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Abstract 

As a dual algorithm to the Geiger-Girosi restoration scheme, a new segmentation method 
is introduced and used to demonstrate an approach to phoneme-boundary detection. Also 
we introduce a neural network suitable for this algorithm, which consists of sigmoid neurons 
and Sigma-Pi neurons. Experimental results show that the new algorithm is superior to the 
forward-backward algorithm and the Geiger-Girosi algorithm in terms of position accuracy and 
recognition accuracy as well as computational speed for phoneme-boundary detection. 

I. INTRODUCTION 

Many segmentation algorithms are based upon the divergence test [2], [8 ] ,  log-likelihood [3] 
or any other test-statistics [6], [9]. Among them, the divergence test shows prominent results. 
This algorithm is, however, very sensitive to threshold values, and critical misses may occur 
at vowel to  consonant(VC) transitions. In order to detect better the VC transition, Regine 
[2] proposed the forward-backward algorithm by introducing a backward search scheme to the 
divergence test. 

On the other hand, Geman and Geman [lo] introduced a generic stochastic framework for 
signal reconstruction, especially for optical images. Since then, some investigators [ll] ap- 
plied this paradigm into the speech signal processing. This approach, however, requires much 
computation time due to  simulated annealing. 

Recently Geiger and Girosi [5] proposed a fast method for the Geman algorithm using mean 
field approximation and saddle point appmzi~nation. This mean field solution was especially 
designed for signal restoration, and therefore shows poor estimates of line processes; in general, 
it tends t o  generate many false-alarms at  object boundaries. To overcome this problem, we 
propose an approach opposite to  this scheme, that is tailored to  obtain accurate boundaries with 
the help of less accurate restoration, and that is suitable for neural network implementation. 

11. SEGMENTATION FRAMEWORK 
A Markov process together with its boundary process is defined in the parameter space ( X ,  L )  

ofsizeN: X =  { X ( k ) ; k ~  {l, . . . ,N}}and L e { L ( k ) ; k ~  {l,...,N}},whereX(k)isasignal 
process in the form of time sequence, cepstrum, or short time Fourier transform defined at time 
k. Also L ( k )  E {0,1} is the so-called line process which determines the existence of discontinuity 
between X ( k  - 1) and X ( k ) .  We assume that from the hidden process ( X ,  L ) ,  the observation, 
Y = {Y(k) ;  k E { l , - - . , N } } ,  is generated with additive Gaussian noise. 

A 

A 

Based upon this stochastic model, we can find the MAP estimate of ( X ,  L )  from Y :  

where k(y) and i(y) are the estimates of the realizations x and 1, respectively. Since X and L 
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are Markov random fields, P(-) can be represented by the Gibbs distribution [7]: 

1 
P(X, 1lY) = - exp[-PUo(x, llY)l, (2) 

2 0  

where UO(. )  is an energy function, 1/P is a temperature constant, and 20 is a partition function: 

x 1  

Following Geman's strategy [lo], we can define UO(X, lly) as 

(4) 
A 

where A, 7 and U are weighting parameters, Nk = {k - 1, k - 2, - -, k - d }  is a dth neighborhood 
of L ( k ) ,  and 11 11 is the L,  norm. Here p is the dimension of the signal process. Notice that 
this energy function consists of the three terms: matching, smoothness, and a priori knowledge 
about discontinuity. Considering (1)-(4) together, we note that the MAP estimate (x*, 1*) is a 
minimizer of the functional UO(X, l ly),  as was first noticed by Geman [lo]. 

As a special case of (4), a weak membrane model is 

N 

uo(z, ~ I Y )  = C [ ( z ( k )  - ~ ( k ) ) ~  + X(1- l ( k ) ) ( z ( k )  - z(k - + 7l(k)I- (5) 
k = l  

To solve this equation, Geman [lo] proposed the Gibbs Sampler, and Blake and Zisserman [l] 
the graduated nonconwezity (GNC) algorithm, respectively. Recently, Geiger [5] derived a de- 
terministic relaxation solution. 

P + l ( k )  = Z ( k )  - p [ ( f 7 ( k )  - y ( k ) )  t X { ( Z T ( k )  - .'(k - 1))(1- q k ) )  
- ( q k  + 1 )  - % T ( k ) ) ( l  - F ( k  + l))}] ,  (6) 

1 { l'(') = l + e x p [ - P ( X l l Z r ( k ) - + ' ( k - 1 ) ( 0 - ~ ( k ) ) ] ~  

where T is an iteration index, and p a convergence rate. In particular, note that Z ( k )  is 
recursively improved but I"(k)  is indirectly estimated from f T ( k ) .  As a result, the resolution of 
I ' ( k )  is poor and an alternative approach is required. 

111. MEAN FIELD APPROXIMATION 

To begin with, let us introduce an auxiliary process s ( k )  having continuous value on real line: 

A 1 
l ( k )  = s (k)  E (--oo,oo). 

1 + exp( - P s ( k ) )  ' (7) 

Next, substituting (4) into (3) yields 

Approximating 20 by replacing z(k - 1) by the mean field value Z(k - 1) and applying saddle 
point approzimation to  s( k) will give 
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where C is a constant, and m(k) is defined as 

A y(k) + X ( 1  - l ( s ( k ) ) ) Z ( k  - 1) m(k) = 
1 + X ( 1 -  l ( s ( k ) ) )  

Shortly it will be shown that m(k) is indeed the mean of X ( k ) .  Note that (10) is a linear 
combination of the observation and the estimate Z(k - l ) ,  i.e., m(k) = ay(k) + (1 - a)z(k - 
l), 0 5. cy 5 1, where a = 1/{1 t X(1-  I ( s (k ) ) ) } .  Finally noting in (9) that X ( k )  is a Gaussian 
process with the mean m(k) and the variance, 1/{2p(1 t X ( 1 -  l ( s ( k ) ) ) ) } ,  we obtain 

A 

We can now derive S(k) and Z(k) from 2 0 .  First, the mean field f(k) can be represented by 
the partition function: 

1 00 

4 4 -  exp{-PUo(z, 4 Y ) )  d+), L 20 
Z(k) = 

(12) 
1 

= Y(k) - p , ( k ) F ( . ,  3, Y>, 

A where F is the free energy: F = - log Zo/p. As a result, substituting (11) into (12), we have 

Note that (??) is same as (lo), and that (13) represents an estimate %(k) from y(k) with an 
innovation (Z(k - 1) - y(k)) and a variance (1 + X ( 1 -  I ( S ( k ) ) ) )  as normalization factor. 

Finally, to  obtain an equilibrium solution of s(k), we set 

Next putting (11) into (14) results in (15). 
Therefore, we have the final result: 

Notice that fixed points of these equations are the mean field approximation of the MAP 
estimates of (1). The importance of this equation is the fact that it is actually dual to  the 
Geiger-Girosi equation (6). The major difference is that which of X ( k )  and L ( k )  is pursued at 
the cost of the other. 

As a neural network architecture to implement (15), we show a basic part for a time section 
k in Fig. 1. In this figure, the disks and boxes denote neurons and the solid disk represents a 
switch controlled by the line process L ( k ) .  
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Fig. 1.  A neural network at the section I C ;  the neighborhood size d = 1 is considered. 

IV. EXPERIMENTAL RESULTS 

As an application to  speech segmentation, we will find phoneme-boundaries. To compare its 
performance, we chose the forward-backward algorithm [2] and the Geiger-Girosi algorithm as 
typical references among many other segmentation algorithms [6], [8], [9]. 

The training database consists of 602 phoneme segments and is used to  determine the pa- 
rameters for the three segmentation algorithms. After then, the second database, consisting of 
2588 phoneme segments, is used to test the segmentation algorithms. 

To begin with, we divide a large speech sample into possibly overlapping blocks of N frames 
and process each block in a batch. The last detected position of the previous segmentation 
result will become the starting position of the current N frames. For the purpose of simplicity, 
we consider only the case where z(k) and y(k) are represented in pth order LPC cepstrum. In 
this experiment all spectrum analysis are done using 256 point rectangular window spaced with 
half window size. Cepstrum analysis with p = 16 is carried out by the LPC Burg algorithm 
along with the cepstrum Ziftering [4]. 

One of the most hardest problems in the MRF framework is to track the Markov parameters. 
In our case, we estimated the parameters by trial and error. Typical parameters are y = 
0.1, X = 0.1, and U = 1.8. Also the temperature 1/p is reduced by the schedule, l /p ( i )  = 
To/(l + log(i)), ( i  = 1, a ,  20). Here i is an annealing index and To is an initial temperature. 
In addition, at each fixed temperature, (15) is updated up to 40 times(r = 1,2,  

To compare our algorithm with the previous works, we implemented the forward-backward 
algorithm and the Geiger algorithm. Each algorithm is optimized so that it may give about the 
same number of segments as that of manual segmentation. In the forward-backward algorithm, 
we used (&,A,) = (0.2,400) and (6,,X,) = (0.8,SOO) [2], so as to get phonemic units. 

Some snapshot views of our algorithm are illustrated in Fig. 2. Note that the vertical bars 
in Fig. 2(a) shows the desired segmentation locations. As can be seen from Fig. 2(b) to  2(d), 
phoneme boundaries of abruptly changing points are detected first, and then less abrupt points 
appear. In this figures, the length of the vertical bars indicates the likelihood of boundaries. 

The comparison with the forward-backward algorithm and the Geiger-Girosi algorithm is 
shown in Fig. 3. As can be seen from this figure, the new algorithm performs very well. 

To estimate the performance quantitatively, we computed the miss and false-alarm rates and 
the position tolerance as shown in Fig. 4. We notice that the new algorithm performs well for 
any transitions such as CV, VV, VC, and CC on the average. 

Table I shows the recognition rate at  a typical position tolerance of f 4 2  msec. Here the 

.,40). 

4445 



(b) ( 4  
Fig. 2. Segmentation results (b)-(d) with the mannually segmented boundary (a). Here (b) results 

after 40 iteration(i = l) ,  (c) after 80(i = 2), (d) after 400(i = lo), respectively. 

Fig. 3. Segmentation results: (a) a test speech spectrum, (b) the forward-backward algorithm, (c) 
Geiger-Girosi algorithm, and (d) the new algorithm. 

performance index is the average of the miss and false-alarm rates, and the position tolerance 
of f42 msec corresponds to  d + 1 window rates(i.e., 512 samples). As can be seen from this 
table, the new algorithm shows about 5.3% and 33.8% better recognition rate than the forward- 
backward algorithm and the Geiger-Girosi mean field solution, respectively. 

Finally the new algorithm is c3(N2)  times faster for N speech frames than the forward- 
backward method achieving 0.75 phonemes boundaries per second by a 2.3 MFLOPS computer. 

V. CONCLUSION 
In conclusion, we derived a robust segmentation algorithm and its neural network architecture 

starting from the Geman algorithm and showed that it is actually dual to  the Geiger-Girosi 
algorithm which is especially designed to signal restoration. 
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Fig. 4. The miss (a) and false-alarm rates (b) with respect to the position tolerance. 

34.9%(903/2588) 43.3%(940/2171) 39.1% 

70.3%(18 19/2588) 64.5%(1918/2973) 67.4% 

29.9%(774/2588) 37.7%(1128/2991) 33.8% 

Also the experimental results show that the new algorithm is better, about 5.3% - 33.8% 
in recognition rate, than the forwadbackwad algorithm and the Geiger-Girosi mean field 
solution. 
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