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Abstract. Subgroup discovery consists in finding subsets of individuals
from a given population which have distinctive collective properties with
regard to one or more properties of interest. The interest of a subgroup
can be objectively assessed using appropriate statistics, but it can also
be evaluated by a data analyst or domain expert. In this paper we pro-
pose an approach to subgroup discovery via distribution rules (a kind of
association rules with a probability distribution on the consequent) for
numerical properties of interest. The objective interest of the subgroups
is measured through statistical goodness of fit tests. The subjective in-
terest of the subgroups can be assessed by the data analyst through a
visual interactive subgroup browsing procedure.

1 Introduction

Subgroup discovery is an undirected data mining task, first identified by Klősgen
[10], where the general aim is to find “interesting” groups of individuals from
a population with respect to a given property (or variable) of interest. An ex-
ample from the medical domain is a population where the level of cholesterol
is measured for each individual. Some subgroups of the population may have
distributions of the cholesterol values significantly different from the whole pop-
ulation. At the same time we may find common features in the individuals of
those subgroups that may lead to hypotheses for the causes of those deviations.
In another setting, subgroups with deviating values for a biological control vari-
able may correspond to situations leading to undesirable states of an ecological
system. The identification and the characterization of those subgroups may help
in the understanding and in the prevention of those undesirable states.

The number of interesting subgroups can be very large. The data analyst
will benefit from tools that build the subgroups and allow the browsing of the
space of relevant subgroups. It is also useful to visualize the distribution of the
property of interest for each subgroup, and to be able to fetch the subgroups
that have distributions satisfying given graphical constraints. This is particularly
interesting if the property of interest is numerical.
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Some of the existing approaches to subgroup discovery emphasize the pre-
dictive accuracy of the rules [4][5][9]. The primary aim of our work, however,
is to perform interactive descriptive induction to be used in a decision support
environment. Known subgroup discovery methods work typically with categor-
ical or discretized properties of interest. Our method constructs the subgroups
from discovered distribution rules, a kind of association rules with a statistical
distribution on the consequent. The antecedent of the rule corresponds to the
description of the subgroup, and is similar to the antecedent of an association
rule. The objective interest of a subgroup is given by the unexpectedness of its
distribution for the property of interest, which can be measured through the use
of existing statistical goodness of fit tests.

We propose the use of visualization techniques to enable interactive subgroup
discovery in a post-processing mode [6][7] also referred to as active mining [4],
rather than merely showing the output of a subgroup discovery algorithm [5].
This allows the data analyst to make use of implicit domain knowledge combined
with statistical objective measures of interest.

In section 2 we describe the problem of subgroup discovery in general and
using distribution rules. In section 3 we describe our approach to interactive
subgroup discovery. In section 5 we show an application of our approach to
ecological modeling for preventing armful algae booms in natural water supplies.
Related work is described in section 6

2 Subgroup discovery

The concept of a subgroup corresponds to an interesting subset of a population
[10][17]. For example, if the average level of total cholesterol for all the patients
of an hospital is 190, we may find interesting that people who smoke and drink
have a cholesterol of around 250. In this case, we have a property of interest
(the level of cholesterol) and a subgroup of patients with a precise description.
This subgroup can be regarded as relevant or interesting due to the fact that
the mean of the property of interest is significantly different from a value of
reference, such as the mean of the whole population. However, as we will see in
this work, the notion of interest of a subgroup is not necessarily limited to the
value of particular measures such as mean, and can be made more powerful if
we compare the distribution of the values of the property of interest with the
distribution of the whole population.

Definition 1. (Subgroup) Given a population of individuals U and a criterion
of interest, a subgroup G ⊆ U is a subset of individuals that satisfies the criterion.
Each subgroup has a description, given in the form of a set of conditions that all
and only the members of the subgroup satisfy.

In this framework, a subgroup is interesting with respect to a pre-defined
property of interest. We assume that the property of interest is only one and is
numerical, although in general that is not necessary.



We also stress that the task of subgroup discovery differs to the task of clus-
tering. In clustering, the goal is to separate the data into a set of homogeneous
groups on the basis of the distance between data points, whereas in subgroup
discovery the aim is to identify groups with “interesting” properties.

Definition 2. (Distribution of the property of interest) let y be a numerical
property of interest, and G a subgroup with description descG. The distribution
of y for all the individuals x ∈ G is approximated by the observed Pr(y|descG)
and is denoted by Dy|descG

.

One important case of the distribution of the property of interest is its a
priori distribution.

Definition 3. The a priori distribution of the property of interest is the distri-
bution of the property of interest for the whole population, approximated by the
observed Pr(y).

We can now measure the interest of a subgroup in terms of its distribution of
the property of interest. The interest of a subgroup, or of a pattern in general,
can be measured in many different ways, according to objective and subjective
criteria of the data analyst [15]. In terms of undirected mining, the interest of
a pattern is typically related to its unexpectedness, which in turn is typically
assessed by the difference of an observation to its expected value. We will define
the interest of a subgroup as the deviation of the distribution of the property
of interest with respect to the a priori distribution. In this sense, the interest
of a subgroup is akin to the interest of an association rule as measured by lift,
conviction, [3] or χ2 [11], since it is related to the unexpectedness of the value
of some target variable. However, in the current approach, we take into account
the distribution of the possible values of the property of interest, instead of only
one such value.

Definition 4. (Interest of a subgroup) the degree of unexpectdness of a subgroup
G is given by the dissimilarity between the distribution of the property of interest
for the subgroup Dy|descG

and a reference distribution Dy|ref .

The reference distribution is typically the distribution of y for the whole
population. The degree of similarity can be measured using statistical goodness
of fit tests such as Kolmogorov-Smirnov or χ2.

In these terms, the data mining problem of subgroup discovery can be stated
as finding all the interesting subgroups for a population U and a property of
interest y, under a given criterion of interest.

2.1 Distribution Rules

For subgroup discovery we propose the use of distribution rules (DR) [8]. These
associate a frequent itemset to an empirical distribution of a numeric attribute
of interest without any loss of information.



Definition 5. A distribution rule (DR) is a rule of the form A → y = Dy|A,
where A is a set of items, as in a classical association rule, y is a property of
interest (the target attribute), and Dy|A is an empirical distribution of y for the
cases where A is observed. This attribute y can be numerical or categorical. Dy|A
is a set of pairs yj/freq(yj) where yj is one particular value of y occurring in
the sample and freq(yj) is the frequency of yj for the cases where A is observed.

Distribution rules can be seen as a generalization of quantitative association
rules (QAR) [1]. They differ in two aspects. First, DRs deal with whole distribu-
tions (without any loss of information) whereas a QAR has in the consequent a
summary of the numeric attribute, such as the mean and the standard deviation.
Second, the concept of distribution rules is extensible to categorical attributes
as well.

Example 1. Suppose we have clinical data describing habits of patients and their
level of cholesterol. The distribution rule smoke∧young → chol = {180/2, 193/4, 205/3, 230/1}
represents the information that, of the young smokers on the data set, 2 have a
cholesterol of 180, 4 of 193, 3 of 205 and 1 of 230. This information can be rep-
resented graphically as a frequency polygon. The attribute chol is the property
of interest.

Given a dataset S, the task of subgroup discovery consists in finding all the
DR A → y = Dy|A, where A has a support above a determined mininum σmin

and Dy|A is statistically significantly different (above or below a determined
threshold depending on the criterion used) from the a priori distribution Dy.
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Fig. 1. Graphical representation of distribution rules for the dataset auto-mpg

Since the consequent of one distribution rule is an empirical distribution, it
can be approximately represented by a frequency polygon. The rules in Figure
1 were obtained from the dataset auto-mpg [13]. The antecedent of the rule is
displayed as the main title. Some selected measures of the distribution and the
name of the property of interest (P.O.I.: MPG) are shown within the plot. The
x axis has the domain of the P.O.I. and the y axis the estimated probability
density. The distribution for the set of cases that satisfy the condition is shown
in black, and the a priori distribution for the whole population is shown in grey.
The first distribution rule shown in Figure 1 tells us that cars with 6 cylinders
built on the US tend to make less miles per galon than the whole set of cars. For



those cars, the values of MPG are very concentrated around 20. Nevertheless, we
can see that there are some economic cars in this group because of the right tail
of the black curve. The interest of this rule is shown as KS.int, the complement
to 1 of the Kolmogorov-Smirnov test p-value.

3 Visual interactive discovery

Given a population and a criterion of interest, the number of interesting sub-
groups/distribution rules can be very large. As in the discovery of association
rules, for the data analyst to explore the discovered patterns it is useful that a
post processing rule browsing environment exists.

How can a data analyst browse a large number of rules? In the case of asso-
ciation rules browsing can be done through the lattice of itemsets [7]. The space
of itemsets is structured using the generality relation. Traversing of the lattice
can be done by fetching generalizations or specializations of a chosen rule.

In the case of distribution rules, the discrete lattice approach is not adequate
since the consequent is a distribution. In that case, browsing can be done by view-
ing the space of distribtuions as continuous. A simple and effective approach is
to represent each distribution by statistical measures of location (mean, median
and mode), spread (standard deviation) and shape (skewness and kurtosis), and
structure the space of subgroups using these measures as coordinates.

We propose a visual interactive subgroup discovery procedure that graph-
ically displays the distribution of each subgroup and allows the navigation by
the data analyst in a chosen continuous space of subgroups. The space of sub-
groups for a particular problem is represented as a two-dimensional plot, where
each point is a possible subgroup. A simple example is a mean-variance plot.
Each subgroup is placed on the plot according to the mean and variance of its
consequent distribution. Other subgroup spaces will be median-mode, skewness-
kurtosis and mean-kurtosis. Other choices can also be considered.

The two dimensional space will serve as a browsing device. The data ana-
lyst can click on one of the points of that space and visualize the distributions
and definitions of the corresponding subgroup or sugroups. In this phase the se-
lected subgroup is also visually and statistically compared to a reference group
(Algorithm 1).

Algorithm 1. Interactive subgroup discovery

1. Discover potentially interesting subgroups (all that satisfy the criterion)
2. Display the interesting subgroups in a summary 2D plot
3. Locate the region of interest in the summary plot
4. Zoom in on a particular subgroup by clicking on a point of the plot
5. Visually inspect the sub group (definition / frequency polygon / interest

measures)
6. Save this subgroup if wanted
7. Stop or Go to step 3



3.1 Continuous spaces for subgroups

A continuous space of subgroups can be represented as an x-y plot, where the
coordinates x and y represent statistical measures of the distribution of the
property of interest.

The skewness-kurtosis space, for example, gives the data analyst an overall
picture of the shapes of the distributions of the subgroups. The mean-kurtosis
gives an idea of the location of the distributions as well as of how their shapes
are more or less flat.
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Fig. 2. Four different spaces for plotting the interesting subgroups found from the
Wages dataset. The solid squares represent the whole population.

In Fig. 2 we can see the interesting subgroups found for the dataset Wages
[1] represented on different spaces. On the top left we have the skewness-kurtosis
space. Each subgroup is represented as a point on this space. The solid square
represents the a priori distribution (the whole population).

Skewness and kurtosis are shape measures of distributions. Skewness is re-
lated to the asymetry of the distribution. It has value zero if its rigth tail is
symetric to its left tail, greater than zero if its right tail is more pronounced
than its left tail and less than zero otherwise. Kurtosis is related to the peaked-
ness of the distribution. Intuitively, A high value of kurtosis indicates that there
is a high peak, while a relatively flat distribution gets a low kurtosis. A Normal
distribution has a kurtosis of 3. The “kurtosis excess” is defined as kurtosis-3,
and is 0 for the Normal distribution. This is the kurtosis measure we use in this
work.

Using the skewness-kurtosis plot, the data analyst has an idea of the existing
shapes of the distributions and can look for distributions with particular shapes.
For the subgroups in Fig. 2 we can see that the distributions have a longer right
tail (skewness> 0) and tend to have a relatively high kurtosis.

The mean-standard deviation space (top left of Fig. 2) identifies the sub-
groups that have their mean below and above the whole population (x-axis). The
y-axis gives the standard deviation. A low standard deviation indicates that a
subgroup is easier to characterize and that the rule underlying it is more informa-
tive. From this plot, the data analyst can, for example, identify well characterized
subgroups with relatively low mean wage (bottom left of the mean-stdev space).



The mode-median space depicts the location of the distributions of the prop-
erty of interest for the subgroups, both through mode and median. In this plot
we can also identify distributions skewed to the right (if mode<median) or to
the left (mode>median).

The fourth possibility for subgroup representation in Fig. 2 is the mean-
kurtosis plot, which combines a measure of location on the x-axis with a measure
of shape.

The graphical user interface developed for the prototype (Fig. 3) shows two
alternative subgroup spaces (skewness-kurtosis and mode-mean in this case).
Each point on the 2D plots is colored according to the Kolmogorov-Smirnov p-
value of the respective subgroup. A darker cross means that the p-value is close to
zero (< 5%) and the subgroup is statistically distinct from the whole population.
Lighter crosses represent subgroups whose distribtutions are statistically more
similar to the whole population. The whole population is represented by the
solid square.

The data analyst can choose the subgroup space to browse from (either
skewness-kurtosis or mode-median). Clicking on one of the points of the chosen
2D-plot selects the respective subgroup. Its distribution for the property of in-
terest WAGE (line with triangles) and description (SEX=M & MARR=Y, i.e., married
males) is shown on the histogram below. The distribution of the whole popu-
lation is also shown for comparison (line with squares). The selected (current)
subgroup is shown as a triangle on the 2D-plots.

The process can be iterated, during which the data analyst can swap between
the subgroup representation spaces. Interesting subgroups are saved for later
reviewing or reporting.

4 Identifying relevant subgroups

As described above, subgroup discovery with a numerical property of interest is
equated to the discovery of interesting distribution rules, i.e., rules with support
and KS-interest above (or KS p-value below) given thresholds.

For distribution rule discovery we employ the algorithm CAREN-DR, based
on the association rule engine CAREN [2]. CAREN-DR works by finding fre-
quent itemsets not involving the property of interest y and computing their
associated P.O.I. distributions on the fly. Frequent items are counted and stored
in a support ascending order. For each antecedent item, a bitmap that represents
its coverage is built. Antecedents are formed by depth first expansion. When an
item is added to the antecedent to build a new itemset, a new bitmap is calculated
(through bit-intersection) and its support can be counted through a bitcount-
ing operation. To help in unfrequent itemset pruning during itemset expansion,
the algorithm builds a flat matrix with 2-itemsets counts. Thus, expensive bit-
counting operations can be avoided if subsets of the candidate itemsets are not
frequent.

For an efficient rule’s consequent calculation, each distribution item (the nu-
meric values associated with the P.O.I.) also keeps a bitmap. Deriving a new dis-



0.0

0.2

0.4

0.6

0.8

1.0

Statisitcal Distribution of  the Variable: WAGE

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

Mode

M
ed

ia
n

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

ACTIVE GRAPH

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

>>

Stop

See on Console

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S246 : AGE=(40.5-50.5] (Sup : 16.85 %)

p-v alue based on the ks test:  20.87 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S254 : EDUCATION=(15.5-inf ) (Sup : 23.6 %)

p-v alue based on the ks test:  0 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S247 : UNION=Y (Sup : 17.98 %)

p-v alue based on the ks test:  0 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S252 : SEX=M & MARR=Y & SOUTH=N (Sup : 24.16 %)

p-v alue based on the ks test:  0.005 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S237 : SEX=M & MARR=Y & SECTOR=Other & RACE=white (Sup : 21.54 %)

p-v alue based on the ks test:  1.11 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

pe
rt

y 
of

 I
nt

er
es

t:
  

W
A

G
E

1.0 3.8 6.5 9.3 12.0 14.8 17.5 20.3 23.0 25.8 44.5

S240 : SEX=M & MARR=Y (Sup : 35.21 %)

p-v alue based on the ks test:  0.0166666666666667 %

0 10 20 30 40 50

0

10

20

30

40

50

Shape Measures

Skewness

K
ur

to
si

s

Goodness-of -f it 
test: 

K-Smirnov  (ks)

p-v alue: 
<5%  
<10%  
>10%  

5 6 7 8 9 10 11

5

6

7

8

9

10

11

Location Measures

ACTIVE GRAPH

Mode

M
ed

ia
n

<<

Stop

See on Console

Fig. 3. Graphical interface for interactive subgroup discovery using the wages dataset.

tribution requires intersection operations between the bitmap of the antecedent
itemset and the bitmaps of the distribution items. The algorithm extracts sig-
nificant rules by performing a Kolmogorov-Smirnov test between each new rule
(Dy|a) and the a priori distribution (Dy|∅).

The algorithm receives as input a minsup for antecedent filtering and an α
that is used to set the maximal KS threshold.

The complexity of the algorithm is similar to the complexity of generating
frequent itemsets. Experimental results with datasets of different sizes (up tp
20K records), different numbers of distinct values of the P.O.I. (up to 3842) and
different minimal support thresholds (0.01 to 0.3) showed a good scale up of the
algorithm [8].

5 Studying algal blooms

This subgroup discovery approach is being applied to study algae population
dynamics in a river which serves as an urban water supply resource. The quantity
and diversity of the algae are important for the quality of the water, which makes
this an economically and socially critical eco-system.



5.1 Problem and data setup

High concentration of certain armful algae in rivers is a relevant ecological prob-
lem. Blooms of these algae may reduce the life conditions in a river and cause
massive deaths of fish, thus degrading water quality. The state of rivers is af-
fected by toxic waste from industrial activity, farming land run-off and sewage
water treatment [14]. Being able to understand and predict these blooms is there-
fore very important. This problem has been studied in the MODAL project [16]
(MOdels for predicting ALgal blooms in river Douro). The aim of the project is
to develop tools for monitoring the quality of river water in collaboration with
the local water distribution company.

We apply the visual interactive subgroup discovery approach to identify rel-
evant patterns that might be useful in the description and understanding of the
algae bloom processes as follows:

This methodology can be applied to the ecological data from the Modal
project [16] as follows:

– By relating observable variables with posterior values of variables that are
interesting to predict.

– By allowing the domain experts to inspect the subgroups.
– By showing the subgroups that apply to a given case. This allows decision

support.

The data collected cover a period from 1998 to 2003 and come from the
water distribution company (Águas do Douro e Paiva, S.A.), and other sources
(IAREN, LPQ and University of Porto). All the attributes are continuous and
can be divided in three groups: phytoplancton, chemical and physical properties,
and microbiological parameters.

The phytoplancton attributes record the quantity of 7 micro-algae species,
Cyanobacteria, Cryptophyta, Euglenophyta, Chrysophyta, Dinophyta, Chloro-
phyta and Diatom. These values were initially collected weekly and from 2002
on, biweekly.

The chemical and physical attributes record the levels of various algae nu-
trients and other environmental parameters, namely, Turbidity, Temperature,
PH, Alkalinity, Conductivity, Nitrates, Chlorates, Sulfates, Silica, Oxidability,
Dissolved Oxygen, Iron Dissolved, Iron and Total Suspended Solids. The micro-
biological attributes record the quantities of some bacteria relevant for water
quality: Fecal Coliforms,Total Coliforms, Fecal Streptococcus, Sultife Reducer
Clostridia, Total Germs at 22�, Total Germs at 37� and Escherichia Coli.
Physical-chemical and microbiological attributes had higer sampling frequency.

The dataset used for subgroup discovery was obtained by pre-processing the
original data as follows. For each sample of phytoplancton the values of the at-
tributes were kept. For the other attributes with higher sampling frequency, the
values of the previous days were aggregated as maximum, minimum and mean.
Attributes with the values of the previous sample the 7 phytoplancton species
were also added, as well as two summary attributes measuring the Diversity and
the Density of the algae. These attributes are important since a bloom of one of
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Fig. 4. DIVERSIDADE.N is related to relatively low oxygen levels and also to relatively
low quantity of iron (FERRO).

the species is characterized by a low diversity of species and a high density of
algae. Three other attributes were added: Normalized Density and Normalized
Diversity (normalized versions of Density and Diversity); and BLOOM.N cal-
culated as the difference between normalized density and normalized diversity.
High values of BLOOM.N indicate high possibility of a bloom.

After pre-processing the data has 72 input variables, 7+5 target variables
and 131 cases. In the examples below, the names of the variables appear in
the original Portuguese. The results were analysed, guided and evaluated by a
biologist.

5.2 Results

Choosing DIVERSIDADE.N (normalized diversity) as the P.O.I., the mean val-
ues of the the microbiology and physical-chemical parameters as explanatory
variables, and with a minimum support of 0.05, we obtain 98 subgroups. Low
diversity is a necessary condition for a bloom to occur. In the mode-median plot
we can browse through the subgroups with lowest mode and median (left bottom
corner of the plot). This is easily done by clicking on the points of the plot. One of
the rules obtained relates three of the attributes: OX.DISSOLVIDO.med (mean
Oxygen Dissolved), OXIDABILITY.med (mean Oxidability) and FERRO.med
(mean iron), with low values of diversity (Fig. 4).

This example shows how a distribution with a relatively high Kolmogorov-
Smirnov p-value can still be interesting. The distribution indicates that, for
relatively low values of oxygen and low-medium values of iron there is a relatively
high probability (when compared to the whole population) that the diversity is
low (between 0.3 and 0.4) or very low (below 0.1). While oxygen is necessary for
phytoplancton primary production, the low quantity of one nutrient (iron) may
reduce the phytoplancton to the species that live well under those conditions.
This situation may lead to a bloom of one of the species. In Fig. 5 we can see
how, for example, the species CRIPTOFITAS lives well under such conditions.

High values of BLOOM.N may indicate algae blooms (high density of micro-
algae and low diversity). With this P.O.I., 27 subgroups were found, using a
minimum support of 0.05. Through the mode-median plot the data analyst iden-
tifies potential bloom conditions and visualizes the corresponding distribution
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Fig. 5. The mode-median plot helped identifying the relation between iron, oxygen
and the species CRIPTOFITA (left). At the right screen we can see that BLOOM.N is
affected by relatively high temperature. This subgroup is easy to identify through the
mode-median plot.

for the target variable. In Fig. ?? we can see a rule that relates relatively high
temperatures (around 25 degrees Celsius) with a distribution of bloom values
shifted right. This is a well known effect of high temperatures, typically occurring
during Summer.

5.3 Discussion

Using this prototype, the data analyst and the biologist were able to identify
distributions with interesting values for the target variables. Distribution rule
generation is very fast (less than 5 seconds), and moving from subgroup to sub-
group is made easy by the graphical interface. The mode-median plot is a very
useful browsing device for these data. Looking for extremely skewed distribu-
tions of the target variables is facilitated with this subgroup space. By having
immediate acces to all the generated subgroups, the data analyst can compare
nearby subgroups and examine their descriptive conditions.

The display of the distribution provides information that may be hidden by
a summary measure such as mean. A distribution curve with two modes, for ex-
ample, may indicate that a particular subgroup has two possible outcomes (Fig.
4). If one of those outcomes is critical, than the antecedent of the subgroup may
become an alarm trigger for water monitoring. This also implies that not only
extreme values of median or mode indicate potentially interesting subgroups.
The skewness-kurtosis plot is relatively hard to use in this application. These
two measures may have values which are difficult to interpret and do not have
an intuitive reading. Other measures such as maximum of the distribution and
mode may provide more intuitive reading for the data analyst.



6 Related work

Klősgen [10] identified the subgroup discovery data mining problem. The ex-
amples shown are for categorical (and typically binary) properties of interest.
Wrobel [17] proposed a multi-relational variant of categorical subgroup discovery.
Gamberger et al. [5] applied subgroup discovery to the study of atheosclerotic
coronary heart disease (CHD). The target is a binary class attribute (patient
has/doesn’t have disease). Subgroups have the form of IF-THEN rules and are
visualized by displaying the distribution of one of the independent variables (e.g.,
AGE), for the whole population and for some of the subgroups discovered.

Later, Gamberger et al. [4] proposed two subgroup discovery algorithms and
applied them again on a CHD study. The rule discovery algorithms are inspired in
beam-search. Kavsek et al. [9] adapated the APRIORI association rule discovery
algorithm for subgroup discovery with categorical properties of interest.

Browsing and post-processing environments for association rules discovery
include PEAR [7] and Ma et al.’s work [12]. These works propose browsing large
sets of association rules structured as a generality lattice of itemsets.

Distribution rules are related to Quantitative Association Rules (QAR) [1],
but take advantage of the whole distribution instead of specific distribution mea-
sures. However, the two dimensional visual browsing space approach we present,
can also be used with QAR. In this case, the representation of the subgroup
would be merely textual since we would not have a subgroup distribution to
display.

7 Conclusions

In this paper we have presented a visual interactive subgroup discovery approach
for numerical properties of interest. Subgroups are discovered as distribution
rules (DR), and an interesting subgroup corresponds to a DR with sufficient
support and having a distribution for the property of interest distinct from
the whole population. The similarity between distributions is measured as the
Kolmogorov-Smirnov statistical test’s p-value.

A large set of subgroups is presented to a data analyst as a two dimensional
plot, corresponding to a chosen space of subgroups. Each point on the plot
is a different subgroup. The data analyst can inspect each of the subgroups
by clicking on the respective point. Each subgroup is displayed with its set of
conditions (which define the subgroup), its support, and the distribution of the
property of interest.

The approach is being used in a project for monitoring the quality of water
in a river. In this application, the properties of interest are the ones related with
the control of algal blooms, which may affect dramatically the quality of water.
The approach enables the data analyst to explore the causes for low diversity or
high density of algal species.
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