
 
 

  

Abstract— We propose a classification method based on a 
special class of feed-forward neural network, namely 
product-unit neural networks. They are based on 
multiplicative nodes instead of additive ones, where the 
nonlinear basis functions express the possible strong 
interactions among the variables. We apply an evolutionary 
algorithm to determine the basic structure of the product-
unit model and to estimate the coefficients of the model. The 
empirical results show that the proposed model is very 
promising in terms of classification accuracy, yielding a state-
of-the-art performance. 

I. INTRODUCTION 
he simplest method for classification provides the 
class level given its observation via linear functions in 

the predictor variables. This process of model fitting is 
quite stable, resulting in low variance but a potentially 
high bias.  Frequently, in a real-problem of classification, 
we cannot make the stringent assumption of additive and 
purely linear effects of the variables. A traditional 
technique to overcome these difficulties is to 
augment/replace the input vector with new variables, basis 
functions, which are transformations of the input 
variables, and then to use linear models in this new space 
of derived input features. One approach would be to 
augment the inputs with polynomial terms to achieve 
higher-order Taylor expansions, for example, with 
quadratic terms and multiplicative interactions. Once the 
number and the structure of the basis functions have been 
determined, the models are linear in these new variables 
and the fitting is a standard procedure. Methods like 
sigmoidal feed-forward neural networks [1], projection 
pursuit learning [2], generalized additive models [3] and  
PolyMARS [4], a hybrid of multivariate adaptive splines 
(MARS) [5] specifically designed to handle classification 
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problems, can be seen as different basis functions models. 
The major drawback of these approaches is to state the 
number and the typology of the corresponding basis 
functions.  
We tackle this problem by proposing a nonlinear model 
and an evolutionary algorithm that finds the optimal 
structure of the model and estimates the corresponding 
parameters. Concretely, our approach tries to overcome 
the nonlinear effects of the variables proposing a model 
based on nonlinear basis functions constructed with the 
product of the inputs raised to arbitrary powers. These 
basis functions express the possible strong interactions 
between the variables, where the exponents are not fixed 
and may even take real values. Moreover, we avoid the 
huge number of coefficients involved in the polynomial 
model. The proposed model corresponds to a special class 
of feed-forward neural network, namely product-unit 
neural networks, PUNN, introduced by Durbin and 
Rumelhart [6]. They are an alternative to standard 
sigmoidal neural networks (when a sufficient number of 
highly correlated input variables exist) and are based on 
multiplicative nodes instead of additive ones. 
Unfortunately, the error surface associated with product-
unit neural networks is extremely convoluted with 
numerous local optima and plateaus.  
On the other hand, classical training algorithms assume a 
fixed architecture; nevertheless it is very difficult to know 
a priori the most suitable structure of the network for a 
given problem. There have been many attempts to design 
the architecture automatically, such as constructive and 
pruning algorithms [7], [8]. However, these methods are 
susceptible to becoming trapped at structural local optima. 
Evolutionary artificial neural networks (EANNs) have 
been a key research area in the past decade providing a 
better platform for optimizing both network performance 
and architecture simultaneously. Miller et al. [9] proposed 
that evolutionary computation was a very good candidate 
to be used to search the space of architectures because the 
fitness function associated with that space is complex, 
noisy, non-differentiable, multi-modal and deceptive. 
Since then, many evolutionary programming methods 
have been developed for evolving artificial neural 
networks, see for example [10-15]. Stanley and 
Miikkulainen, [16], demonstrate that evolving 
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structure along with connection weights can significantly 
enhance the performance of the neural network. 
Therefore, evolutionary algorithms are better candidates 
to design a near optimal architecture than the constructive 
and pruning algorithms mentioned before. This fact, 
together with the complexity of the error surface 
associated with a product-unit neural network, justifies the 
use of an evolutionary algorithm (EA) to design the 
structure and training of the weights. The evolutionary 
process determines the number of basis functions of the 
model, the associated coefficients and the corresponding 
exponents.  
In our approach, we encourage parsimony of evolved 
networks by attempting different mutations sequentially, 
where deletion and fusion mutations are made with higher 
probability than addition ones. Similar to the EPNet 
model [11], our experimental results show that evolving 
parsimonious networks by sequentially applying different 
mutations is an alternative to the use of a regularization 
term in the fitness function to penalize large networks. 
We evaluate the performance of our methodology on four 
data sets taken from the UCI repository [17]. The 
empirical results show that the proposed method performs 
well compared to several learning classification 
techniques. We obtain a classifier with very promising 
results in terms of classification accuracy and the 
complexity of the classifier.  
This paper is organized as follows: Section II is dedicated 
to a description of product-unit based neural networks; 
Section III, describes the evolution of product-unit neural 
networks; Section IV explains the experiments carried 
out; and finally, Section V summarizes the conclusions of 
our work. 

II. PRODUCT- UNIT NEURAL NETWORKS  
In this section we present the family of functions used 

in the classification process and its representation by 
means of a neural network structure. An alternative to the 
standard sigmoidal neural networks are the networks 
based on multiplicative nodes instead of additive ones. 
This class of multiplicative neural networks comprise 
such types as sigma-pi networks and product unit 
networks. A multiplicative node is given by: 
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where k  is the number of the inputs. If the exponents are 
{0,1} we obtain a higher-order unit, also known by the 
name of sigma-pi unit. In contrast to the sigma-pi unit, in 
the product-unit the exponents are not fixed and may even 
take real values. Advantages of product-unit based neural 
networks (PUNNs) are increased information capacity and 
the ability to form higher-order combinations of the 
inputs. Durbin and Rumelhart [6] determined empirically 

that the information capacity of product units (measured 
by their capacity for learning random Boolean patterns) is 
approximately 3N , compared to 2N  of a network with 
additive units for a single threshold logic function, where 
N  denotes the number of inputs to the network. On the 
other hand, it is possible to obtain upper bounds of the VC 
dimension of product-unit neural networks similar to 
those obtained for sigmoidal neural networks [18]. 
Finally, it is a straightforward consequence of the Stone-
Weierstrass Theorem to prove that product-unit neural 
networks are universal approximators, (observe that the 
set of polynomial functions in several variables is a subset 
of the product-unit models).  
Despite these advantages, product-unit based neural 
networks have a major drawback. Networks based on 
product units have more local minima and more 
probability of becoming trapped in them [19], [20]. The 
main reason for this difficulty is that small changes in the 
exponents can cause large changes in the total error 
surface. Because of this, their training is more difficult 
than the training of standard sigmoidal based networks.  It 
is a well known problem [21] that back-propagation is not 
efficient in training product units.  
Several efforts have been made to carry out learning 
methods for product units. Janson and Frenzel [21] 
developed a genetic algorithm for evolving the weights of 
a network based on product units with a predefined 
architecture. The major problem of this kind of algorithm 
is how to obtain the optimal architecture beforehand. 
Ismail and Engelbrecht [19], [20] applied four different 
optimization methods to train product unit neural 
networks: random search, particle swarm optimization, 
genetic algorithms, and leapfrog optimization. They 
concluded that random search is not efficient in training 
this type of network, and that the other three methods 
show an acceptable performance in three problems of 
function approximation with low dimensionality. In a 
posterior paper [22] they used a pruning algorithm to 
develop the structure as well as the training of the weights 
of a product-unit based neural network. Leerink et al. [23] 
tested different local and global optimization methods for 
product-unit networks. Their results show that local 
methods, such as backpropagation, are prone to be trapped 
in local minima, and that global optimization methods, 
such as simulated annealing and random search, are 
impractical for larger networks. They suggested some 
heuristics to improve backpropagation, and the 
combination of local and global search methods. In short, 
the works carried out on PUNNs have not tackled the 
problem of the design of both the structure and weights, 
either using classic or evolutionary based methods. 
Moreover, in the above mentioned papers, product-unit 
based neural networks have been applied mainly to solve 
regression problems. 
 
 

1526



 
 

On the other hand, it is interesting to note that a 
problem arises with networks containing product units 
that receive negative inputs and have weights that are not 
integers. A negative number raised to some non-integer 
power yields a complex number. Since neural networks 
with complex outputs are rarely used in applications, 
Durbin and Rumelhart [6] suggest discarding the 
imaginary part and using only the real component for 
further processing. This manipulation would have 
disastrous consequences for the VC dimension when we 
consider real–valued inputs. No finite dimension bounds 
can in general be derived for networks containing such 
units [18]. To avoid this problem, the input domain is 
restricted, and we consider the set given by 
{ }1 2( , ,..., ) : 0, 1, 2,...,k

k ix x x x i k∈ > =R .  

We consider a product-unit neural network with the 
following structure (Fig. 1): an input layer with a node for 
every input variable, a hidden layer with several nodes, 
and an output layer with c  nodes, one for each category. 
There are no connections between the nodes of a layer and 
none between the input and output layers either. The 
activation function of the j-th node in the hidden layer is 

given by 
1

( , ) ji
k

w
j j i

i

B x
=

= ∏x w  where jiw  is the weight of 

the connection between input node i  and hidden node j . 
The activation function of each output node is given by: 
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  where l
jβ  is the weight of the connection between the 

hidden node j  and the output node l . The transfer 
function of all output nodes is the sigmoidal function 

1( )
1 tt

e
σ −=

+
. In this way, the signal from each output is 

a function ( )lg x  given by: 
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Our predictor ( )G x  takes values in a discrete set  Λ  

with c  classes. We have c  such indicators, lY , 
1, 2,...,l c= , with 1lY =  if G l= , or else 0lY = .  The 

rule of classification considered is: Given a new 
observation with an input x , we compute the fitted output 
vector ˆ ( )lg x , identify the largest component and classify 

accordingly  ˆ ˆ( ) arg max ( )ll
G g

∈∧
=x x .  

 
 

Fig. 1.  Model of a product-unit based neural network. 
 

III. EVOLUTIONARY ALGORITHM 
We use an evolutionary algorithm to design the structure 
and learn the weights of product-unit neural networks. 
The search begins with an initial population, and, in each 
iteration, the population is updated using a population-
update algorithm. The population is subjected to the 
operations of replication and mutation. Crossover is not 
used due to its potential disadvantages in evolving 
artificial networks [10], [11]. With these features the 
algorithm falls into the class of evolutionary programming 
[24], [25]. The general structure of the EA is the 
following: 
(1) Generate a random population of size N . 
(2) Repeat until the stopping criterion is fulfilled 

(a) Calculate the fitness of every individual in the 
population. 
(b) Rank the individuals with respect to their fitness. 
(c) The best individual is copied into the new 
population. 
(d) The best 10% of population individuals are 
replicated and substitute the worst 10% of individuals.  
Over that intermediate population we: 
(e) Apply parametric mutation to the best 10% of 
individuals. 
(f) Apply structural mutation to the remaining 90% of 
individuals. 
We consider the Percentage of Correctly Classified 

Examples (PCCE) in the training data set as fitness 
measure ( )A g  of an individual g  of the population.  

Parametric mutation consists of a simulated annealing 
algorithm [26], [27]. The severity of a mutation to an 
individual g  is dictated by the temperature ( )T g , given 
by  
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Thus, the temperature is determined by closeness of the 

function to any solution of the problem. Parametric 
mutation is accomplished for each coefficient jiw , l

jβ  of 
the model with Gaussian noise and where the variance  
depends on the temperature:  

 
1( 1) ( ) ( )ji jiw t w t tξ+ = +    

   2( 1) ( ) ( )l l
j jt t tβ β ξ+ = +  

 
 where ( ) (0, ( ) ( ))k kt N t T gξ α∈ , 1, 2k = , represents a 
one-dimensional normally distributed random variable 
with mean 0 and variance ( ) ( )k t T gα .  Once the mutation 
is performed, the fitness of the individual is recalculated 
and the usual simulated annealing is applied. Thus, if A∆  
is the difference in the fitness function before and after the 
random step, the criterion is: if 0A∆ ≥  the step is 
accepted, if 0A∆ < , the step is accepted with a 
probability exp( / ( ))A T g∆ .  
The parameters ( )k tα  allow the adaptation of the learning 
process throughout the evolution:  
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where 1, 2k = , ( )sA g  is the fitness of the best individual, 

sg , in the generation s , λ  and ρ  must be set by the 
user.  

It should be pointed out that the modification of the 
exponents jiw  is different from the modification of the 

coefficients l
jβ , therefore 1 2( ) ( )t tα α . The adaptation 

tries to avoid being trapped in local minima and to speed 
up the evolutionary process when the conditions of the 
searching are suitable. A generation is defined as 
successful if the best individual of the population is better 
than the best individual of the previous generation, that is: 

1( ) ( )s sA g A g −> . If many successes are observed, this 
indicates that the best solutions are residing in a better 
region of the search space. In this case, we increase the 
strength hoping to find even better solutions closer to the 
optimum solution. If the fitness of the best individual is 
constant during several generations, 1( ) ( )s sA g A g −= , we 
decrease the mutation rate. Otherwise, the mutation 
strength is constant. 

Structural mutation implies a modification of the neural 
network structure and allows the explorations of different 
regions in the search space while helping to keep the 
diversity of the population. There are five different 
structural mutations: node deletion, connection deletion, 
node addition, connection addition and node fusion. These 

five mutations are applied sequentially to each network. 
The first four are  similar to the mutations in the GNARL 
model [10]. In the node fusion, two randomly selected 
nodes, a  and b , are replaced by a new node c , which is 
a combination of both. The connections that are common 
to both nodes are kept, with a weight given by: 

 
l l l
c a bβ β β= +    

 
2

ia ib
ic

w w
w

+
=  

 
 The connections that are not shared by the nodes are 

inherited by c  with probability 0.5 and its weight is 
unchanged. For each mutation (excepting node fusion) 
there is a minimum value, Min∆ , and a maximum value, 

Max∆ , and the number of elements (nodes or connections) 
involved in the mutation is calculated as 

 
( ) ( )Min Max Minu T g∆ + ∆ − ∆    

 
where u  is a random uniform variable in the interval 
[ ]0,1 . 

In our algorithm we encourage parsimony in evolved 
networks by attempting different mutations sequentially, 
where node or connection deletion and node fusion is 
always attempted before addition. Moreover, the deletion 
and fusion operations are made with higher probability 
( ( )T g  for deletion and fusion mutations and 2 ( )T g  for 
addition ones). If a deletion or fusion mutation is 
successful, no other mutation will be made. If the 
probability does not select any mutation, one of the 
mutations is chosen at random and applied to the network.  

IV. EXPERIMENTS 
We  evaluate  the  performance  of  our methodology 

on  four data sets  taken  from  the  UCI  repository [17]. 
The experimental design for the four classification 
benchmark problems was conducted using a holdout cross-
validation procedure. In the following experiments each data 
set was partitioned as follows:  

 
• For the balance data set, the first 469 examples were 

used for the training set and the following 156 for the 
testing set. 

• For the cancer data set, the first 525 examples were 
used for the training set and the following 174 for the 
testing set. 

• For the pima data set, the first 576 examples were 
used for the training set and the following 192 for the 
testing set. 

• For the glass data set, the first 161 examples were 
used for the training set and the following 53 for the 
testing set. 
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The parameters used in the evolutionary algorithm are 
common for the four problems. We have considered 

1(0) 0.5α = , 2 (0) 1α = , 0.1λ =  and 5ρ = . The 

exponents jiw  are initialized in the [ ]5,5−  interval, the 

coefficients l
jβ  are initialized in [ ]5,5− . The maximum 

number of hidden nodes is 6m = . The size of the 
population is 2000N = . The number of nodes that can be 
added or removed in a structural mutation is within the 
[ ]1, 2  interval. The number of connections that can be 
added or removed in a structural mutation is within the 
[ ]1,6  interval. 

The stop criterion is reached whenever one of the 
following two conditions is fulfilled: i) for 20 generations 
there is no improvement either in the average performance 
of the best 20% of the population or in the fitness of the 
best individual, ii) The algorithm achieves a determined 
number of generations. 

We have done a simple linear rescaling of the input 
variables in the interval [ ]1, 2 , being *

iX  the transformed 
variables. The lower bound is chosen to avoid input 
values near 0 that can produce very large values of the 
outputs for negative exponents. The upper bound is 
chosen to avoid dramatic changes in the outputs of the 
network when there are weights with large values 
(especially in the exponents). 

In order to determine the meta-parameter of our 
algorithm given by the maximum number of generations 
and to establish the most suitable values for such meta-
parameter, (in the sense of their influence on the 
percentage of correctly classified examples in the testing 
data set TPCCE ), the ANalysis Of the VAriance 
(ANOVA) statistical method was used. This statistical 
tool is based on the analysis of the mean variance. The 
theory of ANOVA was mainly developed by Fisher [28] 
during the 1920s. ANOVA examines the effects of some 
quantitative or qualitative variables (called factors) on one 
quantitative response. The best objective for that analysis 
is to try to determine if the influence of a change in a 
meta-parameter value is significant in mean on the 

TPCCE  obtained in our algorithm. In our case the linear 
model has the form:  

 
 +      T ijk i j ij ijkPCCE D G DG eµ= + + +  

 
for 1, 2,3, 4i = ;  1, 2,3j =  and 1, 2,...,30k = . The first 
factor iD   analyzed the effect over the TPCCE  of the i -
th level of that factor, where iD  represents the data set 
used in our experimentation, with levels: ( 1)i =   for 
balance, ( 2)i =  for Cancer, ( 3)i =   for Pima and ( 4)i =  
for Glass. The second factor jG   is the effect associated 

with the j -th level of this factor, where jG  is the 
maximum number of generations, with levels: 50 ( 1)j = , 
100 ( 2)j =   and 200 ( 3)j = . The term µ  is the fixed 
effect that is common to all the populations; the 
term ijDG , named the interaction term, denotes the joint 
effect of the presence of the level i  of the first factor and 
the level j  of the second one. The term ijke   is the 
influence on the result of everything what could not be 
assigned, or of random factors. 

 Thus, 360 simulations were carried out, corresponding 
to all the possible combinations of application of the four 
levels for the first factor and the three levels of the second 
factor. The results of the ANOVA analysis show that:  

1) The data set factor effect is statistically significant at 
the level of confidence of 95%. 

2) The number of generation’s effect is not statistically 
significant at the level of confidence of 95%.  

3) There is no interaction between the number of 
generations and the data sets.  

Table I shows the statistical results over 30 runs of the 
evolutionary algorithm for the four benchmark problems 
with different maximum number of generations: 50, 100 
and 200.  

With the objective of presenting an empirical 
evaluation of the performance of the evolutionary PUNN 
model, we compare our approach to the most recent 
results [29] obtained using eleven different methodologies 
(see Table II): logistic model tree algorithm, LMT, two 
logistic regression (with attribute selection, SLogistic, and 
for a full logistic model, MLogistic); induction trees (C4.5 
[30] and CART [31]); two logistic tree algorithms: 
LTreeLog [32] and Lotus [33] with two methodologies: 
one using simple logistic regression (LotusS) and another 
using multiple logistic regression (LotusM), both for two 
class data set; and  finally, multiple-tree models M5´ [34] 
for classification, and boosted C4.5 trees using 
AdaBoost.M1 with 10 and 100 boosting interactions. The 
results in Table II have been taken from [29]. We can see 
that the results obtained by PUNN are competitive with 
the learning schemes mentioned previously.  

Finally, Table III shows the best models for each data 
set. The models can be easily implemented and the reader 
can reproduce and compare the results. 

V. CONCLUSIONS 
 We propose a classification method based on a special 

class of feed-forward neural network, namely product-unit 
neural networks, where the corresponding nonlinear basis 
functions express the possible strong interactions between 
the variables. The model proposed evolves both the 
weights and the structure of the network by means of an 
evolutionary algorithm. Usually it is very difficult to 
know the most suitable structure of the network for a 
given problem beforehand. The evolution of the structure 
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partially alleviates this problem. On the other hand, the 
algorithm encourages parsimony in evolved networks by 
means of the priority of the structural mutations given by 
deletion and fusion nodes, rather than using a 
regularization term in the fitness function.  The empirical 
results show that the product-unit model performs well 
compared to other learning classification techniques. We 
obtain very promising results in terms of classification 
accuracy and the complexity of classifier. Moreover, we 
show the best model for each problem. As future work, it 
would be of interest to increase the number and typology 
of the data set considered and to try to state relationship 
between the level of interaction of the input variables for 
each data set and the level of performance obtained in the 
product-unit models. 
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TABLE I 
STATISTICAL RESULTS OF TRAINING AND TESTING  PCCE  FOR 30 EXECUTIONS OF PUNN MODEL (50,100 AND 200 GENERATIONS) 

 
PCCE  Training Test # conn 

Balance 
#  gen. Mean SD Best Worst Mean SD Best Worst Mean SD 

50 93.90 2.12 96.59 91.04 93.21 2.57 96.79 89.74 19.00 3.23 
100 94.05 2.22 97.23 91.26 92.88 2.04 96.15 91.03 18.40 4.03 
200 94.82 2.86 97.87 91.26 94.42 2.51 97.44 91.03 16.00 5.56 

Pima 
# gen. Mean SD Best Worst Mean SD Best Worst Mean SD 

50 77.93 0.65 78.99 76.91 77.92 2.13 80.21 72.92 17.30 6.50 
100 77.88 0.63 79.34 77.26 78.18 2.14 80.73 73.44 16.20 3.99 
200 78.65 0.43 79.34 78.13 78.70 2.13 82.29 76.04 17.30 4.85 

Cancer 
#  gen. Mean SD Best Worst Mean SD Best Worst Mean SD 

50 97.39 0.09 97.52 97.33 97.87 0.67 98.85 97.13 15.60 6.40 
100 97.39 0.13 97.52 97.14 97.99 0.68 98.85 97.13 11.90 2.69 
200 97.54 0.29 98.10 97.14 97.64 1.13 99.43 95.40 14.00 4.46 

Glass 
# gen. Mean SD Best Worst Mean SD Best Worst Mean SD 

50 65.40 1.85 68.94 62.11 65.28 5.22 71.69 56.60 28.30 8.73 
100 68,13 2.2 70.18 63.97 64.91 3.41 69.81 58.49 36.30 9.79 
200 69.00 1.8 71.42 65.83 64.70 2.60 67.92 60.37 30.50 5.77 

 
 
 

 
 

TABLE II 
MEAN CLASSIFICATION ACCURACY AND STANDARD DEVIATION FOR LMT, SLOGISTIC, MLOGISTIC, C4.5, CART, LOTUS USING SIMPLE LOGISTIC REGRESSION 

(LOTUSS) AND LOTUS USING MULTIPLE LOGISTIC REGRESSION (LOTUSM), M5' FOR CLASSIFICATION, ABOOST, LTREELOG  (SEE  [29])  AND PUNN MODEL 
 

Dataset LMT SLogistic MLogistic C4.5 CART LotusS 

Balance 89.71±2.68 88.74±2.91 89.44±3.29 77.82±3.42 78.09±3.97 - 

Pima 77.08 ± 4.65 77.10 ±4.65 77.47 ±4.39 74.49 ±5.27 74.50 ±4.70 75.08 ±5.14 

Cancer 96.18 ±2.20 96.21 ±2.19 96.50 ±2.18 95.01 ±2.73 94.42 ±2.70 94.61 ±2.66 

Glass 69.15± 8.99 65.29±8.03 63.12±4.39 67.63±9.31 68.09±10.49 - 

Dataset LotusM M5' ABoost(10) ABoost(100) LTreeLog PUNN 

Balance - 87.76±2.23 78.35±3.78 76.11±4.09 92.78±3.49 94.42±2.51 

Pima 77.47 ±4.39 76.56 ±4.71 71.81 ±4.85 73.89 ±4.75 76.64±4.69 78.70±2.13 

Cancer 96.44 ±2.13 95.85 ±2.15 96.08 ±2.16 96.70 ±2.18 96.75±2.04 97.99±0.68 

Glass - 71.30±9.08 75.15±7.59 78.78±7.80 64.78±9.90 65.09±4.81 
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TABLE III 
BEST MODELS FROM PUNN TO BALANCE, PIMA, CANCER AND GLASS DATA SETS, WHERE *

iX  REPRESENT THE TRANSFORMED VARIABLES 

Balance 

{ }1
1 3

1ˆ ( )
1 exp 4.312 1.582 5.011

g
B B

=
+ − − +

x ; { }2
2

1ˆ ( )
1 exp 0.982 2.253

g
B

=
+ −

x  

 { }3
3

1ˆ ( )
1 exp 2.000 2.661

g
B

=
+ −

x ; * 4.005
1 3( )B X −= ; * 0.713

2 3( )B X −= ; * 4.636 * 4.795 * 4.446 * 4.805
3 1 2 3 4( ) ( ) ( ) ( )B X X X X− −= , 

 3m = ,  # coefficients= 12 
Pima 

{ }1
1 2

1ˆ ( )
1 exp 4.718 0.754 2.320

g
B B

=
+ − + −

x ;
{ }2

1 2

1ˆ ( )
1 exp 2.860 0.166 4.710

g
B B

=
+ − −

x  

 * 0.601 * 2.700 * 0.268 * 0.178 * 1.219 * 1.018
1 1 2 3 5 6 7( ) ( ) ( ) ( ) ( ) ( )B X X X X X X− −= ; * 4.046 * 3.019 * 1.248 * 0.915 * 3.038 * 2.390 * 1.730

2 2 3 4 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( )B X X X X X X X− − − −= ,    

 2m = ,   # coefficients= 19 
Cancer 

{ }1
1 2

1ˆ ( )
1 exp 0.686 1.168 4.771

g
B B

=
+ − + +

x ; { }2
1

1ˆ ( )
1 exp 1.071 1.498

g
B

=
+ − +

x ,  

* 0.668 * 0.763 * 0.245 * 2.457
1 2 3 6 9( ) ( ) ( ) ( )B X X X X= , * 4.786 * 1.438 * 3.849 * 2.839 * 2.731 * 2.790

2 1 2 4 6 7 8( ) ( ) ( ) ( ) ( ) ( )B X X X X X X− − − − −=    

  2m = ,  # coefficients= 15 
Glass 

{ }1
1 2

1ˆ ( )
1 exp 4.841 4.758 2.666

g
B B

=
+ − + +

x ; { }2
1

1ˆ ( )
1 exp 2.042 3.147

g
B

=
+ −

x ; { }3
1 3

1ˆ ( )
1 exp 0.653 0.820 3.021

g
B B

=
+ + +

x  

{ }4
1 2 3

1ˆ ( )
1 exp 0.408 5.200 4.334 2.672

g
B B B

=
+ − + + +

x ; { }5
1 2 3

1ˆ ( )
1 exp 3.719 4.363 4.596 0.430

g
B B B

=
+ + + −

x ;

{ }6
1 3

1ˆ ( )
1 exp 4.292 3.874 1.231

g
B B

=
+ − −

x  

  * 1.955 * 1.199 * 2.088 * 1.779 * 1.879 * 2.197 * 1.964
1 1 3 4 5 7 8 9( ) ( ) ( ) ( ) ( ) ( ) ( )B X X X X X X X− − −= ; * 2.300 * 4.560 * 0.116

2 1 3 7( ) ( ) ( )B X X X− −= ; * 2.984
3 9( )B X −=  

  3m = , # coefficients= 30 
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