
Global Optimization Algorithms for
Trainihg Product Unh Neural

v

Networks
A Ismailt and AP Engelbrechtt

tDepartment of Computer Science, University of Western Cape, South Africa,
aismail@uwc. ac. za

$Department of Computer Science, University of Pretoria, South Africa,
engel@driesie.cs.up.ac.za

ABSTRACT

Product units in the hidden layer of multi layer neural ne tworks provide a powerful mechanism for
neural networks t o e f ic ien t ly learn higher-order combinations of inputs. Training product unit networks
using local optimization algorithms is difficult due to a n increased number of local m i n i m a and increased
chances of network paralysis. This paper discusses the problems wi th using gradient descent to train prod-
uc t unit neural networks, and shows that particle s w a r m optimization, genetic algorithms and LeapFrog
are efficient alternatives to successfully train product un i t neural networks.

I. INTRODUCTION

Standard multilayer neural networks (NN) use summation units in the hidden and output layers to
compute the net input signal to units. For summation units the net input signal is a weighted sum of the
inputs connected to that unit. Research has shown that these summation unit neural networks (SUNN)
can approximate any continuous function to an arbitrary degree of accuracy, provided that the hidden
layers contain a sufficient number of hidden units [3], [7]. Product units (P U) present an alternative to
compute the net input signal, with the advantages of increased information capacity and the ability to
form higher-order combinations of inputs. Consequently, the network architecture can be reduced, and
the error in approximation decreased.

Several neural network architectures have been developed to incorporate higher-order terms. These
architectures include second-order NNs [la] , higher-order NNs [4], [13], sigma-pi NNs [6], functional link
NNs [8] and product unit NNs [l], [lo], [ll]. This paper concentrates on the training of product unit
neural networks (PUNN) .

Gradient descent (GD) is possibly the most popular optimization algorithm to train multilayer NNs.
While GD has shown to be successful in training SUNNS, GD fails to train P U N N s in general. P U S
introduce more local minima, deep ravines and large valleys in the search space that trap or paralyze
GD. These deficiencies of GD are discussed with reference to a specific function approximation problem.
Global optimization algorithms are then investigated as an alternative approach to train PUNNs.

Section I1 presents the training rule for P U N N s using gradient descent. The search space of P U N N s
and problems with GD are illustrated in section 111. A summary of the global optimization algorithms
used in this study is given in section 111. Results are presented and discussed in section IV.

11. PRODUCT UNIT TRAINING RULE
Product unit neural networks were introduced by Durbin and Rumelhart [l], and further explored by

Janson and Frenzel [lo] and Leerink e t a1 [ll]. Instead of using the usual summation units where the
net input signal is computed as

I

132
0-7695-06 19-4/00 $10.00 0 2000 IEEE

product units are used, where
I

In equations (1) and (2) netvJ,, is the net input signal to unit yj for pattern p , zi,, is the activation value
of unit zi for pattern p , uj, is the weight between units yj and zi, and I is the total number of units in
the previous layer (including a bias unit).

While Durbin and Rumelhart suggested two types of networks incorporating PUS [l], i.e. (1) each
SU is directly connected to the input units, and also connected to a group of dedicated PUS, and (2)
alternating layers of product and summation units are used, terminating the network with a summation
unit, this paper assumes a three layer NN with PUS only in the hidden layer and linear activation
functions in all layers. Using this architecture, and assuming that the imaginary part can be removed
(see [l] for a motivation of the removal of the imaginary part),

where

with . ~ i , ~ # 0 and

If the mean squared error (MSE) is used as objective function, the error in approximation is

where P is the total number of training patterns, h' is the number of outputs, tk,p is the desired output
for the k-th output unit for a specific pattern p , and o k , , is the actual output of the NN. If GD is used,
the change in hidden-to-output weights is as for standard SUS, i.e.

For the input-to-hidden weights, the update equations change due to the PUS, with

where SyJ,, is the usual back-propagated error signal. In equation (9),

111. SEARCH SPACE FOR PRODUCT U N I T NEURAL, NETWORKS
A major advantage of product units is an increased information capacity compared to summation

units [l], [ll]. Durbin and Rumelhart showed that the information capacity of a single PU (as measured
by its capacity for learning random boolean patterns) is approximately 3 N , compared to 2N for a single
SU (N is the number of inputs to the unit) [l]. The larger capacity means that functions approximated
using PUS will require less processing elements than required if SUS were used.

133

200
+

1 8 0

160

140

1 2 0

Y - 100 x

80

60

40

20

0

+
t

+

t * * * . I . * *+*: * +
* +F

- 1 -0.5 0 0.5 1 1 . 5 2 2-53 3 3.5 "

Fig. 1. Illustration of P U search space for f (z) = z3

While P U N N s provide an advantage in having smaller network architectures, a major drawback of
PUS is an increased number of local minima, deep ravines and valleys. The search space for PUS is
usually extremely convoluted. Gradient descent, which works best when the search space is relatively
smooth, therefore frequently gets trapped in local minima or becomes paralyzed (which occurs when
the gradient of the error with respect to the current weight is close to zero). Leerink et a1 illustrated
that the 6-bit parity problem could not be trained using GD and P U S [ll]. Two reasons were identified
to explain why GD failed: (1) weight initialization and (2) the presence of local minima. The initial
weights of a network is usually computed as small random numbers. Leerink et a1 argued that this is
the worst possible choice of initial weights, and suggested that larger initial weights be used instead. In
our experience, GD only manages to train P U N N s when the weights are initialized in close proximity of
the optimal weight values [9] - the optimal weight values are, however, usually not available.

As an example to illustrate the complexity of the search space for PUS, consider the approximat,ion
of the function f (z) = z 3 , with z E [-1,1]. Only one P U is needed, resulting in a 1-1-1 NN architecture
(that is, one input, one hidden and one output unit). In this case the optimal weight values are v = 3 (the
input-to-hidden weight) and w = 1 (the hidden-to-output weight). Figure 1 visualizes the search space
for v E [-1,4] and w E [-1,1.5]. The error is computed as the mean squared error over 500 randomly
generated patterns. Figure 1 clearly illustrates 3 minima, with the global minimum at v = 3 , w = 1.
Initial small random weights will cause the network to be trapped in one of the local minima (having
very large MSE). Large initial weights may also be a bad choice. Assume an initial weight v 2 4. The
derivative of the error with respect to v is extremely large due to the steep gradient of the error surface.
Consequently, a large weight update will be made which may cause jumping over the global minimum.
The neural network either becomes trapped in a local minimum, or oscillates between the extreme points
of the error surface.

A global optimization algorithm is rather needed to allow searching of larger parts of the search space.
Simulated annealing [l l] , random search [ll] and genetic algorithms have already been used successfully
to train P U N N s [lo]. In this paper we show that PSO and LeapFrog are other efficient candidates to
train PUNNs . The paper also shows that random search is an inefficient approach to train PUNNs.

A short summary of the global optimization algorithms used for this study is given below:
Random Search: At each epoch randomly perturb a weight vector with uniform noise until the

134

specified number of epochs or the MSE threshold has been reached. The solution is the weight
vector that corresponds to the lowest MSE on the test set.
Particle Swarm Optimization (PSO): PSO is a population based search procedure where the
individuals, referred to as particles, are grouped into a swarm [2]. Each particle in the swarm
represents a candidate solution to the optimization problem. Each particle is “flown” through the
multidimensional search space, adjusting its position in search space according to own experience
and that of neighboring particles. A particle therefore makes use of the best position encountered
by itself and the best position of neighbors to position itself towards the global minimum. The
performance of each particle is measured as the MSE on the training set. For the purposes of this
study, a particle represents the weight vector of a NN, including biases.
Genetic Algorithms (GA): GAS are based on the principle of natural evolution where principles
such as survival of the fittest, natural selection, reproduction and mutation are used to produce a
“best” individual [5]. In a GA, a population of individuals compete to survive. Each individual
represents one candidate solution, which is, in our case, a weight vector (including biases) of a NN.
The survival strength, or fitness, of an individual is measured as a function of the MSE on the
training set, i.e. f(G) = 1/(1 + MSE(G)) . Each weight is mapped into a 30 bit binary number,

. The top 20% of each population is culled, and two-point crossover is used with
random selection. However, 40% of the new generation is created through crossover where at least
one of the parents is in the top 20% of the current population. Random mutation is used.
Leapfiog Optimization (LFOP): LeapFrog is an optimization approach based on the physical
problem of the motion of a particle of unit mass in an n-dimensional conservative force field [14].
The potential energy of the particle in the force field is represented by the function to be minimized
- in the case of NNs, the potential energy is the MSE. The objective is to conserve the total energy
of the particle within the force field, where the total energy consists of the particle’s potential and
kinetic energy. The optimization method simulates the motion of the particle, and by monitoring
the kinetic energy, an interfering strategy is adapted to appropriately reduce the potential energy.

w-w P 3 0 - 1) w m a = - x i *

IV. EXPERIMENTAL RESULTS

This section applies the global optimization algorithms listed above to the following functions:
The quadratic function f (z) = z2, with z - U(-l, 1). The training and test sets consisted of 50
distinct randomly selected patterns. A 1-1-1 PUNN was used. The following optimal parameter
values were used for PSO: an acceleration constant of 1.0, maximum velocity of 1.5, initial weights
in the range [-0.925,0.925], and 50 particles. The optimal parameter values used for the GA were
a 0.01 probability of mutation, a 0.7 probability of crossover, an a population of 50 individuals.
The cubic function f (z) = z3 - O.O4z, with z - U(- l , 1). The training and test sets consisted of
50 distinct randomly selected patterns. A 1-2-1 PUNN was used. The optimal parameter values
used for PSO were an acceleration of 1.0, maximum velocity of 1.0, initial weights in the range
[-0.95,0.95] and 50 particles. For the GA, the optimal parameter values were a 0.01 probability of
mutation, a 0.7 probability of crossover, and a population of 50 individuals.
The henon-map zt = 1 + 0 . 3 ~ ~ ~ 2 - 1.4z&,, with z1,zg - U (- l , l) . The training and test sets
consisted of 200 distinct randomly selected patterns. A 1-5-1 PUNN architecture was used. PSO
used the following optimal parameter values: an acceleration of 0.1, maximum velocity of 0.1, initial
weights in the range [-0.875,0.875] and 50 particles. For the GA a 0.005 probability of mutation,
a 0.7 probability of crossover and a population of 100 individuals.

Thirty simulations were performed for each of the global optimization algorithms using PUS. Different
training sets and initial weights were used for each of the simulations. Each simulation was executed for
500 epochs, where an epoch is one training pass through the training set. Results reported are averages
over the 30 simulations and 95% confidence intervals as obtained from the t-distribution.

Table I summarizes the average mean squared error for the training and test sets after 500 epochs
for each problem and optimization algorithm. In addition, figure 2 illustrates the learning profiles for
each optimization method for the test set (as measure of generalization performance). Table I1 lists the
average number of epochs to reach specified generalization levels.

Random selection with PUS showed to be inefficient over the 500 epochs. PSO and GA gave substan-
tially better training errors and generalization for the quadratic and cubic functions. For the henon-map
PSO and GA achieved very good results. However, LeapFrog perform the best. Figure 2 illustrates that

135

PSO quadratic

PSO quadratic
cubic
henon-map

cubic
henon-map

cubic
henon-map

GA quadratic

LFOP quadratic

RS quadratic
cubic
henon-map

cubic
henon-map

cubic
henon-map

cubic
henon-map

cubic
henon-map

GA quadratic

LFOP quadratic

RS quadratic

Generalization Levels
0.1 0.01 0.001 0.0001
2.47 f 0.70 31.37 f 9.38 113.27 f 29.37 326.07 f 88.10
2.13 f 0.73 97.03 f 30.87 315.30 f 109.38 1207.97 f 340.77
69.33 f 15.40 284.30 f 97.72 485.53 f 105.63 906.60 f 74.32
3.50 f 0.94 19.00 f 3.77 87.60 f 49.10 172.30 f 64.86
2.00 f 0.62 73.70 f 16.59 392.50 f 190.24 1193.50 f 447.69
36.30 f 5.41 149.90 f 45.79 459.80 f 37.49 489.90 f 19.80
63.10 f 12.47 69.50 f 9.55 149.90 f 82.34 165.90 f 70.76
49.80 f 7.47 72.50 f 8.20 145.40 f 90.75 237.50 f 91.97
53.20 f 10.46 85.0 f 12.56 123.20 f 58.00 152.50 f 68.35
356.21 f 3.54 500.00 f 22.36 -
477.92 & 6.74 500.00 f 22.36 -
-

Average Mean
Training set
0.000117 f 0.000088
0.000075 f 0.000056
0.005738 f 0.004482
0.000272 f 0.000286
0.000214 f 0.000169
0.007233 f 0.005299
0.001583 f 0.000725
0.001554 f 0.001135
0.000947 f 0.001284
0.035612 f 0.015555
0.100760 f 0.022660
2.932112 f 0.081377

3quared Error
Test set
0.000116 f 0.000079
0.000270 f 0.000417
0.007176 f 0.005345
0.000407 f 0.000437
0.000487 f 0.000637
0.010576 f 0.009243
0.001930 f 0.000899
0.002203 f 0.001737
0.000901 f 0.001223
0.038345 f 0.014542
0.096286 * 0.019692
3.129933 f 0.074526

TABLE I
MEAN SQUARED ERROR RESULTS

PSO and GA have larger reductions in error early in training, reaching low errors using substantially less
training epochs (also refer to table 11). To reach MSE levels less than 0.001, LFOP showed to use much
less epochs than do PSO and GA. These results suggest that evolutionary approaches such as PSO and
GAS be used for an initial training step, and that LFOP be used to refine the weights to lower errors.

V. CONCLUSIONS
This paper discussed the deficiencies of local optimization algorithms, such as gradient descent, to train

product unit neural networks. The problems associated with the search space of PUNNs were discussed.
Experimental results have shown that particle swarm optimization, genetic algorithms and LeapFrog
optimization are efficient in training PUNNs. Excellent approximation accuracies were obtained within
the 500 epoch limit. PSO and GAS have shown to reach low errors very early in training.

Future work on PUS will include a comparison of PUNNs with SUNNS to determine what is gained
by using PUS. This investigation will test the hypotheses that PUNNs are more accurate, faster and use
smaller architectures.

136

(c) Henon M a p

Fig. 2. PSO, L F O P and GA generalization

REFERENCES
[l]

[2]
[3]

[4]

[5]
[6]
[7)

[8]

(91

R Durbin and D Rumelhart, Product Units: A Computationally Powerful and Biologically Plausible Extension to
Backpropagation Networks, Neural Computation, Vol 1 , p p 133.142, 1989.
RC Eberhart, RW Dobbins and P Simpson, Computational Intelligence PC Tools, Academic Press, 1996.
K-I Funahashi, O n the Approximate Realization of Continuous Mappings b y Neural Networks, Neural Networks, Vol
2, p p 183-192, 1989.
C Lee Giles, Learning, Invariance, and Generalization in Higher-Order Neural Networks, Applied Optics, 26(23), pp
4972-4978, 1987.
DE Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
KN Gurney, Training Nets of Hardware Realizable Sigma-Pi Units, Neural Networks, Val 5, pp 289-303, 1992.
K Hornik, M Stinchcombe, H White, Universal Approximation of an Unknown Mapping and Its Derivatives using
Multilayer Feedforward Networks, Neural Networks, Vol 3, pp 551-560, 1990.
A Hussain, J J Soraghan, TS Durbani, A New Neural Network fo r Nonlinear Time-Series Modelling, NeuroVest
Journal, pp 16-26, Jan 1997.
A Ismail and AP Engelbrecht, Pain ing Product Units i n Feedforward Neural Networks using Particle Swarm Opti-
mization, In: Development and Practice of Artificial Intelligence Techniques, VB Bajic, D Sha (eds), Proceedings of
the International Conference on Artificial Intelligence, Durban, South Africa, pp 36-40, 1999.

[lo] DJ Janson and JF Frenzel, Pain ing Product Unit Neuml Networks with Genetic Algorithms, IEEE Expert Magazine,
pp 26-33, October 1993.

[ll] LR Leerink, C Lee Giles, BG Horne and MA Jabri, Learning with Product Units, Advances in Neural Information
Processing Systems, Vol 7, p p 537, 1995.

[12] S MilenkoviC, Z ObradoviC and V Litovski, Annealing Based Dynamic Learning in Second-Order Neural Networks,
Technical Report, Department of Electronic Engineering, University of Nis, Yugoslavia, 1996.

[13] NJ Redding, A Kowalczyk and T Downs, Constructive Higher-Order Network Algorzthm that is Polynomial in T i m e ,
Neural Networks, Val 6, pp 997-1010, 1993.

[14] J A Snyman, A n Improved Verszon of the Original LeapFrog Dynamic Method for Unconstrained Minimization:
LFOPl lb) , Applied Mathematical Modelling, Vol 7, pp 216-218, June 1983.

137

