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Abstract. This paper investigates the implications of example weight-
ing in subgroup discovery by comparing three state-of-the-art subgroup
discovery algorithms, APRIORI-SD, CN2-SD, and SubgroupMiner on
a real-life data set. While both APRIORI-SD and CN2-SD use example
weighting in the process of subgroup discovery, SubgroupMiner does not.
Moreover, APRIORI-SD uses example weighting in the post-processing
step of selecting the ‘best’ rules, while CN2-SD uses example weighting
during rule induction. The results of the application of the three subgroup
discovery algorithms on a real-life data set — the UK Traffic challenge
data set are presented in the form of ROC curves showing that APRIORI-
SD slightly outperforms CN2-SD; both APRIORI-SD and CN2-SD are
good in finding small and highly accurate subgroups (describing minority
classes), while SubgroupMiner found larger and less accurate subgroups
(describing the majority class). We show by using ROC analysis that
these results are not surprising and can be attributed to example weight-
ing, that ‘pushes’ the search in the space of potential subgroups towards
discovering small and accurate subgroups.

1 Introduction

Standard rule learning algorithms are designed to construct classification and
prediction rules [13,2,3]. In addition to this area of machine learning, referred to
as supervised learning or predictive induction, developments in descriptive induc-
tion have recently gained much attention, in particular association rule learning
(e.g., the APRIORI association rule learning algorithm [1]), subgroup discovery
(e.g., the MIDOS subgroup discovery algorithm [5]), and other approaches to
non-classificatory induction.

As in the MIDOS approach, a subgroup discovery task can be defined as
follows: given a population of individuals and a property of those individuals
we are interested in, find population subgroups that are statistically ‘most in-
teresting’, e.g., are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest [5].

Some of the questions on how to adapt standard classification rule learning
approaches to subgroup discovery have already been addressed in [8,11] and



well-known rule learning algorithms APRIORI [1] and CN2 [2] have been adapted
to subgroup discovery. Both adapted algorithms, APRIORI-SD [8] and CN2-
SD [11] use example weighting in the process of subgroup discovery.

This paper continues the research conducted in [8] where it has been experi-
mentally shown by comparison with rule learners APRIORI-C (7], RIPPER [4],
and CN2 [2] on selected UCI data sets [15] that APRIORI-SD and CN2-SD are
suitable and adequate algorithms for subgroup discovery. Here we investigate
the implications of example weighting in subgroup discovery by comparing three
subgroup discovery algorithms, APRIORI-SD [8], CN2-SD [11], and Subgroup-
Miner [10] on a real-life data set — the UK Traflic challenge data set. While
APRIORI-SD uses example weighting in the post-processing step of selecting
the ‘best’ rules, CN2-SD uses example weighting during rule induction. We used
APRIORI-SD’s way of weighting examples as the basis for presenting example
weighting in this paper. The results of the application of the three subgroup
discovery algorithms on the UK Traffic challenge data set are presented in the
form of ROC curves and discussed in the example weighting framework.

This paper is organized as follows. Section 2 presents the background for
this work: the post-processing step of the APRIORI-SD subgroup discovery
algorithm with example weighting and the weighted relative accuracy quality
measure. In Section 3 ROC space is presented as a tool for evaluating the per-
formance of subgroup discovery. Section 4 presents the experimental comparison
of APRIORI-SD, CN2-SD, and SubgroupMiner on a real-life UK Traffic chal-
lenge data set together with results in the form of ROC curves. In Section 5
the results from Section 4 are discussed and example weighting investigated.
Section 6 concludes by summarizing the results and presenting plans for further
work.

2 Background: The APRIORI-SD Algorithm

This section presents the backgrounds for our work. The complete description of
the APRIORI-SD subgroup discovery algorithm is given in [8]. Here just parts,
essential for the understanding of the rest of the paper, are described.

Section 2.1 presents APRIORI-SD’s post-processing procedure of selecting
‘best’ rules. This description is extended in Sections 2.2 and 2.3 presenting
APRIORI-SD’s example weighting approach and the weighted relative accuracy
quality function, respectively.

2.1 Post-processing procedure

The post-processing procedure of APRIORI-SD is performed as follows:

repeat
- sort rules from best to worst in terms of

the weighted relative accuracy quality measure (see Section 2.3)
- decrease the weights of covered examples (see Section 2.2)



until

- all the examples have been covered
OR

- there are no more rules

2.2 Example weighting for best rule selection

The weighting scheme treats examples in such a way that covered positive ex-
amples are not deleted when the currently ‘best’ rule is selected in the post-
processing step of the algorithm (like in the standard covering approach). In-
stead, each time a rule is selected, the algorithm stores with each example a
count of how many times (with how many rules) the example has been covered
so far. Initial weights of all positive examples e; equal 1, w(e;,0) = 1, which
denotes that the example has not been covered by any rule, meaning ‘among the
available rules select a rule which covers this example, as this example has not
been covered by other rules’, while lower weights mean ‘do not try too hard on
this example’.

Weights of positive examples covered by the selected rule decrease according
to the formula w(e;,i) = P%l In the first iteration all target class examples
are assigned the same weight w(e;,0) = 1, while in the following iterations the
contributions of examples are inverse proportional to their coverage by previously
selected rules. In this way the examples already covered by one or more selected
rules decrease their weights while uncovered target class examples whose weights
have not been decreased will have a greater chance to be covered in the following
iterations.

2.3 The weighted relative accuracy measure

Weighted relative accuracy is used in subgroup discovery to evaluate the quality
of induced rules. We use it instead of support when selecting the ‘best’ rules in
the post-processing step.

We use the following notation. Let n(X) stand for the number of examples
covered by a rule X — Y, n(Y) stand for the number of examples of class Y,
and n(Y X) stand for the number of correctly classified examples (true positives).
We use p(Y X) etc. for the corresponding probabilities. Rule accuracy, or rule
confidence in the terminology of association rule learning, is defined as Acc(X —

Y)=pY|X) = p;(YX)g). Weighted relative accuracy [17] is defined as follows.

WRAce(X — Y) = p(X).(p(Y]X) — p(Y)). (1)

Weighted relative accuracy consists of two components: generality p(X), and
relative accuracy (p(Y|X) — p(Y)). The second term, relative accuracy, is the
accuracy gain relative to the fixed rule true — Y. The latter rule predicts all
instances to satisfy Y; rule X — Y is only interesting if it improves upon this
‘default’ accuracy. Another way of viewing relative accuracy is that it measures



the utility of connecting rule body X with a given rule head Y. However, it is
easy to obtain high relative accuracy with highly specific rules, i.e., rules with
low generality p(X). To this end, generality is used as a ‘weight’; so that weighted
relative accuracy trades off generality of the rule (p(X), i.e., rule coverage) and
relative accuracy (p(Y|X) — p(Y)). All the probabilities in Equation 1 are esti-
mated with relative frequencies e.g., p(X) = ”(]\),(), where N is the number of all
instances.

Modified WRAcc with example weights. The rule quality measure WRAcc
used in APRIORI-SD was further modified to enable handling example weights,
which provide the means to consider different parts of the instance space with
each application of a selected rule (as described in Section 2.2).

The modified WRAcc measure is defined as follows:

n'(X) n'(YX) n(Y)
N’ (n’(X) N ) 2)

WRAce(X —Y) =

where N’ is the sum of the weights of all examples, n’'(X) is the sum of the
weights of all covered examples, and n/(YX) is the sum of the weights of all
correctly covered examples.

3 Evaluation in ROC Space

A point on the ROC curve (ROC: Receiver Operating Characteristic) [16] shows
classifier performance in terms of false alarm or false positive rate FPr =
FP Fp

TNIFP = Neg (plotted on the X-axis; Neg standing for the number of all
TP TP

negative examples), and sensitivity or true positive rate T Pr = TPIFN = Pos
(plotted on the Y-axis; Pos standing for the number of all positive examples).
The confusion matrix shown in Table 1 defines the notions of TP (number of
true positives), F'P (number of false positives), TN (number of true negatives)
and F'N (number of false negatives), ‘actual positive’ (negative) denotes the
number of examples in the training set that are (actually) positive (negative),
and ‘predicted positive’ (negative) denotes the number of examples that the rule

X — Y predicted as positive (negative).

Table 1. Confusion matrix.

predicted predicted

positive negative
actual positive TP FN
actual negative FP TN

Applying the notation used in Section 2.3, F'Pr and T'Pr can be expressed
as: FPr = "(NL;/), TPr =" 13 ROC space, an appropriate tradeoff, deter-

e Pos

mined by the expert, can be achieved by applying different algorithms, as well as
by different parameter settings of a selected data mining algorithm or by taking



into the account different misclassification costs. It has been shown in [16] that
by constructing ROC convex hulls we can identify potentially optimal classifiers.

ROC space is appropriate for measuring the success of subgroup discovery,
since subgroups whose T Pr/F Pr tradeoff is close to the main diagonal (line
connecting the points (0,0) and (1,1) in the ROC space) can be discarded as
insignificant. The reason is that the rules with T Pr/F Pr on the main diagonal
have the same distribution of covered positives and negatives as the distribution
in the entire data set. On the other hand, the further away from the main diag-
onal we go, the more the two distributions differ. In this way, subgroups lying
far away from the main diagonal in ROC space represent potentially interest-
ing subgroups (according to the distribution of covered positive and negatives
examples).

By constructing a convex hull from subgroups represented in ROC space,
we take into consideration mostly those subgroups that are far away from the
main diagonal and are thus both potentially interesting and each of the rules
representing a subgroup that lies on the convex hull represents a potentially
optimal classifier. This fact doesn’t imply that all the interesting subgroups are
those lying on the ROC convex hull but we can identify most of the potentially
interesting subgroups by analyzing those that lie on or near the ROC convex hull.
Therefore, the use of ROC convex hull construction technique for evaluation
of subgroup discovery results is limited to identifying potentially interesting
subgroups as well as to limit their number. It is then left to the expert to select
from potentially interesting those subgroups that are really interesting.

4 Comparative Analysis on a Real-life Data Set

This section provides results of the experimental evaluation on the real-life UK
Traffic challenge data set, comparing the performance of subgroup discovery
algorithms APRIORI-SD, CN2-SD, and SubgroupMiner.

Section 4.1 presents the description of the UK Traffic challenge data set. In
Section 4.2 the results of the comparison are presented in ROC space.

4.1 Description of the data set

In order to compare APRIORI-SD [8], CN2-SD [11], and SubgroupMiner [10],
we applied these algorithms to a real-life problem data set — the UK Traffic
challenge data set. This data set is a sample of a larger and more complete
relational data set — the UK Traffic data set briefly described below.

The UK Traffic data set. The UK Traffic data set includes the records of all
the accidents that happened on the roads of Great Britain between years 1979
and 1999. It is a relational data set consisting of 3 related sets of data: the ACCI-
DENT data, the VEHICLE data and the CASUALTY data. The ACCIDENT
data consists of the records of all accidents that happened in the given time



period; VEHICLE data includes data about all the vehicles involved in these ac-
cidents; CASUALTY data includes the data about all the casualties involved in
the accidents. Consider the following example: ‘Two vehicles crashed in a traffic
accident and three people were seriously injured in the crash’. In terms of the
TRAFFIC data set this is recorded as one record in the ACCIDENT set, two
records in the VEHICLE set and three records in the CASUALTY set. Every
separate set is described by around 20 attributes and consists of more than 5
million records.

The UK Traffic challenge. The task of the challenge was to produce clas-
sification models (in our case subgroup descriptions) to predict skidding and
overturning for accidents from the UK Traffic data set [14]. As the class at-
tribute Skidding and Overturning appears in the VEHICLE data table, the data
tables ACCIDENT and VEHICLE were merged in order to make this a simple
non-relational problem. Furthermore a sample of 5940 records from this merged
data table was selected for learning and another sample of 1585 records was se-
lected for testing. The class attribute Skidding and Overturning has six possible
values. The meaning of these values and the distribution of the class values in
the training and test sets are shown in Table 2.

Table 2. The meaning and the distribution of classes in the UK Traffic challenge data
set.

Code Meaning of class values Train (%) Test (%)
0 No skidding, jack-knifing or overturning 64.26 64.67
1 Skidded 22.07 22.46
2 Skidded and overturned 7.27 6.88
3 Jack-knifed 0.20 0.06
4 Jack-knifed and overturned 0.19 0.44
5 Overturned 6.01 5.49

4.2 Experimental results

We compared the subgroup discovery algorithms APRIORI-SD [8], CN2-SD [11]
and SubgroupMiner [10] by applying them to the UK Traffic challenge training
data to construct subgroups and then test these subgroups on the test data.
The results were plotted in ROC space. Because of the fact that only binary
class problems can be plotted in ROC space, we had to transform the original
problem of predicting a class with six values to six binary problems, predicting
each class in turn as positive and the remaining classes as negative. All three
subgroup discovery algorithms were run with default parameters (APRIORI-SD
with minimal confidence 0 and minimal support 0.01; CN2-SD using the additive
weighting scheme, 99% significance threshold and beam size 5; SubgroupMiner
using beam size 10, max. length of rules 6 and suppression factor o = 1).
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Fig. 1. The top, middle and bottom figures present the ROC curves (solid represent-
ing APRIORI-SD, dashed CN2-SD and dotted SubgroupMiner) for the problem of
predicting Class 0, Class 1 and Class 5 respectively.



We discarded the problems of predicting Class 3 and Class 4 (see Table 2 for
the meaning of class codes) because they contained too few test examples (see
the distribution in Table 2). Furthermore, we omit the ROC plot for the problem
of predicting Class 2 because it is very similar to the ROC plot for predicting
Class 1 giving no additional information in comparing the subgroup discovery
algorithms.

The results of the comparisons on the remaining three problems of predicting
Class 0, Class 1 and Class 5 are shown in Figure 1. We can describe these
problems as the problems of predicting the majority class (Class 0), the minority
class (Class 5) and the class that is neither majority nor minority (Class 1).

We can see from the results shown in Figure 1 that:

1. Both APRIORI-SD and CN2-SD discovered smaller and more accurate sub-
groups (points near the point (0,0) in all three figures) than SubgroupMiner.

2. SubgroupMiner discovered larger but less accurate subgroups. This is espe-
cially true for the problem of predicting the majority class (Class 0 — Figure
1, top picture).

3. SubgroupMiner discovered a lot of subgroups that do not lie on the ROC
convex hull (¢ marks in Figure 1).

4. Both APRIORI-SD and CN2-SD discovered better subgroups (the distance
from the diagonal (0,0) — (1,1) is larger) when dealing with the problem of
predicting a minority class (Figure 1, middle and bottom picture).

5. APRIORI-SD is ‘better’ than CN2-SD — its ROC curve is above the ROC
curve of CN2-SD in all three cases.

5 Interpretation of the Results and Analysis of Example
Weighting

Here we try to explain the results of the experiments by explaining each of the
five findings of the previous subsection starting with the last one.

The fifth finding — APRIORI-SD being better than CN2-SD in all cases
— can be explained by the fact that CN2-SD is bound to miss some ‘good’
subgroups by using heuristic search, while APRIORI-SD using exhaustive search
takes into consideration all ‘potentially good’ subgroups. Note the difference
between using example weighting in the induction and post-processing phase of
subgroup discovery.

The fourth finding — both APRIORI-SD and CN2-SD discovered better sub-
groups when dealing with the problem of predicting a minority class — can be at-
tributed to the WRAcc heuristic used in APRIORI-SD (in rule post-processing)
and CN2-SD (used in heuristic beam search of rules). This result experimentally
confirms the appropriateness of the WRAcc heuristic for subgroup discovery,
which aims at finding subgroups maximizing the distance from the ROC diago-
nal [11].

The third finding — SubgroupMiner discovered a lot of subgroups that do
not lie on the ROC convex hull — can also be attributed to the fact that the



algorithms use different heuristics when searching the space of possible solutions
(subgroups).

To explain the first two findings we use ROC isometrics described in [6].
With the help of ROC isometrics we can investigate the behavior of quality
functions used by APRIORI-SD, CN2-SD and SubgroupMiner. APRIORI-SD
and CN2-SD use the same quality function to find subgroups — WRAcc with
example weights described in Section 2.3. The behavior of this quality function
is depicted in Figure 2 (left-hand side) in the form of ROC isometrics (lines in
the figure), each line representing some value of the quality function (see [6] for
detailed description of ROC isometrics).

APRIORI-SD + example weighting SubgroupMiner

true positive rate

true positive rate

o o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
false positive rate false positive rate

Fig. 2. The left-hand side figure shows ROC isometrics for the WRAcc quality function
with example weights used in APRIORI-SD and CN2-SD. The right-hand side shows
ROC isometrics for the SubgroupMiner’s quality function.

Figure 2 (left-hand side) illustrates also the effect of weighting. Solid lines
show the behavior of WRAcc without weights! (only iso-lines for positive WRAcc
are shown). Dashed lines show the modified WRAcc with example weights for
the case where all positive examples have a weight of 1/2. Dotted lines represent
the same quality function in the case of all positive examples having a weight of
1/3. Only three iso-lines are shown in the cases of modified WRAcc with example
weights 1/2 and 1/3 for the sake of clarity of the figure. Thick lines in Figure 2
denote that the value of the respective quality function equals 0. The behavior
of SubgroupMiner’s quality function is depicted in Figure 2 (right-hand side) 2.

! The weights of all examples equal 1.
2 SubgroupMiner uses the following quality function to rank the subgroups during

search: Q(X —Y) = %\/n(X)q/#(m A more detailed analysis of

the use of quality function in subgroup discovery can be found in [9].



We can now proceed explaining the first two findings from the results by
looking at Figure 2. Figure 2 (left-hand side) shows that the WRAcc quality
function with example weights used by APRIORI-SD and CN2-SD ‘tries harder’
to discover more accurate subgroups — lowering the weights on positive examples
makes the lines in the figure more vertical. Since there are no large subgroups
that are at the same time highly accurate, the effect of weighting in our case
results in finding small, highly accurate subgroups (explanation of the first find-
ing — subgroups near the point (0,0) in Figure 1). The second finding can be
explained by looking at Figure 2 (right-hand side). We can see that Subgroup-
Miner’s quality function tends to discover small and accurate subgroups and at
the same time large and inaccurate ones (note the bending of iso-lines towards
the points (0,0) and (1,1) in ROC space). The latter fact (finding large and
inaccurate subgroups that both CN2-SD and APRIORI-SD ‘disregard’ because
of the use of example weighting — see the left-hand side of Figure 1) explains
the second finding from the results. Why did SubgroupMiner not discover small
and accurate subgroups (in such a number as APRIORI-SD and CN2-SD did)
can again be attributed to the heuristics used by the algorithms in searching the
space of potentially ‘good’ subgroups but mostly to the suppression of overlap-
ping subgroups that SubgroupMiner uses.

Let us illustrate the effect of weighting on an example.

Illustration of weighting on the example of predicting Class 0. We
illustrate the effect of weighting by explaining step-by-step the discovery of sub-
groups by APRIORI-SD on the example of predicting Class 0 in the UK Traffic
challenge data set (see Figure 1 (top picture) in Section 4.1). We explain the dis-
covery of the first three subgroups. The procedure, illustrated in Figure 3 (which
equals Figure 1 (top picture) with ROC curves for CN2-SD and SubgroupMiner
removed), goes as follows:

— All the examples have a weight of 1. APRIORI-SD selects the ‘best’ subgroup
— the subgroup with the maximal value of WRAcc. In Figure 3 the subgroup
is depicted as a small triangle in the point (0.65,0.92). The WRAcc value of
the subgroup is 0.062 (the absolute maximum for WRAcc being 0.23). The
solid line going through the subgroup is the iso-line for WRAcc = 0.062.
The thick solid line represents the iso-line for W RAcc = 0. The weights of
positive examples covered by the subgroup are lowered to the value of 1/2.

— The calculation of WRAcc is recomputed taking into account the new weights.
Again the ‘best’ subgroup is selected. In the figure this newly selected sub-
group is depicted as a small triangle in the point (0.35,0.77). The modified
WRAcc value of the subgroup is 0.02 (the absolute maximum for the mod-
ified WRAcc being 0.13). The meaning of the lines is the same as before,
only this time the lines are dashed (large dash). The weights of all positive
examples covered by the newly selected subgroup are reduced (from 1 to 1/2
and from 1/2 to 1/3).

— Again the calculation of WRAcc is recomputed taking into account the new
weights and again the ‘best’ subgroup is selected. In the figure the new sub-



group is depicted as a small triangle in the point (0.20,0.73). The modified
WRAcc value of the new subgroup is 0.007 (the absolute maximum for the
modified WRAcc being 0.07). Dashed lines (small dash) are used to depict
the iso-lines. The weights of positive examples covered by the new subgroup
are again reduced (from 1 to 1/2, from 1/2 to 1/3 and from 1/3 to 1/4) and
the algorithm is run iteratively until all the subgroups are discovered.

ive rate
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Fig. 3. The effect of example weighting used in APRIORI-SD illustrated on the prob-
lem of discovering subgroups for predicting Class 0.

6 Conclusions

The comparison of subgroup discovery algorithms APRIORI-SD, CN2-SD, and
SubgroupMiner on a real-life UK Traffic challenge data set shows that APRIORI-
SD performs very similarly to (but slightly better than) CN2-SD; both are suit-
able for finding small highly accurate subgroups describing minority classes,
while SubgroupMiner finds larger and less accurate subgroups when dealing with
classes containing the majority of the examples.

We have shown by using ROC analysis that the above findings are caused
by example weighting, that ‘pushes’ the search in the space of potential sub-
groups towards discovering small and accurate subgroups. Moreover, using ex-
ample weighting in the post-processing stage in subgroup discovery results in
slightly better results than using it during induction.

The downside of the example weighting used by APRIORI-SD and CN2-SD
is that it restricts the search space of potential subgroups. It is very unlikely
for an algorithm that uses example weighting to find large and less accurate
subgroups that might be sometimes preferred to small and accurate ones. Can
the example weighting be modified to find these subgroups?



Moreover, example weighting is just one of the aspects of subgroup discov-
ery. Another important aspect of subgroup discovery, which is neglected in our
study, is the degree of overlap between the discovered subgroups. The challenge
for our further research is to propose extensions of the weighted relative accu-
racy heuristic and ROC space evaluation metrics that will take into account the
overlap between subgroups.

Another issue, left for further work, is the expert evaluation of the results.
Does weighting result in the discovery of subgroups that are really interesting
for an expert?
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