments, we intend to use the second-order moments to optimize
the design of DBCs. This is done, in our present scheme, by incorporating
it in the computation of the Mahalanobis distances.
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(e) Recently, Horikawa [7] experimented on the properties of NN classifiers
for high-dimensional patterns in DBCs. From the experimental results
reported, the author demonstrated that the performance of the NN clas-
sifiers constructed with DBCs increases with the dimensionality of the
pattern when the categorical pattern distributions are different from each
other. This is, indeed, what we want to take advantage of incorporating
this distinct information via the Mahalanobis distance computations.

Based on the above, our proposed strategy applicable for optimizing DBCs
involves the following steps:

1. From each Ti compute the estimate of Σi, the covariance matrix of the class
conditional density.

2. Select the representative set Y from the training set T by resorting to one
of the PRS methods given in Section 2.5.

3. Compute the dissimilarity matrix DT,Y [·, ·], using Eq. (1), in which each
individual dissimilarity is computed as the Mahalanobis distance evaluated
using the value for Σi estimated in Step 2 above.

4. For a testing sample z, compute a dissimilarity column vector, δY (z), by
using the Mahalanobis distance used in Step 3 above.

5. Achieve the classification based on invoking a classifier built in the dissimi-
larity space and operating on this dissimilarity vector, δY (z).

4 Experimental Results : Artificial/Real-Life Data Sets

Experimental Data: The proposed method has been tested and compared with
the conventional ones. This was done by performing experiments on a number
of data sets. The sample vectors of each data set are divided into two subsets
of equal size, and used for training and validation, alternately. The training set
was used for computing the prototypes and the respective covariance matri-
ces, and the test set was used for evaluating the quality of the corresponding
classifier.

In our experiments, the three artificial data sets “Random”, “Non normal 2”,
and “Non linear 2” were generated with different sizes of testing and training
sets of cardinality 400, 1,000, and 1,000 respectively. The data set described as
“Random” is generated randomly with a uniform distribution, but with irregu-
lar decision boundaries. In this case, the points are generated uniformly, and the
assignment of the points to the respective classes is achieved by artificially as-
signing them to the region they fall into, as per the manually created “irregular
decision boundary”.

The data set named “Non normal2”, which has also been employed as a bench-
mark experimental data set [1] for numerous experimental set-ups was generated
from a mixture of four 8-dimensional Gaussian distributions.

The data set named “Non linear2”, which has a strong non-linearity at its
boundary, was generated artificially from a mixture of four variables as follows:
p1(x) = {x1,

1
2x2

1 +y1}, p2(x) = {x2,− 1
2x2

2 +y2}, where x1, x2, y1, y2 are normal
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random variables whose means and variances are (0, 10), (10, 5), (3, 10) and
(20, 5), respectively. The total number of vectors per class is 500.

On the other hand, the data sets “Iris2”, “Ionosphere” (in short, “Iono”),
“Sonar”, “Arrhythmia” (in short, “Arrhy”) and “Adult4”, which are real bench-
mark data sets, are cited from the UCI Machine Learning Repository11. Their
details can be found in the latter site, and also in [17].

In the above, all of the vectors were normalized to be within the range [−1, 1]
using their standard deviations, and the data set for class j was randomly split
into two subsets, Tj ,t and Tj ,V , of equal size. One of them was used for choosing
the initial prototypes and training the classifiers, and the other one was used in
their validation (or testing). Later, the role of these sets were interchanged.

Experimental Parameters: As in all algorithms, choosing the parameters12

of the PRS and the conventional prototype selection schemes play an important
role in determining the quality of the solution. The parameters for the reported
conventional schemes such as the RAND, RAND C, and KCentres (the methods
referred to as Random, RandomC and KCentres in Section 2.2 respectively) and
the PRS-based schemes such as the CNN, PNN, and HYB, are summarized as:

1. Parameters for the RAND, RAND C, and KCentres : In RAND, a total
of 10 % of the samples were randomly selected from the original training data
set. In RAND C, for each class, 10 % of the samples were randomly selected
as prototypes. In KCentres, initially, 10 % of the samples (for each class) were
arbitrarily chosen as the initial cluster centers, after which a k-means clustering
algorithm was invoked, as explained earlier.

2. Parameters for the CNN and the PNN : None.
3. Parameters for the HYB : The initial code book size was determined by the

SVM. In this experiment, we hybridized the SVM and an LVQ3-type algorithm.
The parameters for the LVQ3 learning, such as the α, the ε, the window length,
w , and the iteration length, η, were specified as described in [18].

Selecting Prototype Vectors: In order to evaluate the proposed classifica-
tion mechanisms, we first selected the prototype vectors from the experimental
data sets using the CNN, the PNN and the HYB algorithms. In the HYB, we
selected initial prototypes using a SVM algorithm. After this selection, we in-
voked a phase in which the optimal positions (i.e., with regard to classification)
were learned with an LVQ3-type scheme. For the SVM and LVQ3 programs, we
utilized publicly-available software packages13. Table 1 shows a comparison of
the number of prototype vectors extracted from the artificial and real-life data
sets using the CNN, PNN, and HYB methods.

11 http://www.ics.uci.edu/mlearn/MLRepository.html
12 The same parameters were used for both the artificial and real-life data sets.
13 These packages can be available from: http://www-ai.cs.uni-dortmund.de/

SOFTWARE/SVM LIGHT/svm light.eng.html and
http://cochlea.hut.fi/research/
som lvq pak.shtml, respectively.
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Table 1. The number of prototype vectors extracted from experimental data sets using
the CNN, PNN, and HYB methods. The two values for each data set are the numbers
of prototype vectors obtained from the training and test subsets, respectively.

Dataset Dataset Whole Dataset Selected Prototypes (m1, m2)
Types Names (n1, n2) CNN PNN HYB

Artificial Random 200, 200 36, 30 30, 25 18, 15
Data Non normal2 500, 500 64, 66 56, 380 63, 57

Non linear2 500, 500 96, 109 87, 90 82, 58

Iris2 50, 50 15, 12 10, 7 6, 8
Real-life Ionosphere 176, 176 51, 42 37, 33 44, 46

Data Sonar 104, 104 52, 53 34, 33 53, 59
Arrhythmia 226, 226 32, 28 8, 7 65, 69

Adult4 4168, 4168 755, 752 659, 658 430, 448

From Table 1, for example, we see that the numbers of selected prototype
vectors of the “Random” dataset, (m1, m2), are (36, 30), (30, 25) and (18, 15),
respectively. Each of them is considerably smaller than the size of the original
data set. Using the selected vectors as a representative of the training data set, we
can significantly reduce the dimensionality of the dataset (and the consequential
computations) without degrading the performance. Once the reduced prototype
set Y = {y1, y2, · · · , ym}, is obtained, the dimensionality (and the classification
processing time) of the matrix DT,Y [·, ·] can be reduced into n × m, where the
dimensionality of the column vector is m, not n (e.g., 15 not 200).

Experimental Results: We report below the run-time characteristics of the
proposed algorithm for the artificial and real-life data sets as shown in Table 2,
where the ‘Wholeset’ approach represents the experimental results for the entire
original data sets, that is, DT,T [·, ·], without employing any selection method.
On the other hand, the results of the RAND, RAND C, and KCentres, and
the CNN, PNN, and HYB are obtained by calculating the dissimilarity matrix,
DT,Y [·, ·], using the representatives obtained with each respective method. Also,
each result is the averaged one for the training and the test sets, respectively.

Table 2 shows the DBC accuracy rates (%) of the classifiers designed with the
conventional prototype selection schemes, such as the RAND, RAND C, and
KCentres methods, on the artificial and real-life data sets, in which the dissim-
ilarity measure used is the Euclidean distance. It also presents the optimized
DBC accuracy rates (%) on the same data sets, in which the prototype selection
schemes are the PRS-based ones such as the CNN, PNN, and HYB methods,
which, as explained earlier, use the Mahalanobis distance.

A Comparison of Conventional DBCs and PRS-based Schemes: First of
all, it is worth mentioning that the data set “Adult4” possesses a noticeable class
imbalance14. Thus, although the number of prototypes obtained using the HYB
scheme are 430 and 448 for the training and test sets respectively, the number

14 For example, the sample points of two classes ω1 and ω2 of its training set are 3961
and 206, respectively.
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Table 2. The accuracy rates (%) of the DBCs for the artificial and real-life data sets.
The results reported concern the schemes designed with the conventional prototype
selection methods such as the RAND, RAND C, and KCentres methods which use the
Euclidean distance, and the optimized ones which use PRS-based schemes such as the
CNN, PNN, and HYB methods and the Mahalanobis distance. The other notation is
discussed in the text.

Dataset Dataset Conventional Schemes Proposed Schemes
Types Names Wholeset RAND RAND C KCentres CNN PNN HYB

Random 83.75 83.98 82.25 83.50 84.00 84.50 84.25
Artificial Non normal2 95.10 95.09 95.05 95.40 89.50 91.00 90.10

Non linear2 59.50 59.80 60.23 60.00 74.90 76.40 76.30

Iris2 77.00 76.90 71.00 83.00 90.00 88.00 88.00
Ionosphere 71.31 71.70 69.89 69.32 86.08 86.08 86.08

Real-life Sonar 60.10 58.61 56.11 55.29 70.19 69.23 69.71
Arrhythmia 92.92 87.23 85.40 82.31 92.92 92.92 95.13

Adult4 72.08 - 71.98 71.57 - - -

of prototypes in the second class is only about 10% of the number of prototypes
in the first. Since this precludes a meaningful comparison, we shall omit it in
further discussions. Suffice it to mention that the accuracy of the conventional
DBC (71.98%) is quite comparable to the accuracy for the ‘Wholeset’ (72.08%).

The overall remark that we can make from Table 2 is that, for every data set,
the accuracy of the conventionally optimized DBC is quite comparable to (and
sometimes even more accurate than) the accuracy when the ‘Wholeset’ is utilized.
This is true for both the artificial and real-life data sets. The reason for this in-
creased accuracy is that when a k-NN scheme is used in the dissimilarity space,
the effects of the outliers become much more prominent when the ‘Wholeset’ is
utilized. Thus, for the set “Iris2”, the accuracy for the DBC using the ‘Wholeset’
is 77%, and this increases to 83% if the KCentres method is used.

With regard to comparing the conventional and the new schemes, we again
refer the reader to Table 2. Generally speaking, we note that if we consider the
average accuracy obtained by using any of the conventional prototypes selection
schemes (namely, RAND, RAND C, KCentres), and compare them with the
average accuracy obtained by using any of the PRSs (namely, CNN, PNN, HYB),
the latter is almost always superior. Thus, to render the comparison more fair,
in what follows, we shall consider the best accuracy that a conventional scheme
yields, and compare it with the best accuracy that a PRS would yield.

Consider the artificial data set, “Non linear2”. In this case, the RAND C
method yields the best accuracy (60.23%) of the three conventional selection
methods when the Euclidean distance is used. The corresponding accuracy for
the optimized methods is obtained when the PNN is the PRS used, and it yields
an accuracy of 76.40%. Similarly, consider the real-life “‘Arrhythmia” data set.
In this case, the RAND method yields the best accuracy (87.23%) of the three
conventional selection methods when the Euclidean distance is used. The cor-
responding accuracy for the optimized methods is obtained when the HYB is
the PRS used, leading to an accuracy of 95.13%. The conclusion that we can
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make is that the optimized methods (the PRSs used in conjunction with the
Mahalanobis distance) are almost always superior (and sometimes, much more
superior) to the conventional schemes.

It is also interesting to note how a conventional selection scheme (such as the
RAND, RAND C, KCentres) would perform if the Mahalanobis distance is used.
The details of the results are omitted here in the interest of compactness, but
can be found in [17]. Here too, if the average accuracy of the schemes (RAND,
RAND C, KCentres) is compared to the average accuracy of the PRSs (CNN,
PNN and HYB), the latter is almost always the better option. The optimized
methods continue to be the superior ones if the best of the method is chosen in
each case, although the advantage is not so marked.

The general conclusion that we can make from the results is the following:
It is always advantageous to use a PRS to select the subset of representative
points, but when a PRS is used, one must not resort to using the Euclidean
distance to compute the dissimilarities. Rather, since the PRS implicitly takes
the data distribution into consideration, it must be used in conjunction with a
distribution-based dissimilarity measure, like the Mahalanobis distance.

From the above considerations, it is also worth mentioning that it is not so
easy to crown any one scheme to be superior to the others in the context of the
PRS method used. But a general observation seems to be that for artificial data
the PNN is the most advantageous, and the HYB seems to yield the best results
for the real-life data sets. From the other results given in [17], we also see that
the processing CPU-times can also be reduced significantly by employing a PRS
such as the CNN, PNN, and HYB without sacrificing the accuracy so much.

5 Conclusions

In this paper, we have suggested a novel strategy to enhance the computa-
tion for all families of Dissimilarity-Based Classifiers (DBCs). Rather than com-
pute, store and process the DBC based on the entire data set, we advocate
that the training set be first reduced into a smaller representative subset ob-
tained by invoking a Prototype Reduction Scheme (PRS), whose output yields
the points to be utilized by the DBC. Apart from utilizing PRSs, in the pa-
per we have also proposed simultaneously employing the Mahalanobis distance
as the dissimilarity-measurement criterion to increase the DBC’s classification
accuracy. Our experimental results demonstrate that the proposed mechanism
increases the classification accuracy when compared with the “conventional”
approaches for samples involving real-life as well as artificial data sets.
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