

Abstract— We propose a classification method based on a
special class of feed-forward neural network, namely
product-unit neural networks. They are based on
multiplicative nodes instead of additive ones, where the
nonlinear basis functions express the possible strong
interactions among the variables. We apply an evolutionary
algorithm to determine the basic structure of the product-
unit model and to estimate the coefficients of the model. The
empirical results show that the proposed model is very
promising in terms of classification accuracy, yielding a state-
of-the-art performance.

I. INTRODUCTION
he simplest method for classification provides the
class level given its observation via linear functions in

the predictor variables. This process of model fitting is
quite stable, resulting in low variance but a potentially
high bias. Frequently, in a real-problem of classification,
we cannot make the stringent assumption of additive and
purely linear effects of the variables. A traditional
technique to overcome these difficulties is to
augment/replace the input vector with new variables, basis
functions, which are transformations of the input
variables, and then to use linear models in this new space
of derived input features. One approach would be to
augment the inputs with polynomial terms to achieve
higher-order Taylor expansions, for example, with
quadratic terms and multiplicative interactions. Once the
number and the structure of the basis functions have been
determined, the models are linear in these new variables
and the fitting is a standard procedure. Methods like
sigmoidal feed-forward neural networks [1], projection
pursuit learning [2], generalized additive models [3] and
PolyMARS [4], a hybrid of multivariate adaptive splines
(MARS) [5] specifically designed to handle classification

This work has been financed in part by TIN 2005-08386-C05-02
projects of the Spanish Inter-Ministerial Commission of Science and
Technology (MICYT) and FEDER funds.

F. J. Martínez is with Department of Management and Quantitative
Methods, ETEA, Escritor Castilla Aguayo 4, 14005, Córdoba, Spain,
(corresponding author, phone +34957222120; fax +34957222107;
email:fjmestud@etea.com).

C. Hervás is with Department of Computing and Numerical Analysis
of the University of Córdoba, Campus de Rabanales, 14071, Córdoba,
Spain (email: chervas@uco.es).

P. A. Gutiérrez is with Department of Computing and Numerical
Analysis of the University of Córdoba, Campus de Rabanales, 14071,
Córdoba, Spain (email:zamarck@yahoo.es).

problems, can be seen as different basis functions models.
The major drawback of these approaches is to state the
number and the typology of the corresponding basis
functions.
We tackle this problem by proposing a nonlinear model
and an evolutionary algorithm that finds the optimal
structure of the model and estimates the corresponding
parameters. Concretely, our approach tries to overcome
the nonlinear effects of the variables proposing a model
based on nonlinear basis functions constructed with the
product of the inputs raised to arbitrary powers. These
basis functions express the possible strong interactions
between the variables, where the exponents are not fixed
and may even take real values. Moreover, we avoid the
huge number of coefficients involved in the polynomial
model. The proposed model corresponds to a special class
of feed-forward neural network, namely product-unit
neural networks, PUNN, introduced by Durbin and
Rumelhart [6]. They are an alternative to standard
sigmoidal neural networks (when a sufficient number of
highly correlated input variables exist) and are based on
multiplicative nodes instead of additive ones.
Unfortunately, the error surface associated with product-
unit neural networks is extremely convoluted with
numerous local optima and plateaus.
On the other hand, classical training algorithms assume a
fixed architecture; nevertheless it is very difficult to know
a priori the most suitable structure of the network for a
given problem. There have been many attempts to design
the architecture automatically, such as constructive and
pruning algorithms [7], [8]. However, these methods are
susceptible to becoming trapped at structural local optima.
Evolutionary artificial neural networks (EANNs) have
been a key research area in the past decade providing a
better platform for optimizing both network performance
and architecture simultaneously. Miller et al. [9] proposed
that evolutionary computation was a very good candidate
to be used to search the space of architectures because the
fitness function associated with that space is complex,
noisy, non-differentiable, multi-modal and deceptive.
Since then, many evolutionary programming methods
have been developed for evolving artificial neural
networks, see for example [10-15]. Stanley and
Miikkulainen, [16], demonstrate that evolving

Classification by means of Evolutionary Product-Unit Neural
Networks

César Hervás, Francisco J. Martínez, and Pedro A. Gutiérrez

T

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1525

structure along with connection weights can significantly
enhance the performance of the neural network.
Therefore, evolutionary algorithms are better candidates
to design a near optimal architecture than the constructive
and pruning algorithms mentioned before. This fact,
together with the complexity of the error surface
associated with a product-unit neural network, justifies the
use of an evolutionary algorithm (EA) to design the
structure and training of the weights. The evolutionary
process determines the number of basis functions of the
model, the associated coefficients and the corresponding
exponents.
In our approach, we encourage parsimony of evolved
networks by attempting different mutations sequentially,
where deletion and fusion mutations are made with higher
probability than addition ones. Similar to the EPNet
model [11], our experimental results show that evolving
parsimonious networks by sequentially applying different
mutations is an alternative to the use of a regularization
term in the fitness function to penalize large networks.
We evaluate the performance of our methodology on four
data sets taken from the UCI repository [17]. The
empirical results show that the proposed method performs
well compared to several learning classification
techniques. We obtain a classifier with very promising
results in terms of classification accuracy and the
complexity of the classifier.
This paper is organized as follows: Section II is dedicated
to a description of product-unit based neural networks;
Section III, describes the evolution of product-unit neural
networks; Section IV explains the experiments carried
out; and finally, Section V summarizes the conclusions of
our work.

II. PRODUCT- UNIT NEURAL NETWORKS
In this section we present the family of functions used

in the classification process and its representation by
means of a neural network structure. An alternative to the
standard sigmoidal neural networks are the networks
based on multiplicative nodes instead of additive ones.
This class of multiplicative neural networks comprise
such types as sigma-pi networks and product unit
networks. A multiplicative node is given by:

1

ji
k

w
j i

i

y x
=

= ∏

where k is the number of the inputs. If the exponents are
{0,1} we obtain a higher-order unit, also known by the
name of sigma-pi unit. In contrast to the sigma-pi unit, in
the product-unit the exponents are not fixed and may even
take real values. Advantages of product-unit based neural
networks (PUNNs) are increased information capacity and
the ability to form higher-order combinations of the
inputs. Durbin and Rumelhart [6] determined empirically

that the information capacity of product units (measured
by their capacity for learning random Boolean patterns) is
approximately 3N , compared to 2N of a network with
additive units for a single threshold logic function, where
N denotes the number of inputs to the network. On the
other hand, it is possible to obtain upper bounds of the VC
dimension of product-unit neural networks similar to
those obtained for sigmoidal neural networks [18].
Finally, it is a straightforward consequence of the Stone-
Weierstrass Theorem to prove that product-unit neural
networks are universal approximators, (observe that the
set of polynomial functions in several variables is a subset
of the product-unit models).
Despite these advantages, product-unit based neural
networks have a major drawback. Networks based on
product units have more local minima and more
probability of becoming trapped in them [19], [20]. The
main reason for this difficulty is that small changes in the
exponents can cause large changes in the total error
surface. Because of this, their training is more difficult
than the training of standard sigmoidal based networks. It
is a well known problem [21] that back-propagation is not
efficient in training product units.
Several efforts have been made to carry out learning
methods for product units. Janson and Frenzel [21]
developed a genetic algorithm for evolving the weights of
a network based on product units with a predefined
architecture. The major problem of this kind of algorithm
is how to obtain the optimal architecture beforehand.
Ismail and Engelbrecht [19], [20] applied four different
optimization methods to train product unit neural
networks: random search, particle swarm optimization,
genetic algorithms, and leapfrog optimization. They
concluded that random search is not efficient in training
this type of network, and that the other three methods
show an acceptable performance in three problems of
function approximation with low dimensionality. In a
posterior paper [22] they used a pruning algorithm to
develop the structure as well as the training of the weights
of a product-unit based neural network. Leerink et al. [23]
tested different local and global optimization methods for
product-unit networks. Their results show that local
methods, such as backpropagation, are prone to be trapped
in local minima, and that global optimization methods,
such as simulated annealing and random search, are
impractical for larger networks. They suggested some
heuristics to improve backpropagation, and the
combination of local and global search methods. In short,
the works carried out on PUNNs have not tackled the
problem of the design of both the structure and weights,
either using classic or evolutionary based methods.
Moreover, in the above mentioned papers, product-unit
based neural networks have been applied mainly to solve
regression problems.

1526

On the other hand, it is interesting to note that a
problem arises with networks containing product units
that receive negative inputs and have weights that are not
integers. A negative number raised to some non-integer
power yields a complex number. Since neural networks
with complex outputs are rarely used in applications,
Durbin and Rumelhart [6] suggest discarding the
imaginary part and using only the real component for
further processing. This manipulation would have
disastrous consequences for the VC dimension when we
consider real–valued inputs. No finite dimension bounds
can in general be derived for networks containing such
units [18]. To avoid this problem, the input domain is
restricted, and we consider the set given by
{ }1 2(, ,...,) : 0, 1, 2,...,k

k ix x x x i k∈ > =R .

We consider a product-unit neural network with the
following structure (Fig. 1): an input layer with a node for
every input variable, a hidden layer with several nodes,
and an output layer with c nodes, one for each category.
There are no connections between the nodes of a layer and
none between the input and output layers either. The
activation function of the j-th node in the hidden layer is

given by
1

(,) ji
k

w
j j i

i

B x
=

= ∏x w where jiw is the weight of

the connection between input node i and hidden node j .
The activation function of each output node is given by:

0
1

()
m

l l
j

j
Bβ β

=
+∑ jx,w

 where l
jβ is the weight of the connection between the

hidden node j and the output node l . The transfer
function of all output nodes is the sigmoidal function

1()
1 tt

e
σ −=

+
. In this way, the signal from each output is

a function ()lg x given by:

0
1 1

() ji
km

wl l
l j i

j i

g xσ β β
= =

 = +

∑ ∏x

Our predictor ()G x takes values in a discrete set Λ

with c classes. We have c such indicators, lY ,
1, 2,...,l c= , with 1lY = if G l= , or else 0lY = . The

rule of classification considered is: Given a new
observation with an input x , we compute the fitted output
vector ˆ ()lg x , identify the largest component and classify

accordingly ˆ ˆ() arg max ()ll
G g

∈∧
=x x .

Fig. 1. Model of a product-unit based neural network.

III. EVOLUTIONARY ALGORITHM
We use an evolutionary algorithm to design the structure
and learn the weights of product-unit neural networks.
The search begins with an initial population, and, in each
iteration, the population is updated using a population-
update algorithm. The population is subjected to the
operations of replication and mutation. Crossover is not
used due to its potential disadvantages in evolving
artificial networks [10], [11]. With these features the
algorithm falls into the class of evolutionary programming
[24], [25]. The general structure of the EA is the
following:
(1) Generate a random population of size N .
(2) Repeat until the stopping criterion is fulfilled

(a) Calculate the fitness of every individual in the
population.
(b) Rank the individuals with respect to their fitness.
(c) The best individual is copied into the new
population.
(d) The best 10% of population individuals are
replicated and substitute the worst 10% of individuals.
Over that intermediate population we:
(e) Apply parametric mutation to the best 10% of
individuals.
(f) Apply structural mutation to the remaining 90% of
individuals.
We consider the Percentage of Correctly Classified

Examples (PCCE) in the training data set as fitness
measure ()A g of an individual g of the population.

Parametric mutation consists of a simulated annealing
algorithm [26], [27]. The severity of a mutation to an
individual g is dictated by the temperature ()T g , given
by

() 1 (), 0 () 1T g A g T g= − ≤ <

21w
12w

2

21x 2x kx

∏ ∏

1kw
2kw

2mw
mkw

1mw
11w

2∑

bias

2∑ 2∑

1
0β

∏

2
0β

0
cβ

1
1β

2
1β

1
cβ 2

cβ
2
2β1

2β
c
mβ

2
mβ

1
mβ

σ σ σ

22w

1,2,...,c

1,2,...,m

1,2,...,k

1()g x 2()g x ()cg x

1527

Thus, the temperature is determined by closeness of the

function to any solution of the problem. Parametric
mutation is accomplished for each coefficient jiw , l

jβ of
the model with Gaussian noise and where the variance
depends on the temperature:

1(1) () ()ji jiw t w t tξ+ = +

 2(1) () ()l l
j jt t tβ β ξ+ = +

 where () (0, () ())k kt N t T gξ α∈ , 1, 2k = , represents a
one-dimensional normally distributed random variable
with mean 0 and variance () ()k t T gα . Once the mutation
is performed, the fitness of the individual is recalculated
and the usual simulated annealing is applied. Thus, if A∆
is the difference in the fitness function before and after the
random step, the criterion is: if 0A∆ ≥ the step is
accepted, if 0A∆ < , the step is accepted with a
probability exp(/ ())A T g∆ .
The parameters ()k tα allow the adaptation of the learning
process throughout the evolution:

{ }
{ }

1

1

(1) () () (), , 1,...,
(1) (1) (), () (), , 1,...,

()

k s s

k k s s

k

t if A g A g s t t t
t t if A g A g s t t t

t otherwise

λ α ρ
α λ α ρ

α

−

−

+ > ∀ ∈ − −
+ = − = ∀ ∈ − −

where 1, 2k = , ()sA g is the fitness of the best individual,

sg , in the generation s , λ and ρ must be set by the
user.

It should be pointed out that the modification of the
exponents jiw is different from the modification of the

coefficients l
jβ , therefore 1 2() ()t tα α . The adaptation

tries to avoid being trapped in local minima and to speed
up the evolutionary process when the conditions of the
searching are suitable. A generation is defined as
successful if the best individual of the population is better
than the best individual of the previous generation, that is:

1() ()s sA g A g −> . If many successes are observed, this
indicates that the best solutions are residing in a better
region of the search space. In this case, we increase the
strength hoping to find even better solutions closer to the
optimum solution. If the fitness of the best individual is
constant during several generations, 1() ()s sA g A g −= , we
decrease the mutation rate. Otherwise, the mutation
strength is constant.

Structural mutation implies a modification of the neural
network structure and allows the explorations of different
regions in the search space while helping to keep the
diversity of the population. There are five different
structural mutations: node deletion, connection deletion,
node addition, connection addition and node fusion. These

five mutations are applied sequentially to each network.
The first four are similar to the mutations in the GNARL
model [10]. In the node fusion, two randomly selected
nodes, a and b , are replaced by a new node c , which is
a combination of both. The connections that are common
to both nodes are kept, with a weight given by:

l l l
c a bβ β β= +

2

ia ib
ic

w w
w

+
=

 The connections that are not shared by the nodes are

inherited by c with probability 0.5 and its weight is
unchanged. For each mutation (excepting node fusion)
there is a minimum value, Min∆ , and a maximum value,

Max∆ , and the number of elements (nodes or connections)
involved in the mutation is calculated as

() ()Min Max Minu T g∆ + ∆ − ∆

where u is a random uniform variable in the interval
[]0,1 .

In our algorithm we encourage parsimony in evolved
networks by attempting different mutations sequentially,
where node or connection deletion and node fusion is
always attempted before addition. Moreover, the deletion
and fusion operations are made with higher probability
(()T g for deletion and fusion mutations and 2 ()T g for
addition ones). If a deletion or fusion mutation is
successful, no other mutation will be made. If the
probability does not select any mutation, one of the
mutations is chosen at random and applied to the network.

IV. EXPERIMENTS
We evaluate the performance of our methodology

on four data sets taken from the UCI repository [17].
The experimental design for the four classification
benchmark problems was conducted using a holdout cross-
validation procedure. In the following experiments each data
set was partitioned as follows:

• For the balance data set, the first 469 examples were

used for the training set and the following 156 for the
testing set.

• For the cancer data set, the first 525 examples were
used for the training set and the following 174 for the
testing set.

• For the pima data set, the first 576 examples were
used for the training set and the following 192 for the
testing set.

• For the glass data set, the first 161 examples were
used for the training set and the following 53 for the
testing set.

1528

The parameters used in the evolutionary algorithm are
common for the four problems. We have considered

1(0) 0.5α = , 2 (0) 1α = , 0.1λ = and 5ρ = . The

exponents jiw are initialized in the []5,5− interval, the

coefficients l
jβ are initialized in []5,5− . The maximum

number of hidden nodes is 6m = . The size of the
population is 2000N = . The number of nodes that can be
added or removed in a structural mutation is within the
[]1, 2 interval. The number of connections that can be
added or removed in a structural mutation is within the
[]1,6 interval.

The stop criterion is reached whenever one of the
following two conditions is fulfilled: i) for 20 generations
there is no improvement either in the average performance
of the best 20% of the population or in the fitness of the
best individual, ii) The algorithm achieves a determined
number of generations.

We have done a simple linear rescaling of the input
variables in the interval []1, 2 , being *

iX the transformed
variables. The lower bound is chosen to avoid input
values near 0 that can produce very large values of the
outputs for negative exponents. The upper bound is
chosen to avoid dramatic changes in the outputs of the
network when there are weights with large values
(especially in the exponents).

In order to determine the meta-parameter of our
algorithm given by the maximum number of generations
and to establish the most suitable values for such meta-
parameter, (in the sense of their influence on the
percentage of correctly classified examples in the testing
data set TPCCE), the ANalysis Of the VAriance
(ANOVA) statistical method was used. This statistical
tool is based on the analysis of the mean variance. The
theory of ANOVA was mainly developed by Fisher [28]
during the 1920s. ANOVA examines the effects of some
quantitative or qualitative variables (called factors) on one
quantitative response. The best objective for that analysis
is to try to determine if the influence of a change in a
meta-parameter value is significant in mean on the

TPCCE obtained in our algorithm. In our case the linear
model has the form:

 + T ijk i j ij ijkPCCE D G DG eµ= + + +

for 1, 2,3, 4i = ; 1, 2,3j = and 1, 2,...,30k = . The first
factor iD analyzed the effect over the TPCCE of the i -
th level of that factor, where iD represents the data set
used in our experimentation, with levels: (1)i = for
balance, (2)i = for Cancer, (3)i = for Pima and (4)i =
for Glass. The second factor jG is the effect associated

with the j -th level of this factor, where jG is the
maximum number of generations, with levels: 50 (1)j = ,
100 (2)j = and 200 (3)j = . The term µ is the fixed
effect that is common to all the populations; the
term ijDG , named the interaction term, denotes the joint
effect of the presence of the level i of the first factor and
the level j of the second one. The term ijke is the
influence on the result of everything what could not be
assigned, or of random factors.

 Thus, 360 simulations were carried out, corresponding
to all the possible combinations of application of the four
levels for the first factor and the three levels of the second
factor. The results of the ANOVA analysis show that:

1) The data set factor effect is statistically significant at
the level of confidence of 95%.

2) The number of generation’s effect is not statistically
significant at the level of confidence of 95%.

3) There is no interaction between the number of
generations and the data sets.

Table I shows the statistical results over 30 runs of the
evolutionary algorithm for the four benchmark problems
with different maximum number of generations: 50, 100
and 200.

With the objective of presenting an empirical
evaluation of the performance of the evolutionary PUNN
model, we compare our approach to the most recent
results [29] obtained using eleven different methodologies
(see Table II): logistic model tree algorithm, LMT, two
logistic regression (with attribute selection, SLogistic, and
for a full logistic model, MLogistic); induction trees (C4.5
[30] and CART [31]); two logistic tree algorithms:
LTreeLog [32] and Lotus [33] with two methodologies:
one using simple logistic regression (LotusS) and another
using multiple logistic regression (LotusM), both for two
class data set; and finally, multiple-tree models M5´ [34]
for classification, and boosted C4.5 trees using
AdaBoost.M1 with 10 and 100 boosting interactions. The
results in Table II have been taken from [29]. We can see
that the results obtained by PUNN are competitive with
the learning schemes mentioned previously.

Finally, Table III shows the best models for each data
set. The models can be easily implemented and the reader
can reproduce and compare the results.

V. CONCLUSIONS
 We propose a classification method based on a special

class of feed-forward neural network, namely product-unit
neural networks, where the corresponding nonlinear basis
functions express the possible strong interactions between
the variables. The model proposed evolves both the
weights and the structure of the network by means of an
evolutionary algorithm. Usually it is very difficult to
know the most suitable structure of the network for a
given problem beforehand. The evolution of the structure

1529

partially alleviates this problem. On the other hand, the
algorithm encourages parsimony in evolved networks by
means of the priority of the structural mutations given by
deletion and fusion nodes, rather than using a
regularization term in the fitness function. The empirical
results show that the product-unit model performs well
compared to other learning classification techniques. We
obtain very promising results in terms of classification
accuracy and the complexity of classifier. Moreover, we
show the best model for each problem. As future work, it
would be of interest to increase the number and typology
of the data set considered and to try to state relationship
between the level of interaction of the input variables for
each data set and the level of performance obtained in the
product-unit models.

REFERENCES
[1] M. Bishop, Neural Networks for Pattern Recognition: Oxford

University Press, 1995.
[2] J. Friedman and W. Stuetzle, "Projection pursuit regression,"

Journal of the American Statistical Association, vol. 76, pp.
817-823, 1981.

[3] T. J. Hastie and R. J. Tibshirani, Generalized Additive
Models. London: Chapman & Hall, 1990.

[4] C. Kooperberg, S. Bose, and C. J. Stone, "Polychotomous
Regression," Journal of the American Statistical Association,
vol. 92, pp. 117-127, 1997.

[5] J. Friedman, "Multivariate adaptive regression splines (with
discussion)," Ann. Stat., vol. 19, pp. 1-141, 1991.

[6] R. Durbin and D. Rumelhart, "Products Units: A
computationally powerful and biologically plausible
extension to backpropagation networks," Neural
Computation, vol. 1, pp. 133-142, 1989.

[7] R. Setiono and L. C. K. Hui, "Use of quasinewton method in
a feedforward neural-network construction algorithm," IEEE
Trans. Neural Networks, vol. 6, pp. 273-277, 1995.

[8] R. Reed, "Pruning algorithms-A survey," IEEE Trans. Neural
Networks, vol. 4, pp. 740-747, 1993.

[9] G. F. Miller, P. M. Todd, and S. U. Hedge, "Designing neural
networks using genetic algorithms," presented at Proc. 3er
Int. Conf. Genetic Algorithms and Their Applications, San
Mateo, CA, 1989.

[10] P. J. Angeline, G. M. Saunders, and J. B. Pollack, "An
evolutionary algorithm that constructs recurrent neural
networks," IEEE Transactions on Neural Networks, vol. 5
(1), pp. 54-65, 1994.

[11] X. Yao and Y. Liu, "A new evolutionary system for evolving
artificial neural networks," IEEE Transactions on Neural
Networks, vol. 8 (3), pp. 694-713, 1997.

[12] D. B. Fogel, "Using evolutionary programming to greater
neural networks that are capable of playing Tic-Tac-Toe,"
presented at International Conference on Neural Networks,
San Francisco, CA, 1993.

[13] W. Yan, Z. Zhu , and R. Hu, "Hybrid genetic /BP algorithm
and its application for radar target classification," presented
at Proceedings of the IEEE National Aerospace Electronics
Conference, Piscataway, NJ, USA, 1997.

[14] X. Yao and Y. Liu, "Making use of population information in
evolutionary artificial neural networks," IEEE Transactions
and System Man and Cybernetics-Part B: Cybernetics, vol.
28, pp. 417-425, 1998.

[15] N. García-Pedrajas, C. Hervás-Martínez, and J. Muñoz-Pérez,
"Multiobjetive cooperative coevolution of artificial neural
networks.," Neural Networks, vol. 15, pp. 1255-1274, 2002.

[16] K. O. Stanley and R. Miikkulainen, "Evolving Neural
Networks through Augmenting Topologies," Evolutionary
Computation, vol. 10, pp. 99-127, 2002.

[17] C. Blake and C. J. Merz, " UCI repository of machine
learning data bases," www.ics.uci.edu/
mlearn/MLRepository.thml, 1998.

[18] M. Schmitt, "On the Complexity of Computing and Learning
with Multiplicative Neural Networks," Neural Computation,
vol. 14, pp. 241-301, 2001.

[19] A. Ismail and A. P. Engelbrecht, "Training products units in
feedforward neural networks using particle swarm
optimisation.," presented at Development and practice of
Artificial Intelligence Techniques, Proceeding of the
International Conference on Artificial Intelligence, Durban,
South Africa, 1999.

[20] E. A. P. Ismail A., "Global optimization algorithms for
training product units neural networks," presented at
International Joint Conference on Neural Networks
IJCNN`2000, Como, Italy, 2000.

[21] D. J. Janson and J. F. Frenzel, "Training product unit neural
networks with genetic algorithms," IEEE Expert, vol. 8, pp.
26-33, 1993.

[22] E. A. P. Ismail A., "Pruning product unit neural networks,"
presented at Proceedings of the International Conference on
Neural Networks, Honolulu, Hawai, 2002.

[23] L. R. Leerink, C. L. Giles, B. G. Horne, et al., "Learning with
products units," Advances in Neural Networks Processing
Systems, vol. 7, pp. 537-544, 1995.

[24] D. B. Fogel, A. J. Owens, and M. J. Wals, Artificial
Intelligence Throught Simulated Evolution. New York:
Wiley, 1966.

[25] D. B. Fogel, Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. New York: IEEE Press,
1995.

[26] S. Kirkpatric, C. D. J. Gellat, and M. P. Vecchi,
"Optimization by simulated annealing," Science, vol. 220, pp.
671-680, 1983.

[27] R. H. J. M. Otten and L. P. P. P. van Ginneken, The
annealing algorithm. Boston, MA.: Ed. Kluwer, 1989.

[28] R. A. Fisher, "Theory of statistical estimation," Proc. of
Cambridge Philosophical Soc., vol. 22, pp. 700-725, 1925.

[29] N. Landwehr, M. Hall, and F. Eibe, "Logistic Model Trees,"
Machine Learning, vol. 59, pp. 161-205, 2005.

[30] R. Quinlan, C4.5: Programs for Machine Learning: Morgan
Kauffman, 1993.

[31] L. Breiman, H. Friedman, J. A. Olshen, et al., Classification
and Regression Trees. Belmont, CA: Wadsworth, 1984.

[32] J. Gama, "Functional trees," Machine Learning, vol. 55, pp.
219-250, 2004.

[33] K. Y. Chan and W. Y. Loh, "LOTUS: An algorithm for
building accurate and comprehensible logistic regression
trees," Journal of Computational and Graphical Statistics, vol.
13, pp. 826-852, 2004.

[34] Y. Wang and I. Witten, "Inducing model trees for continuous
classes," presented at Proceedings of Poster Papers, European
Conference on Machine Learning., Prague, Czech Republic,
1997.

1530

TABLE I
STATISTICAL RESULTS OF TRAINING AND TESTING PCCE FOR 30 EXECUTIONS OF PUNN MODEL (50,100 AND 200 GENERATIONS)

PCCE Training Test # conn

Balance
gen. Mean SD Best Worst Mean SD Best Worst Mean SD

50 93.90 2.12 96.59 91.04 93.21 2.57 96.79 89.74 19.00 3.23
100 94.05 2.22 97.23 91.26 92.88 2.04 96.15 91.03 18.40 4.03
200 94.82 2.86 97.87 91.26 94.42 2.51 97.44 91.03 16.00 5.56

Pima
gen. Mean SD Best Worst Mean SD Best Worst Mean SD

50 77.93 0.65 78.99 76.91 77.92 2.13 80.21 72.92 17.30 6.50
100 77.88 0.63 79.34 77.26 78.18 2.14 80.73 73.44 16.20 3.99
200 78.65 0.43 79.34 78.13 78.70 2.13 82.29 76.04 17.30 4.85

Cancer
gen. Mean SD Best Worst Mean SD Best Worst Mean SD

50 97.39 0.09 97.52 97.33 97.87 0.67 98.85 97.13 15.60 6.40
100 97.39 0.13 97.52 97.14 97.99 0.68 98.85 97.13 11.90 2.69
200 97.54 0.29 98.10 97.14 97.64 1.13 99.43 95.40 14.00 4.46

Glass
gen. Mean SD Best Worst Mean SD Best Worst Mean SD

50 65.40 1.85 68.94 62.11 65.28 5.22 71.69 56.60 28.30 8.73
100 68,13 2.2 70.18 63.97 64.91 3.41 69.81 58.49 36.30 9.79
200 69.00 1.8 71.42 65.83 64.70 2.60 67.92 60.37 30.50 5.77

TABLE II
MEAN CLASSIFICATION ACCURACY AND STANDARD DEVIATION FOR LMT, SLOGISTIC, MLOGISTIC, C4.5, CART, LOTUS USING SIMPLE LOGISTIC REGRESSION

(LOTUSS) AND LOTUS USING MULTIPLE LOGISTIC REGRESSION (LOTUSM), M5' FOR CLASSIFICATION, ABOOST, LTREELOG (SEE [29]) AND PUNN MODEL

Dataset LMT SLogistic MLogistic C4.5 CART LotusS

Balance 89.71±2.68 88.74±2.91 89.44±3.29 77.82±3.42 78.09±3.97 -

Pima 77.08 ± 4.65 77.10 ±4.65 77.47 ±4.39 74.49 ±5.27 74.50 ±4.70 75.08 ±5.14

Cancer 96.18 ±2.20 96.21 ±2.19 96.50 ±2.18 95.01 ±2.73 94.42 ±2.70 94.61 ±2.66

Glass 69.15± 8.99 65.29±8.03 63.12±4.39 67.63±9.31 68.09±10.49 -

Dataset LotusM M5' ABoost(10) ABoost(100) LTreeLog PUNN

Balance - 87.76±2.23 78.35±3.78 76.11±4.09 92.78±3.49 94.42±2.51

Pima 77.47 ±4.39 76.56 ±4.71 71.81 ±4.85 73.89 ±4.75 76.64±4.69 78.70±2.13

Cancer 96.44 ±2.13 95.85 ±2.15 96.08 ±2.16 96.70 ±2.18 96.75±2.04 97.99±0.68

Glass - 71.30±9.08 75.15±7.59 78.78±7.80 64.78±9.90 65.09±4.81

1531

TABLE III
BEST MODELS FROM PUNN TO BALANCE, PIMA, CANCER AND GLASS DATA SETS, WHERE *

iX REPRESENT THE TRANSFORMED VARIABLES

Balance

{ }1
1 3

1ˆ ()
1 exp 4.312 1.582 5.011

g
B B

=
+ − − +

x ; { }2
2

1ˆ ()
1 exp 0.982 2.253

g
B

=
+ −

x

 { }3
3

1ˆ ()
1 exp 2.000 2.661

g
B

=
+ −

x ; * 4.005
1 3()B X −= ; * 0.713

2 3()B X −= ; * 4.636 * 4.795 * 4.446 * 4.805
3 1 2 3 4() () () ()B X X X X− −= ,

 3m = , # coefficients= 12
Pima

{ }1
1 2

1ˆ ()
1 exp 4.718 0.754 2.320

g
B B

=
+ − + −

x ;
{ }2

1 2

1ˆ ()
1 exp 2.860 0.166 4.710

g
B B

=
+ − −

x

 * 0.601 * 2.700 * 0.268 * 0.178 * 1.219 * 1.018
1 1 2 3 5 6 7() () () () () ()B X X X X X X− −= ; * 4.046 * 3.019 * 1.248 * 0.915 * 3.038 * 2.390 * 1.730

2 2 3 4 5 6 7 8() () () () () () ()B X X X X X X X− − − −= ,

 2m = , # coefficients= 19
Cancer

{ }1
1 2

1ˆ ()
1 exp 0.686 1.168 4.771

g
B B

=
+ − + +

x ; { }2
1

1ˆ ()
1 exp 1.071 1.498

g
B

=
+ − +

x ,

* 0.668 * 0.763 * 0.245 * 2.457
1 2 3 6 9() () () ()B X X X X= , * 4.786 * 1.438 * 3.849 * 2.839 * 2.731 * 2.790

2 1 2 4 6 7 8() () () () () ()B X X X X X X− − − − −=

 2m = , # coefficients= 15
Glass

{ }1
1 2

1ˆ ()
1 exp 4.841 4.758 2.666

g
B B

=
+ − + +

x ; { }2
1

1ˆ ()
1 exp 2.042 3.147

g
B

=
+ −

x ; { }3
1 3

1ˆ ()
1 exp 0.653 0.820 3.021

g
B B

=
+ + +

x

{ }4
1 2 3

1ˆ ()
1 exp 0.408 5.200 4.334 2.672

g
B B B

=
+ − + + +

x ; { }5
1 2 3

1ˆ ()
1 exp 3.719 4.363 4.596 0.430

g
B B B

=
+ + + −

x ;

{ }6
1 3

1ˆ ()
1 exp 4.292 3.874 1.231

g
B B

=
+ − −

x

 * 1.955 * 1.199 * 2.088 * 1.779 * 1.879 * 2.197 * 1.964
1 1 3 4 5 7 8 9() () () () () () ()B X X X X X X X− − −= ; * 2.300 * 4.560 * 0.116

2 1 3 7() () ()B X X X− −= ; * 2.984
3 9()B X −=

 3m = , # coefficients= 30

1532

