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Abstract. This paper presents two new ways of example weighting
for subgroup discovery. The proposed example weighting schemes
are applicable to any subgroup discovery algorithm that uses the
weighted covering approach to discover interesting subgroups in
data. To show the implications that the new example weighting
schemes have on subgroup discovery, they were implemented in
the APRIORI-SD algorithm. ROC analysis was then used to study
their behavior, and the behavior of APRIORI-SD’s original exam-
ple weighting scheme, both theoretically and practically, by appli-
cation on the UK Traffic challenge data set. The findings show that
the proposed example weighting schemes are a valid alternative to
APRIORI-SD’s original example weighting scheme when the goal is
to discover fewer subgroups that are either small and highly accurate
or large and less accurate.

1 INTRODUCTION

A subgroup discovery task can be defined as follows: given a pop-
ulation of individuals and a property of those individuals we are in-
terested in, find population subgroups that are statistically ‘most in-
teresting’, e.g., are as large as possible and have the most unusual
statistical (distributional) characteristics with respect to the property
of interest [15].

Many algorithms for discovering such subgroups have been devel-
oped in the last couple of decades [7, 15, 4, 6, 10]. Differently from
the older subgroup discovery algorithms such as EXPLORA [7] or
MIDOS [15], the new algorithms (SD [4], CN2-SD [10], APRIORI-
SD [6]) all tend to use the example weighting (or weighted covering
of examples) to discover interesting subgroups in the data.

In recent years ROC (Receiver Operating Characteristic) analy-
sis [13] has gained much attention in data mining and has proved
to be a useful tool for analyzing the behavior of subgroup discovery
algorithms [2, 3].

This paper uses ROC analysis to investigate example weighting in
subgroup discovery and presents two new ways of example weight-
ing. The proposed example weighting schemes are applicable to
any subgroup discovery algorithm that uses the weighted covering
approach to discover interesting subgroups in data [6, 10, 4]. The
APRIORI-SD algorithm is used as an implementation platform to
show the implications that the new example weighting schemes have
on subgroup discovery. ROC analysis was then used to study their be-
havior, and the behavior of APRIORI-SD’s original example weight-
ing scheme, both theoretically and practically, by application on the
UK Traffic challenge data set.
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This paper is organized as follows. In Section 2 the background
for this work is briefly explained: the APRIORI-SD subgroup dis-
covery algorithm with emphasis on the post-processing step of se-
lecting the most interesting subgroups by using the weighted cover-
ing approach. Section 3 presents the theoretical analysis of example
weighting using ROC isometrics [2, 3] together with the proposal of
two new weighting schemes. In Section 4 the two weighting schemes
are shown “in action”, applied to a real-life data set. The results are
depicted in ROC space and their characteristics discussed. Section 5
concludes by summarizing the findings and giving directions for fur-
ther work.

2 BACKGROUND: THE APRIORI-SD
ALGORITHM

This section presents the backgrounds for our work. We describe the
APRIORI-SD subgroup discovery algorithm [6] by briefly describ-
ing the algorithms from which it was derived – the association rule
learner APRIORI [1] and the classification rule learner APRIORI-
C [5] – together with the modifications needed to transform these
algorithms into APRIORI-SD.

2.1 Association rule basics

The very basics of association rules are presented here together with
a brief description of the relation between association and classifica-
tion rules.

APRIORI [1] is perhaps the most well known association rule
learning algorithm that was extensively studied, adopted to other ar-
eas of machine learning and data mining, and successfully applied in
many problem domains. This is why it will not be described in detail
here; just the basics of association rules will be given.

An association rule has the following form:

X → Y (1)

whereX, Y ⊂ I, X andY are itemsets, and I is the set of all items.
The quality of each association rule is defined by itsconfidence

andsupport. Confidenceof a rule is an estimate of the conditional
probability ofY givenX: p(Y |X). Supportof a rule is an estimate
of the probability of itemsetX∪Y : p(XY ). Confidence and support
are computed as follows:

Confidence(X → Y ) =
n(XY )

n(X)
=

p(XY )

p(X)
= p(Y |X) (2)

Support(X → Y ) =
n(XY )

N
= p(XY ) (3)



wheren(X) is the number of transactions that include itemsetX,
n(XY ) is the number of transactions that include both itemsetsX
andY , andN is the number of all the transactions (p(.) are the cor-
responding probabilities).

In the standard rule learning terminology, items are features (at-
tribute values) and itemsets are conjunctions of features. In classifi-
cation rules the right-hand side (Y ) of a rule consists always of the
class value and the left-hand side (X) is the conjunction of attribute
value pairs. Confidencep(Y |X) in association rule learning is called
rule accuracy in classification rule learning.

2.2 The APRIORI-C algorithm

Here the adaptation of the association rule learner APRIORI to the
classification rule learner APRIORI-C is briefly described.

The idea of using association rules for classification has been pre-
sented in [11]. The main advantage of APRIORI-C over its predeces-
sors is lower memory consumption, decreased time complexity and
improved understandability of results. The reader can find a detailed
description of the APRIORI-C algorithm in [5]. We describe here
just the parts of APRIORI-C that are essential for the understanding
of the derived APRIORI-SD algorithm.

The APRIORI-C classification rule learning algorithm is derived
from the association rule learning algorithm APRIORI which was
adapted for classification purposes by implementing the following
steps: (1) discretization of continuous attributes, (2) binarization of
all (discrete) attributes, (3) running the APRIORI algorithm by taking
in consideration only rules whose right-hand side consists of a single
item, representing a value of the class attribute, (4) post-processing
this set of rules to select the best among them and (5) using these
rules to classify unclassified examples.

These steps of the APRIORI-C algorithm, as well as the ap-
proaches to feature subset selection, are described in detail in [5].
Here we describe just the fourth step, the post-processing of rules as
it is crucial for the understanding of the derived APRIORI-SD algo-
rithm.

2.2.1 Post-processing by rule subset selection

The APRIORI-C algorithm induces rules according to the parameters
minimal confidenceandminimal supportof a rule [5]. The setting of
these two parameters is often such that the algorithm induces a large
number of rules, which hinders the understandability of the induced
ruleset. A way to avoid this problem is to select just some best rules
among all the induced rules. APRIORI-C has three ways of selecting
such best rules:

UseN best rules.The algorithm first selects the best rule (the rule
having the highest support), then eliminates all the covered exam-
ples, sorts the remaining rules according to support and repeats
this procedure. The procedure is repeated untilN rules2 are se-
lected or there are no more rules to select or there are no more
examples to cover. The algorithm then stops and returns the clas-
sifier in the form of an IF-THEN-ELSE rule list.

UseN best rules for each class.The algorithm behaves in a sim-
ilar way as in the ‘useN best rules’ case, selectingN best rules
for each class (if so many rules exist for each class). This way
the rules for the minority class will also find their way into the
classifier.

2 N is a user defined parameter.

Use example weighting to select the best rules.The algorithm
again behaves in a similar way as ‘useN best rules’. The dif-
ference is that covered examples are not eliminated, but instead
their weights are decreased. They are then eliminated when their
weight falls below a certain threshold (e.g., when an example has
been covered more thank times3). The details of the weighting
scheme are given in Section 2.3, describing APRIORI-SD.

2.3 APRIORI-SD

The main guidelines for adapting the classification rule learning al-
gorithm APRIORI-C to the subgroup discovery algorithm APRIORI-
SD are presented here. The details about the APRIORI-SD algorithm
can be found in [6].

The main modifications of the APRIORI-C algorithm, making it
appropriate for subgroup discovery, involve the implementation of:

• a new weighting scheme in post-processing,
• a different rule quality function (the weighted relative accuracy)

and
• the probabilistic classification of unclassified examples.

The description of the probabilistic classification of unclassified
examples is omitted here as it is not necessary for the understanding
of the rest of this paper. The complete description of APRIORI-SD
can be found in [6].

2.3.1 Post-processing procedure

The post-processing procedure of APRIORI-SD is performed as fol-
lows:

repeat
- sort rules from best to worst in terms of

the weighted relative accuracy measure
(see Sections 2.3.3 and 2.3.4)

- decrease the weights of covered examples
(see Section 2.3.2)

until
- there are no more examples to cover

OR
- there are no more ‘good’ rules

2.3.2 Example weighting in best rule selection

In the ‘use example weighting to select best rules’ post-processing
method of APRIORI-C described in Section 2.2.1, the examples
covered by the current best rule are not eliminated; instead they are
re-weighted.

The weighting scheme treats examples in such a way that covered
examples are not deleted when the currently ‘best’ rule is selected in
the post-processing step of the algorithm. Instead, each time a rule
is selected, the algorithm stores with each example a count of how
many times (with how many rules) the example has been covered so
far. Initial weights of all examplesej equal 1,w(ej , 0) = 1, which
denotes that the example has not been covered by any rule, meaning
‘among the available rules select a rule which covers this example,
as this example has not been covered by other rules’, while lower
weights mean ‘do not try too hard on this example’.

3 The default value ofk = 5 was used throughout this paper.



Weights of examples covered by the selected rule decrease accord-
ing to the formulaw(ej , i) = 1

i+1
. In the first iteration all target class

examples are assigned the same weightw(ej , 0) = 1, while in the
following iterations the contributions of examples are inverse pro-
portional to their coverage by previously selected rules4. In this way
the examples already covered by one or more selected rules decrease
their weights while uncovered target class examples whose weights
have not been decreased will have a greater chance to be covered in
the following iterations.

2.3.3 The weighted relative accuracy measure

Weighted relative accuracy (WRAcc), proposed in [9] as an alterna-
tive to classification accuracy, is used in subgroup discovery to eval-
uate the quality of induced rules. We use it instead of support when
selecting the ‘best’ rules in the post-processing step.

We use the following notation. Letn(X) stand for the num-
ber of examples covered by a ruleX → Y , n(Y ) stand for the
number of examples of classY , and n(Y X) stand for the num-
ber of correctly classified examples (true positives). We usep(Y X)
etc. for the corresponding probabilities. Rule accuracy, or rule con-
fidence in the terminology of association rule learning, is defined as
Accuracy(X → Y ) = p(Y |X) = p(Y X)

p(X)
. Weighted relative accu-

racy [9, 14] is defined as follows.

WRAcc(X → Y ) = p(X).(p(Y |X)− p(Y )) (4)

Weighted relative accuracy consists of two components: gener-
ality p(X), and relative accuracy (p(Y |X) − p(Y )). The second
term, relative accuracy, is the accuracy gain relative to the fixed rule
true → Y . The latter rule predicts all instances to satisfyY ; rule
X → Y is only interesting if it improves upon this ‘default’ ac-
curacy. Another way of viewing relative accuracy is that it measures
the utility of connecting rule bodyX with a given rule headY . How-
ever, it is easy to obtain high relative accuracy with highly specific
rules, i.e., rules with low generalityp(X). To this end, generality is
used as a ‘weight’, so that weighted relative accuracy trades off gen-
erality of the rule (p(X), i.e., rule coverage) and relative accuracy
(p(Y |X) − p(Y )). All the probabilities in Equation 4 are estimated
with relative frequencies e.g.,p(X) = n(X)

N
, whereN is the number

of all instances.

2.3.4 Modified WRAcc with example weights.

The rule quality measureWRAccused in APRIORI-SD was fur-
ther modified to enable handling example weights, which provide
the means to consider different parts of the instance space with each
application of a selected rule (as described in Section 2.3.2).

The modifiedwWRAccmeasure is defined as follows:

wWRAcc(X → Y ) =
n′(X)

N ′

(
n′(Y X)

n′(X)
− n′(Y )

N ′

)
(5)

whereN ′ is the sum of the weights of all examples,n′(X) is the
sum of the weights of all covered examples, andn′(Y X) is the sum
of the weights of all correctly covered examples.

4 The examples are eventually deleted when the value ofi exceeds a certain
user-defined thresholdk.

3 ROC ANALYSIS OF EXAMPLE WEIGHTING

This section shows how the effects of theWRAccquality function to-
gether with example weighting in APRIORI-SD can be analyzed in
ROC (Receiver Operating Characteristic) space [13] using the guide-
lines from [2, 3].

The section consists of three parts. In the first part ROC space and
its usefulness for subgroup discovery is presented. The second part
presents the analysis of theWRAccquality function together with ex-
ample weighting in APRIORI-SD. In the third part two new weight-
ing schemes for APRIORI-SD are presented and analyzed in ROC
space.

3.1 ROC space and subgroup discovery

ROC space [13] is a 2-dimensional space that shows a classifier’s
(rule’s/subgroup’s in our case) performance in terms of false alarm
or false positive rateFPr = FP

TN+FP
= FP

Neg
(plotted on the

X-axis; ‘Neg’ standing for the number of all negative examples)
that needs to be minimized, and sensitivity ortrue positive rate
TPr = TP

TP+FN
= TP

Pos
(plotted on theY -axis; ‘Pos’ standing for

the number of all positive examples) that needs to be maximized. The
confusion matrix shown in Table 1 defines the notions of TP (true
positives), FP (false positives), TN (true negatives) and FN (false
negatives).

Table 1. Confusion matrix.

predicted predicted
positive negative

actual positive TP FN
actual negative FP TN

Applying the notation used to defineconfidenceandsupport(see

Equation 2)FPr andTPr can be expressed as:FPr = n(XY )
Neg

,

TPr = n(XY )
Pos

. In the ROC space, an appropriate tradeoff, deter-
mined by the expert, can be achieved by applying different algo-
rithms, as well as by different parameter settings of a selected data
mining algorithm or by taking into the account different misclassifi-
cation costs. The ROC space is appropriate for measuring the success
of subgroup discovery, since subgroups whoseTPr/FPr tradeoff
is close to the main diagonal (line connecting the points(0, 0) and
(1, 1) in the ROC space) can be discarded as insignificant. The reason
is that the rules withTPr/FPr on the main diagonal have the same
distribution of covered positives and negatives as the distribution in
the entire data set.

3.2 Analysis ofWRAccand example weighting

Following the guidelines from [2, 3], we used the isometrics in ROC
space to represent theWRAccquality function defined by Equation 4
in Section 2.3.3. A ROC isometric is a line in ROC space connecting
points with equal value of the quality function. In the case of the
WRAccfunction the ROC isometrics are parallel to the main diagonal
in ROC space.

In fact, the definition ofWRAcc(Equation 4) can be rewritten
in terms ofTPr and FPr as WRAcc(X → Y ) = p(Y ).(1 −
p(Y )).(TPr − FPr) [8], hence an iso–WRAcc–line is defined by
TPr = WRAcc(X→Y )

p(Y ).(1−p(Y ))
+ FPr .

In Figure 1 this main diagonal (line connecting the points(0, 0)
and(1, 1) in the ROC space) is denoted with a thicker line and rep-
resents the ROC isometric for the value0 of the WRAccfunction.



Figure 1. ROC isometrics for theWRAccquality function.

Points lying on this diagonal represent subgroups with the same dis-
tribution of positive and negative examples as in the entire data set.
Above the main diagonalWRAcchas a positive value, while below
it is negative. The further away a point is from the main diagonal
towards the point(1, 1) in ROC space, the higher the value of the
WRAccfunction in that point (we do not take into account points
with negativeWRAccas those points represent subgroups with the
proportion of positives that is smaller than that of the entire data set).

The point(1, 1) in ROC space is sometimes referred to as “ROC
heaven” because it represents the subgroup covering all the positives
and none of the negatives. It is also the point in whichWRAccreaches
its maximum value.

By usingWRAccas its quality function, APRIORI-SD tries to find
subgroups that are as far as possible from the main diagonal in ROC
space and at the same time as close as possible to the point(1, 1).

What happens when we take into consideration the example
weighting? Do the ROC isometrics in Figure 1 change? When we
add example weights to theWRAccfunction, we obtain the modi-
fied wWRAccfunction defined by Equation 5 in Section 2.3.4. All

three terms ofwWRAcc: n′(X)
N′ , n′(Y X)

n′(X)
and n′(Y )

N′ include example
weights both in the numerator and denominator of the fraction. In
this way when example weights are decreased, both the values of the
numerator and denominator decrease keeping the value ofwWRAcc
somehow ‘balanced’.

We can observe the effect of example weighting by analyzing the
wWRAccfunction after the discovery of the first rule. Equation 6
shows the right–hand side of Equation 5: thewWRAccfunction after
the weights of examples covered by the first rule have been decreased
from 1 to 1/2.

n(X)/2

N − n(X)/2

(
n(Y X)/2

n(X)/2
− n(Y )− n(Y X)/2

N − n(X)/2

)
(6)

Equation 6 shows that the number of examples covered by the
rule (n(X)) affects the angle of the iso–wWRAcc–lines: the more
examples covered, the lower the angle, and vice versa.

3.3 New example weighting schemes for
APRIORI-SD

Can we ‘push’wWRAccout of ‘balance’ and thus change its ROC
isometrics independently of rule coverage? Let’s see how this can
be done. The third term in the definition ofwWRAcc(Equation 5

in Section 2.3.4):n
′(Y )
N′ represents the portion of positive examples

(Y ) in the whole population. The problem is that when the example

weights change, the value of this term changes too keeping the equa-
tion ‘balanced’. Let’s see what happens if we replace this term by
the same term from the original definition ofWRAcc(Equation 4 in
Section 2.3.3):n(Y )

N
. The newwWRAcc’is defined as follows:

wWRAcc′(X → Y ) =
n′(X)

N ′

(
n′(Y X)

n′(X)
− n(Y )

N

)
(7)

By this term replacement we forcedwWRAcc’to reflect the im-
provement of a subgroup’s (weighted) accuracy with respect to the
accuracy of the default rule (true → Y ) in the original population.

The wWRAcc’is ‘unbalanced’ with respect to example weights
meaning that its ROC isometrics change when the example weights
change (independently of rule coverage) as shown in Figure 2.

Figure 2. ROC isometrics – the effect of weighting (just positive)
examples on thewWRAcc’quality function.

Figure 2 shows how ROC isometric lines change from solid to
dashed to dotted when the weights of (positive5) examples decrease
(thick lines in the figure denote ROC isometrics for the value0 of
thewWRAcc’function). In general, while still remaining parallel, the
angle of ROC isometrics forwWRAcc’increases with the decrease of
the weights of (positive) examples.

The newwWRAcc’quality function gives way to two new weight-
ing schemes that can be used in conjunction with it.

3.3.1 wWRAcc’ by weighting just positive examples

The weighting scheme described here is very similar to the one used
by the original APRIORI-SD algorithm (see Section 2.3.2) with the
difference that in this new scheme only the covered positive examples
are re-weighted. The original APRIORI-SD’s weighting scheme re-
weights all the covered examples. The behavior of this new weighting
scheme in conjunction with thewWRAcc’quality function is shown
in Figure 2. APRIORI-SD’s weighting scheme would behave very
similarly to the new scheme if used in conjunction with thewWRAcc’
function with the difference that the increase of angle of the ROC iso-
metrics with the decrease of example weights would be less drastic
then in the case of the new weighting scheme.

As seen in Figure 2, APRIORI-SD with this weighting scheme
will tend to discover more accurate subgroups – ROC isometrics
tend to become more and more vertical with the decrease of example
weights thus ‘pushing’ the search to an area that contains subgroups
with few negative examples.

5 We will see later, in Section 3.3.2, that by decreasing the weights of negative
examples the picture changes. However, by decreasing the weights of all
covered examples we decrease the weights of mostly positives, because the
algorithm is trying hard to cover as much positives and at the same time as
few negatives as possible.



3.3.2 wWRAcc’ by weighting just negative examples

The behavior of the weighting scheme described here is shown in
Figure 3. The figure shows that by decreasing the weights only to
the covered negative examples, the angle of the ROC isometrics de-
creases with the decrease of example weights behaving just the op-
posite as the previous weighting scheme.

Figure 3. ROC isometrics – the effect of weighting just negative examples
on thewWRAcc’quality function.

It can be clearly seen in Figure 3 that by decreasing the weights
of covered negative examples the lower angle of the ROC isometrics
allows the algorithm to find suboptimal subgroups – subgroups with
positivewWRAcc’lying under the main diagonal in the ROC space.

Figure 4. ROC isometrics – the corrected weighting of negatives and its
effect on thewWRAcc’quality function.

Since we wanted subgroups with positive value of the new quality
function to always lie above the main diagonal we had to ‘push’ the
ROC isometrics (dashed lines in Figure 3) above it. We achieved this
by subtracting the value ofwWRAcc’for the default rule (true → Y )
from thewWRAcc’value of the subgroup6. The correctedwWRAcc’
is expressed as follows:

wWRAcc′(X → Y )− wWRAcc′(true → Y ) (8)

Its behavior is shown in Figure 4. As shown by this figure, APRIORI-
SD with this weighting scheme will tend to discover larger subgroups
– ROC isometrics tend to become more and more horizontal with the

6 Note that we could have achieved the same effect by changing the threshold
from 0 to wWRAcc′(true → Y ).

decrease of example weights thus ‘pushing’ the search to an area that
contains subgroups which cover a large number of examples.

4 EXAMPLE WEIGHTING IN ACTION

After analyzing the proposed weighting schemes theoretically in
ROC space (Section 3) this section presents their application in prac-
tice – on a real-life data set.

This section consists of three parts. The first part describes the
real-life data set used for the analysis – the UK Traffic challenge
data set. In the second part the parameters of the algorithm and per-
formance measures used are described. The third part presents the
results of the analysis and provides a brief interpretation.

4.1 Description of the data set

The real-life data set used in our experiments is the UK Traffic chal-
lenge data set [12]. This data set is a sample of a larger and more
complete relational data set - the UK Traffic data set. Both data sets
are briefly described below.

4.1.1 The UK Traffic data set

The UK Traffic data set includes the records of all the accidents that
happened on the roads of Great Britain between years 1979 and 1999.
It is a relational data set consisting of 3 related sets of data: the ACCI-
DENT data, the VEHICLE data and the CASUALTY data. The AC-
CIDENT data consists of the records of all accidents that happened
in the given time period; VEHICLE data includes data about all the
vehicles involved in these accidents; CASUALTY data includes the
data about all the casualties involved in the accidents. Consider the
following example: ‘Two vehicles crashed in a traffic accident and
three people were seriously injured in the crash’. In terms of the
TRAFFIC data set this is recorded as one record in the ACCIDENT
set, two records in the VEHICLE set and three records in the CA-
SUALTY set. Every separate set is described by around 20 attributes
and consists of more than 5 million records.

4.1.2 The UK Traffic challenge data set

The task of the challenge was to produce classification models (in
our case subgroup descriptions) to predict skidding and overturn-
ing for accidents from the UK Traffic data set [12]. As the class
attributeSkidding and Overturningappears in the VEHICLE data
table, the data tables ACCIDENT and VEHICLE were merged in
order to make this a simple non-relational problem. Furthermore a
sample of 5940 records from this merged data table was selected for
learning and another sample of 1585 records was selected for testing.
The class attributeSkidding and Overturninghas six possible values.
The meaning of these values and the distribution of the class values
in the training and test sets are shown in Table 2.

Table 2. The meaning and the distribution of classes in the UK Traffic
challenge data set.

Code Meaning of class value Train(%) Test(%)
0 No skidding, jack-knifing or overturning 64.26 64.67
1 Skidded 22.07 22.46
2 Skidded and overturned 7.27 6.88
3 Jack-knifed 0.20 0.06
4 Jack-knifed and overturned 0.19 0.44
5 Overturned 6.01 5.49



4.2 Application of APRIORI-SD

We applied APRIORI-SD with default parameters (minimal confi-
dence= 0, minimal support= 0.0001, minimal WRAcc= 0, k = 5
andmaximal no. of terms in a subgroup= 10) on the training set of
5940 examples. The algorithm was run 18 times (6 times to discover
subgroups for each of the class values – one was always set as posi-
tive and the other five as negative; 3 times for each of the weighting
schemes).

The performance measures used in the comparisons were: the
number of discovered subgroups on the training set, the average ac-
curacy of a subgroup on the test set (of 1585 examples) and the aver-
age size of a subgroup on the (same) test set7.

4.3 Results

The results are shown in Table 3 and confirm the theoretical findings
from Section 3. We can see from this table that when usingwWRAcc’
and weighting just positive examples, the algorithm finds subgroups
that are on the average smaller and more accurate. On the other hand,
by using (corrected)wWRAcc’and weighting just negative examples,
on the average larger and less accurate subgroups are discovered by
the algorithm.

Another thing that can be seen from Table 3 is that by using
APRIORI-SD’s original weighting scheme, more subgroups are dis-
covered than when one of the new weighting scheme is used.

Table 3. The results of applying APRIORI-SD with different weighting
schemes on the UK Traffic challenge data.

performance measures

Accuracy Size #Subgroups

Code 2 + − 2 + − 2 + −
0 0.875 0.901 0.8230.231 0.213 0.402112 91 19
1 0.449 0.502 0.3970.101 0.076 0.18383 74 12
2 0.101 0.124 0.0900.050 0.041 0.10120 15 6
3 0.023 0.023 — 0.005 0.005 — 3 3 0
4 0.035 0.040 0.0280.011 0.007 0.0196 5 2
5 0.203 0.251 0.1830.088 0.076 0.20531 25 8

2 – original APRIORI-SD’s weighting scheme
+ – wWRAcc’by weighting just positive examples
− – wWRAcc’by weighting just negative examples

5 CONCLUSIONS

Following the ideas presented in [2, 3] we used ROC analysis to
study the behavior of APRIORI-SD’s example weighting scheme.
We proposed two new weighting schemes, implemented them in
APRIORI-SD and studied their behavior both theoretically by means
of ROC analysis and practically by application to a real-life data set.

The theoretical studies of the new weighting schemes point out
that while the first scheme (wWRAcc’by weighting just positive ex-
amples) restricts to the search of highly accurate subgroups, the sec-
ond one (wWRAcc’by weighting just negative examples) restricts to
the search of highly general subgroups.

The results of the application to a real-life data set confirm the
theoretical findings in practice. Moreover, the practical results re-
fine the theoretical findings showing that the first weighting scheme
finds small, highly accurate subgroups, while the second weighting
scheme finds large, less accurate subgroups. Another finding dis-
covered in practice is that both new weighting schemes discover a

7 The accuracy and size of a single subgroup are computed as:
Accuracy=n(Y X)/n(X), Size=n(X)/N , where all the terms in the equa-
tions refer to numbers of examples in the test set.

smaller number of subgroups than APRIORI-SD’s original exam-
ple weighting scheme. Thus, we could say that the new weighting
schemes are more focused, while APRIORI-SD’s original weighting
scheme is more general.

We implemented the new weighting schemes in APRIORI-SD, but
they can be implemented in any subgroup discovery algorithm that
uses the weighted covering approach (e.g. SD [4] or CN2-SD [10]).

The implementation of the weighted schemes presented in this pa-
per in other subgroup discovery algorithms is left for further work.
Another issue for further work is the expert’s analysis of the ap-
proaches presented in this paper.
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[5] V. Jovanoski and N. Lavrǎc, ‘Classification rule learning with
APRIORI-C’, in Progress in Artificial Intelligence: Proceedings of
the Tenth Portuguese Conference on Artificial Intelligence, pp. 44–51,
Springer, (2001).
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weighted relative accuracy’, inProceedings of the Fourth European
Conference on Principles of Data Mining and Knowledge Discovery,
pp. 255–264, Springer, (2000).

[15] S. Wrobel, ‘An algorithm for multi-relational discovery of subgroups’,
in Proceedings of the First European Conference on Principles of Data
Mining and Knowledge Discovery, pp. 78–87, Springer, (1997).


