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ABSTRACT 

Product units in the  hidden layer of multi layer neural ne tworks  provide a powerful mechanism for 
neural networks t o  e f ic ien t ly  learn higher-order combinations of inputs.  Training product unit networks 
using local optimization algorithms is difficult due  to a n  increased number  of local m i n i m a  and increased 
chances of network paralysis. This paper discusses the  problems wi th  using gradient descent to  train prod- 
uc t  unit neural networks,  and shows that particle s w a r m  optimization, genetic algorithms and LeapFrog 
are efficient alternatives to  successfully train product un i t  neural networks. 

I. INTRODUCTION 

Standard multilayer neural networks (NN) use summation units in the hidden and output layers to 
compute the net input signal to units. For summation units the net input signal is a weighted sum of the 
inputs connected to that unit. Research has shown that these summation unit neural networks (SUNN) 
can approximate any continuous function to an arbitrary degree of accuracy, provided that the hidden 
layers contain a sufficient number of hidden units [3], [7]. Product units ( P U )  present an alternative to 
compute the net input signal, with the advantages of increased information capacity and the ability to 
form higher-order combinations of inputs. Consequently, the network architecture can be reduced, and 
the error in approximation decreased. 

Several neural network architectures have been developed to incorporate higher-order terms. These 
architectures include second-order NNs [ la] ,  higher-order NNs [4], [13], sigma-pi NNs [6], functional link 
NNs [8] and product unit NNs [l], [lo], [ll].  This paper concentrates on the training of product unit 
neural networks (PUNN) .  

Gradient descent (GD) is possibly the most popular optimization algorithm to train multilayer NNs. 
While GD has shown to be successful in training SUNNS,  GD fails to train P U N N s  in general. P U S  
introduce more local minima, deep ravines and large valleys in the search space that trap or paralyze 
GD. These deficiencies of GD are discussed with reference to a specific function approximation problem. 
Global optimization algorithms are then investigated as an alternative approach to train PUNNs.  

Section I1 presents the training rule for P U N N s  using gradient descent. The search space of P U N N s  
and problems with GD are illustrated in section 111. A summary of the global optimization algorithms 
used in this study is given in section 111. Results are presented and discussed in section IV. 

11. PRODUCT UNIT TRAINING RULE 
Product unit neural networks were introduced by Durbin and Rumelhart [l], and further explored by 

Janson and Frenzel [lo] and Leerink e t  a1 [ll]. Instead of using the usual summation units where the 
net input signal is computed as 

I 
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product units are used, where 
I 

In equations (1) and (2) netvJ,, is the net input signal to unit yj for pattern p ,  zi,, is the activation value 
of unit zi for pattern p ,  uj, is the weight between units yj and zi, and I is the total number of units in 
the previous layer (including a bias unit). 

While Durbin and Rumelhart suggested two types of networks incorporating PUS [l], i.e. (1) each 
SU is directly connected to  the input units, and also connected to a group of dedicated PUS, and (2) 
alternating layers of product and summation units are used, terminating the network with a summation 
unit, this paper assumes a three layer NN with PUS only in the hidden layer and linear activation 
functions in all layers. Using this architecture, and assuming that the imaginary part can be removed 
(see [l] for a motivation of the removal of the imaginary part), 

where 

with . ~ i , ~  # 0 and 

If the mean squared error (MSE) is used as objective function, the error in approximation is 

where P is the total number of training patterns, h' is the number of outputs, tk,p is the desired output 
for the k-th output unit for a specific pattern p ,  and o k , ,  is the actual output of the NN. If GD is used, 
the change in hidden-to-output weights is as for standard SUS, i.e. 

For the input-to-hidden weights, the update equations change due to the PUS, with 

where SyJ,, is the usual back-propagated error signal. In equation (9), 

111. SEARCH SPACE FOR PRODUCT U N I T  NEURAL, NETWORKS 
A major advantage of product units is an increased information capacity compared to summation 

units [l], [ll]. Durbin and Rumelhart showed that the information capacity of a single PU (as measured 
by its capacity for learning random boolean patterns) is approximately 3 N ,  compared to 2N for a single 
SU ( N  is the number of inputs to the unit) [l]. The larger capacity means that functions approximated 
using PUS will require less processing elements than required if SUS were used. 
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Fig. 1. Illustration of P U  search space for f ( z )  = z3  

While P U N N s  provide an advantage in having smaller network architectures, a major drawback of 
PUS is an increased number of local minima, deep ravines and valleys. The search space for PUS is 
usually extremely convoluted. Gradient descent, which works best when the search space is relatively 
smooth, therefore frequently gets trapped in local minima or becomes paralyzed (which occurs when 
the gradient of the error with respect to the current weight is close to zero). Leerink et a1 illustrated 
that the 6-bit parity problem could not be trained using GD and P U S  [ll]. Two reasons were identified 
to explain why GD failed: (1) weight initialization and (2) the presence of local minima. The initial 
weights of a network is usually computed as small random numbers. Leerink et  a1 argued that this is 
the worst possible choice of initial weights, and suggested that larger initial weights be used instead. In 
our experience, GD only manages to train P U N N s  when the weights are initialized in close proximity of 
the optimal weight values [9] - the optimal weight values are, however, usually not available. 

As an example to illustrate the complexity of the search space for PUS, consider the approximat,ion 
of the function f ( z )  = z 3 ,  with z E [-1,1]. Only one P U  is needed, resulting in a 1-1-1 NN architecture 
(that is, one input, one hidden and one output unit). In this case the optimal weight values are v = 3 (the 
input-to-hidden weight) and w = 1 (the hidden-to-output weight). Figure 1 visualizes the search space 
for v E [-1,4] and w E [-1,1.5]. The error is computed as the mean squared error over 500 randomly 
generated patterns. Figure 1 clearly illustrates 3 minima, with the global minimum at v = 3 , w  = 1. 
Initial small random weights will cause the network to be trapped in one of the local minima (having 
very large MSE). Large initial weights may also be a bad choice. Assume an initial weight v 2 4. The 
derivative of the error with respect to v is extremely large due to the steep gradient of the error surface. 
Consequently, a large weight update will be made which may cause jumping over the global minimum. 
The neural network either becomes trapped in a local minimum, or oscillates between the extreme points 
of the error surface. 

A global optimization algorithm is rather needed to allow searching of larger parts of the search space. 
Simulated annealing [ l l ] ,  random search [ll] and genetic algorithms have already been used successfully 
to train P U N N s  [lo]. In this paper we show that PSO and LeapFrog are other efficient candidates to 
train PUNNs .  The paper also shows that random search is an inefficient approach to train PUNNs.  

A short summary of the global optimization algorithms used for this study is given below: 
Random Search: At each epoch randomly perturb a weight vector with uniform noise until the 
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specified number of epochs or the MSE threshold has been reached. The solution is the weight 
vector that  corresponds to  the lowest MSE on the test set. 
Particle Swarm Optimization (PSO): PSO is a population based search procedure where the 
individuals, referred to  as particles, are grouped into a swarm [2]. Each particle in the swarm 
represents a candidate solution to  the optimization problem. Each particle is “flown” through the 
multidimensional search space, adjusting its position in search space according to own experience 
and that of neighboring particles. A particle therefore makes use of the best position encountered 
by itself and the best position of neighbors to  position itself towards the global minimum. The 
performance of each particle is measured as the MSE on the training set. For the purposes of this 
study, a particle represents the weight vector of a NN, including biases. 
Genetic Algorithms (GA): GAS are based on the principle of natural evolution where principles 
such as survival of the fittest, natural selection, reproduction and mutation are used to produce a 
“best” individual [5]. In a GA,  a population of individuals compete to survive. Each individual 
represents one candidate solution, which is, in our case, a weight vector (including biases) of a NN. 
The survival strength, or fitness, of an individual is measured as a function of the MSE on the 
training set, i.e. f(G) = 1/(1 + MSE(G)) .  Each weight is mapped into a 30 bit binary number, 

. The top 20% of each population is culled, and two-point crossover is used with 
random selection. However, 40% of the new generation is created through crossover where at least 
one of the parents is in the top 20% of the current population. Random mutation is used. 
Leapfiog Optimization (LFOP): LeapFrog is an optimization approach based on the physical 
problem of the motion of a particle of unit mass in an n-dimensional conservative force field [14]. 
The potential energy of the particle in the force field is represented by the function to be minimized 
- in the case of NNs, the potential energy is the MSE. The objective is to conserve the total energy 
of the particle within the force field, where the total energy consists of the particle’s potential and 
kinetic energy. The optimization method simulates the motion of the particle, and by monitoring 
the kinetic energy, an interfering strategy is adapted to appropriately reduce the potential energy. 

w-w P 3 0  - 1) w m a = - x i *  

IV. EXPERIMENTAL RESULTS 

This section applies the global optimization algorithms listed above to the following functions: 
The quadratic function f ( z )  = z2, with z - U(-l,  1). The training and test sets consisted of 50 
distinct randomly selected patterns. A 1-1-1 PUNN was used. The following optimal parameter 
values were used for PSO: an  acceleration constant of 1.0, maximum velocity of 1.5, initial weights 
in the range [-0.925,0.925], and 50 particles. The optimal parameter values used for the GA were 
a 0.01 probability of mutation, a 0.7 probability of crossover, an a population of 50 individuals. 
The cubic function f ( z )  = z3 - O.O4z, with z - U(- l ,  1). The training and test sets consisted of 
50 distinct randomly selected patterns. A 1-2-1 PUNN was used. The optimal parameter values 
used for PSO were an acceleration of 1.0, maximum velocity of 1.0, initial weights in the range 
[-0.95,0.95] and 50 particles. For the GA, the optimal parameter values were a 0.01 probability of 
mutation, a 0.7 probability of crossover, and a population of 50 individuals. 
The henon-map zt = 1 + 0 . 3 ~ ~ ~ 2  - 1.4z&,, with z1,zg - U ( - l , l ) .  The training and test sets 
consisted of 200 distinct randomly selected patterns. A 1-5-1 PUNN architecture was used. PSO 
used the following optimal parameter values: an acceleration of 0.1, maximum velocity of 0.1, initial 
weights in the range [-0.875,0.875] and 50 particles. For the GA a 0.005 probability of mutation, 
a 0.7 probability of crossover and a population of 100 individuals. 

Thirty simulations were performed for each of the global optimization algorithms using PUS. Different 
training sets and initial weights were used for each of the simulations. Each simulation was executed for 
500 epochs, where an epoch is one training pass through the training set. Results reported are averages 
over the 30 simulations and 95% confidence intervals as obtained from the t-distribution. 

Table I summarizes the average mean squared error for the training and test sets after 500 epochs 
for each problem and optimization algorithm. In addition, figure 2 illustrates the learning profiles for 
each optimization method for the test set (as measure of generalization performance). Table I1 lists the 
average number of epochs to reach specified generalization levels. 

Random selection with PUS showed to be inefficient over the 500 epochs. PSO and GA gave substan- 
tially better training errors and generalization for the quadratic and cubic functions. For the henon-map 
PSO and GA achieved very good results. However, LeapFrog perform the best. Figure 2 illustrates that 
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Generalization Levels 
0.1 0.01 0.001 0.0001 
2.47 f 0.70 31.37 f 9.38 113.27 f 29.37 326.07 f 88.10 
2.13 f 0.73 97.03 f 30.87 315.30 f 109.38 1207.97 f 340.77 
69.33 f 15.40 284.30 f 97.72 485.53 f 105.63 906.60 f 74.32 
3.50 f 0.94 19.00 f 3.77 87.60 f 49.10 172.30 f 64.86 
2.00 f 0.62 73.70 f 16.59 392.50 f 190.24 1193.50 f 447.69 
36.30 f 5.41 149.90 f 45.79 459.80 f 37.49 489.90 f 19.80 
63.10 f 12.47 69.50 f 9.55 149.90 f 82.34 165.90 f 70.76 
49.80 f 7.47 72.50 f 8.20 145.40 f 90.75 237.50 f 91.97 
53.20 f 10.46 85.0 f 12.56 123.20 f 58.00 152.50 f 68.35 
356.21 f 3.54 500.00 f 22.36 - 
477.92 & 6.74 500.00 f 22.36 - 
- 

Average Mean 
Training set 
0.000117 f 0.000088 
0.000075 f 0.000056 
0.005738 f 0.004482 
0.000272 f 0.000286 
0.000214 f 0.000169 
0.007233 f 0.005299 
0.001583 f 0.000725 
0.001554 f 0.001135 
0.000947 f 0.001284 
0.035612 f 0.015555 
0.100760 f 0.022660 
2.932112 f 0.081377 

3quared Error 
Test set 
0.000116 f 0.000079 
0.000270 f 0.000417 
0.007176 f 0.005345 
0.000407 f 0.000437 
0.000487 f 0.000637 
0.010576 f 0.009243 
0.001930 f 0.000899 
0.002203 f 0.001737 
0.000901 f 0.001223 
0.038345 f 0.014542 
0.096286 * 0.019692 
3.129933 f 0.074526 

TABLE I 
MEAN SQUARED ERROR RESULTS 

PSO and GA have larger reductions in error early in training, reaching low errors using substantially less 
training epochs (also refer to  table 11). To reach MSE levels less than 0.001, LFOP showed to use much 
less epochs than do PSO and GA. These results suggest that evolutionary approaches such as PSO and 
GAS be used for an initial training step, and that LFOP be used to refine the weights to lower errors. 

V. CONCLUSIONS 
This paper discussed the deficiencies of local optimization algorithms, such as gradient descent, to train 

product unit neural networks. The problems associated with the search space of PUNNs were discussed. 
Experimental results have shown that particle swarm optimization, genetic algorithms and LeapFrog 
optimization are efficient in training PUNNs. Excellent approximation accuracies were obtained within 
the 500 epoch limit. PSO and GAS have shown to reach low errors very early in training. 

Future work on PUS will include a comparison of PUNNs with SUNNS to determine what is gained 
by using PUS. This investigation will test the hypotheses that PUNNs are more accurate, faster and use 
smaller architectures. 
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Fig. 2. PSO, L F O P  and  GA generalization 
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