
An Approach to Reduce the Cost of Evaluation
in Evolutionary Learning�

Raúl Giráldez, Norberto Dı́az-Dı́az, and Isabel Nepomuceno,
and Jesús S. Aguilar-Ruiz

Department of Computer Science, University of Seville,
Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
{giraldez, ndiaz, isabel, aguilar}@lsi.us.es

Abstract. The supervised learning methods applying evolutionary al-
gorithms to generate knowledge model are extremely costly in time and
space. Fundamentally, this high computational cost is fundamentally due
to the evaluation process that needs to go through the whole datasets to
assess their goodness of the genetic individuals. Often, this process carries
out some redundant operations which can be avoided. In this paper, we
present an example reduction method to reduce the computational cost
of the evolutionary learning algorithms by means of extraction, storage
and processing only the useful information in the evaluation process.

1 Introduction

Machine Learning is used when we want to build a knowledge model from a
training dataset and predict the outcome of a new unseen instance. When the
class of the training data is known, we work in the Supervised Learning field.
There are several methods and algorithms in the specific literature that extract
the inherent knowledge to a set of labelled data. A large number of these meth-
ods (Hider [1, 11], Cn2 [6], Rise [9], Oc1 [15], Gabil [7], GAssist [3], Gil

[13], Sia [17], Ecl [8], etc.) use probabilistic algorithms to search solutions that
able to model the behaviour of data. When the learning process is carried out
by applying techniques of evolutionary computation, particularly evolutionary
algorithms, it is called evolutionary learning, which is the framework of our
approach.

The evolutionary learning methods usually evaluate the rules directly from
the database. That is to explore such database sequentially, taking each of the
examples and testing the quality of the rule through the correct classification
of those examples. We can see, therefore, that the learning process of these
systems is very costly in terms of time and space. Some approaches is focused
on improving the learning process in order to reduce its computational cost by
applying methods of incremental learning and windowing [4] or techniques of

� This research was supported by the Spanish Research Agency CICYT and European
FEDER Funds, under grants TIN2004–00159 and TIN2004–06689–C03–03.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 804–811, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning 805

A

AA

A
A

A
A A

A

A
A

A

A
A

AA
A

AA
A

BB

B
B

B
B

B

B

B
B B

B

B

B

B

B

B
B

B

B
B B

B

B

B

A

A

A
A A

A

A

A

A

A

A

A

A A
A A

A

A

A

A

A A

A

A

B

A
A

B

BB B

B

A A

BA

B

B
B

B

A

A

A

B

B
B
B

BB B

A

A

A

A

A

A

A

A A

B

B

B
B

B

B
B

B
B

B

B B
B

B

B

3.0 4.5 9.0 12.5 14.5 16.0
a1

a2

3.5

6.0

8.5

I1
1

I2
1

I3
1

I4
1

I5
1

I6
1

I3
2

I2
2

I1
2

B

B

{0|11}{0|0} {0|0} {0|0} {4|13} {5|0}

{0|0}{10|5} {0|9} {15|0} {13|0} {4|0}

{0|0}{0|15} {0|7} {9|0} {0|0} {0|0}

S13

S12

S11

S23

S22

S21

S33

S32

S31

S43

S42

S41 S51

S52

S53 S63

S62

S61

Fig. 1. Example

scalability [16]. Nevertheless, an appropriated organization of the information
can also contribute to a reduction of the computing time. In this sense, the
structure named EES [12] allows us to process only those examples, the values
of which are covered by such rule will be processed, and not the totality of the
database. However, although this solution reduces the computational cost, the
use of the EES reflects a redundant process of the data for the rules sharing
regions in the space.

The aim of this research is to avoid repetitive counting of examples during
the evaluation process of the individuals of the population. In this paper, we
propose a preprocessing method which extracts the useful information from the
data to be used in the evaluation and stores it in a format that allows an efficient
access of such data.

2 Motivation

One of the critical factors related to applying the evolutionary algorithms in su-
pervised learning is the evaluation of the individuals of the population. Usually,
each individual represents one or several rules as potential solutions to the prob-
lem. In this work, we assume that each individual codifies only one rule, however,
our approach can be easily adapted to individual with variable length. The eval-
uation function measures the goodness of each individual of the population. This
goodness is based on the number of goals (number of examples correctly clas-
sified) and errors (number of misclassified examples) that the encoded rule has
during the classification of the examples from the dataset.

Gabil and Gil are named concept learner, since they handle with discrete
attributes exclusively. Other advanced tools, like Hider, GAssist or Ecl can
treat continuous and discrete attributes thanks to a discretization algorithm
that diminishes the cardinality of the set of values of the continuous attribute.
Thus, the rules can only establish conditions using a finite set of intervals. We

806 R. Giráldez et al.

3.3 2.4

a1 a2

11.2 7.8

13.2 6.5

10.1 6.5

1.7 3.9

 .
 .
 .

 .
 .
 .

 .
 .
 .

8.0 4.7
3.1 3.7

Covered

A

B

Class

B

A

B

 .
 .
 .

A
B

no

 -

 -

no

yes

 .
 .
 .

yes

 -

Correct
Clasification

error

 -

 -

error

goal

 .
 .
 .

goal
 -

yes

no

no

sí

yes

 .
 .
 .

yes
no

e1

e3

e5

e2

e4

e120

e119

+

goals = 41
errors = 13

Data Set

If a1 [4.5, 14.5] and a2 [3.5, 8.5] Then Class = A

N
 =

 1
20

Fig. 2. Linear Evaluation

name these atomic intervals, because once the intervals are obtained, they can
not be split. The discretization process turns the initial search space, that it is
theoretically infinite, into a finite space of solutions. Figure 1 shows an example
of a dataset with 120 examples, two classes (A and B) and two continuous
attributes. The discretization method has obtained 6 intervals (I1

i) for At1 and
3 intervals (I2

j) for At2. Each pair of intervals (I1
i , I2

j) defines a subspace or
region (Sij). The values in brackets {εA|εB} represent the number of examples
of each class in the correspondent region. These subspaces can be linked in a
rule, but they can not be split, since their decision bounds are given by atomic
intervals. Consequently, these regions are called atomic subspaces.

Evaluation by means of a linear search processes each and every one of the
examples in the database independently of the conditions established by the
rule. The computational cost of a individual evaluation1 is Θ(Nm), where N is
the number of examples and m is the number of attributes in the database. For
example, the rule

If a1 ∈[4.5, 14.5] and a2 ∈[3.5,8.5] ⇒ Class=A

is represented by the shaded area in Figure 1 and it means that if an exam-
ple belongs to the subspace {I1

3 ∪ I1
4 ∪ I1

5} ∩ {I2
2 ∪ I2

3}, such example must be
classified as A. In order to count the goals and errors for this rule, each exam-
ple of the dataset is analysed. If the example is covered, that is it fulfills the
conditions of the rule, then the class is compared, as Figure 2 illustrates. In
this case, the rule has 41 goals and 13 errors.This process is repeated for each
individual, which means an unnecessary computational cost due to two aspects
principally:

1 Evaluation cost for only one individual.

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning 807

1. Redundant count of examples for those space areas shared by some rules.
2. The whole space exploration to evaluate rules which only cover a part of

such space.

In general, since the cost of the individual evaluation is very high, normally
it is tried to reduce some of the two parameters which take part in this: N and
m. The techniques that reduce the number of attributes m are commonly named
feature selection methods [14], and their goal is to remove those attributes which
are irrelevant and/or harmful for learning. In other way, the example pruning
methods are included into the instance editing techniques [18], and they are
focused on reduce the size of dataset (N). This work is framed in these last
techniques. We propose an instance reduction method that benefits from the
methodology followed by the typical evolutionary algorithms for rule discovery.

3 Example Reduction Method

As we mentioned before, the atomic subspaces can not be divided. Therefore,
although examples which belong to a same subspace can be different syntacti-
cally, from the point of view of the individual evaluation they are semantically
similar. This fact makes possible to count how many examples of each class co-
exist in each atomic subspace and to store these values for its later utilization
in evaluation process. This idea is put into practice in a novel editing method
that removes all those examples that result redundant for evaluation.

To explain our proposal in a clear way, we are going to use the example
showed in Figures 1 and 2, to later generalize the solution to data collections
with any kind of attributes and greater number of classes.

3.1 Algorithm

The aim of the editing method is to reduce the number of examples of the dataset
D to obtain a subset D∗ ⊆ D which contains the same knowledge that D, but
with a smaller number of examples N∗. Initially, we begin from a dataset D
with a number of examples N , where continuous attributes have already been
discretized. From this discretization results a set of atomic intervals per attribute
that define the atomic subspaces. Each example e = (a1, a2, . . . , am|c) is made
up by a collection of attributes and a class (v.g, e1 = (10.1, 6.5 | B). For each
atomic subspace Sij , the instances of each class {εA|εB} are counted and they
are chosen as many representative examples (ec

ij) as different class coexist in the
subspace. These representative examples2 are added to the reduced dataset D∗.
Each representative example have the same form that an original example, but
we add a weight ωc

ij equal to the εc which counts the instances of the class c in the
subspace Sij . The regions with some εc equal to 0 do not have representative
in D∗ for the class c. For example, in Figure 1, eA

43 = (10.5, 7.2 |A, 4) and

2 Although these representatives not have to coincide with some original example, for
simplicity, we choose the first which is in the data set.

808 R. Giráldez et al.

a1 a2 Class

eB
11 0.5 2.8 B

wc
ij

15

eA
12 0.5 3.9 A 10

eB
12 0.5 4.3 B 5

eB
21 3.3 2.5 B 7

eB
22 3.2 3.7 B 9

eA
31 5.3 2.2 A 9

eA
32 5.7 4.0 A 15

eA
42 9.6 3.9 A 13

eA
43 10.5 7.2 A 4

eB
43 10.1 6.5 B 13

eA
52 13.0 4.7 A 4

eA
53 13.2 6.5 A 5

eB
63 14.8 6.4 B 11

Reduced Dataset D*

A

AA

A
A

A

A A
A

A
A

A

A
A

AA
A

AA
A

BB

B
B

B
B

B

B

B
B B

B

B

B

B

B

B
B

B

B
B B

B

B

B

A
A

A
A A

A

A

A

A

A

A

A

A A
A A

A

A

A

A

A A

A

A

B

A
A

B

BB B

B

A A

BA

B

B
B

B

A

A

A

B

B
B
B

BB B

A
A

A

A

A

A

A

A A

B

B
B

B
B

B
B

B
B

B

B B
B

B

B

3.0 4.5 9.0 12.5 14.5 16.0
a1

a2

I1

1
I2

1
I3

1
I4

1
I5

1
I6

1

I3

2

I2

2

I1

2

B

B

{0|11}{0|0} {0|0} {0|0} {4|13} {5|0}

{0|0}{10|5} {0|9} {15|0} {13|0} {4|0}

{0|0}{0|15} {0|7} {9|0} {0|0} {0|0}

S13

S12

S11

S23

S22

S21

S33

S32

S31

S43

S42

S41 S51

S52

S53 S63

S62

S61

3.5

6.0

8.5

N
*

=
 1

3

Fig. 3. Reduction for example of Figures 1 and 2

eA
43 = (10.1, 6.5 |B, 13) represent the subspace S43, whereas eA

53 = (13.2, 6.5
|A, 5) is the only representative for the subspace S53. For the empty regions, like
S13, D∗ does not contain any example.

Figure 3 shows the result obtained by this editing method for the example
explained in Figure 1. Representative examples of each atomic subspace are
displayed in bold type, whereas removed examples appear with a lighter color.
The reduced dataset (D∗) are shown to the right and it will be used to the
evaluate process. As we can see, the original dataset, with N = 120 examples,
has been replaced by D∗, with N∗ = 13 weighted examples.

Once editing process has finished, the evaluation of the individuals can be
carried out in a linear way, as it was shown by Figure 2, but now, the number of
examples smaller. Note that it is necessary to take into account the examples’
weight when the goals and errors are counted, since each ec

ij ∈ D∗ represents to
ωc

ij examples in D. This method solves only the first of the problems mentioned
in Section 2, since it continues being needed a linear search through D∗. However,
our approach is very simple to apply and it achieves satisfactory experimental
results, as Section 4 shows.

Notice that the generalization of the methods for k class and m attribute is
trivial. Simply we would have a collection of class accountant {εc1 |εc2 | . . . |εck

};
and a indexes collection to denote a subspace (Si1...im) or example (ec

i1...im
).

3.2 Discrete Attributes

By applying our proposal for data set with discrete attributes is similar to the
previous one for continue attributes, although we should emphasize some impor-
tant peculiarities.

Continuous attributes, though they are discretized, often define a space much
more complex than the discrete ones, principally due to two reasons: first, the
number of intervals is normally larger in real applications, which multiplies the
number of subspaces; and second, the regions usually include more than one
example, that is, there are examples with the same semantical meaning. Thus,
our proposal has a priori more justification when the dataset contains continuous
attributes.

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning 809

When the dataset contains only discrete attributes and there are not re-
peated examples, each atomic subspace contains at the most one example only,
that is, the editing process would not produce reduction in the number of ex-
amples. However, although the multiplicity of examples can look like not much
habitual, it is relatively common. For example, the application of some feature
selection method can cause that some examples are identical if those attributes
that distinguish them was eliminated. Another clear example is given when there
is noise in the dataset. In this case we can remove the repeated examples in a
same atomic subspace by setting wc

ij to 1. However, this solution is not advisable
because we could be eliminating useful information for the learning.

Therefore, the our approach is favourable whenever the dataset contains simi-
lar examples from the point of view of the learning process, otherwise it does not
reduce the size of data. Anyway, our method does not cause a significant increment
in the computational costwith regard to the evolutionary algorithm, and we advise
its use when there is no previous information about the multiplicity of dates.

4 Empirical Results

In order to show the reduction of the computational cost of the evaluation pro-
cess, we have designed the following experiments with some datasets from UCI
Repository [5]. The the evolutionary tool used was Hider [1, 11], that generates
a set of hierarchical decision rules from a labeled dataset. This tool uses its own
discretization method, named Usd [10], before running the evolutionary algo-
rithm that obtains the rules. Thus, the editing method must be applied after
the discretization and before the learning process. This algorithm required some
changes, though minimal, to adapt the evaluation of the individuals to the new
dataset with weight. To check that the editing does not damage the accuracy of
the rules, a 10-fold cross-validation was achieved with each dataset. In this sense,
it is important to point out that the accuracy and complexity of the knowledge
models resulted similar by using the editing method and without it.

The datasets used were: Breast Cancer, Bupa, Cleveland, Glass, Hayes Roth,
Heart, Hepatitis, Horse Colic, Iris, Led7, Pima Diabetes, Tic Tac Toe, Vote and
Zoo. Hider was run for each database by using the original dataset (D) and the
reduced dataset (D*) in order to compare the computational cost in time and
space. Thus, the number of examples was reduced for 8 cases and kept for the
other 6 datasets. Logically, for those last ones, the cost shown a light increase by
using D*, although this never exceeded the 5% with respect to the inverted time
by using D. Among to the 8 databases where the editing had a favourable effect,
the reduction of the dataset was higher than 20% for 6 cases. Table 1 shows this
results. The five first columns show the features of each database: name, number
of examples, number of attributes, type of attributes (continuous or discrete)
and number of class, respectively. The next column is the number of examples
after the editing process. Finally, the three last columns give the relative cost
concerned to the runtime, the evaluation time and the space used. This values
is obtained by dividing, in each case, the cost with D* by the cost with D. The
last row shows each previous relative cost on average.

810 R. Giráldez et al.

Table 1. Results

Features Editing Relative Cost
Dataset N m Type #Classes N∗ Runtime Evaluation Time Space
Breast Cancer W. 699 9 C 2 263 0.44 0.44 0.38
Hayes Roth 132 4 C 3 28 0.33 0.23 0.21
Iris 150 4 C 3 70 0.59 0.57 0.47
Led7 3200 7 D 10 336 0.31 0.13 0.11
Vote 435 16 D 2 342 0.82 0.74 0.79
Zoo 101 16 D 7 59 0.49 0.38 0.58

Average 0.49 0.41 0.42

By observing the average results, the size of dataset is reduced to 42%. This
caused a decrease in the evaluation time to 41%. The rule-learning methods that
EAs use invest approximately 85% of their time in evaluating the individuals (the
mean of the executions of a 10-fold cross-validation with 20 UCI Repository
databases [2]). Therefore, this proves the importance of the evaluation with
regard to the efficiency of the algorithm. We can deduce that the editing method
does not add significant computational cost to the algorithm, so that the runtime
is very similar to the evaluation time. In short, for the dataset of table 1, we
concludes that the our approach speeds up the learning process, by using less
than a half of computational resources, on average.

5 Conclusions and Future Works

In this paper we present new editing method that reduces the evaluation cost
of individuals in evolutionary algorithms for supervised learning. This method
identifies those regions of attribute space that are indivisible during the learning
process, and, furthermore, the method extracts the useful information from each
of them. The method takes advantage of those examples which share the same
region are identical from the point of view of the learning.

After the empirical experiments, we conclude that our proposal produces a
reduction of the computational cost associated to the evaluation of individuals
during the learning, in time and space. This reduction is proportional to the
reduction in the number of the examples that are the result from the editing
process. This no affects to the quality of the knowledge model obtained by the
learning algorithm. If the method does reduce the number of examples, our
method does not cause a significant increment in the computational cost with
regard to the evolutionary algorithm.

References

1. J. S. Aguilar–Ruiz, J. C. Riquelme and M. Toro. Evolutionary Learning of Hier-
archical Decision Rules. IEEE Transactions on Systems, Man and Cybernetics –
Part B, 33(2)(2003), 324–331.

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning 811

2. J. S. Aguilar. Discovering Hierarchical Decision Rules with Evolutionary Algo-
rithms in Supervised Learning. PhD thesis, University de Seville, 2001.

3. J. Bacardit and J. M. Garrell. Evolving multiple discretizations with adaptive
intervals for a Pittsburgh Rule-Based Learning Classifier System. Genetic and
Evolutionary Computation Conference - GECCO 2003. Lecture Notes in Computer
Science 2724, pp. 1818–1831, Springer-Verlag, 2003.

4. J. Bacardit y J. M. Garrell. Incremental Learning for Pittsburgh Approach Clas-
sifier Systems. 2nd. Spanish Conference on Metaheuristics and Evolutionary Algo-
rithms (MAEB’03), pp. 303–311. Gijón, Spain, 2003.

5. C. L. Blake and C. J. Merz. UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science, 1998.

6. P. Clark and R. Boswell. Rule induction with cn2: Some recents improvements.
In Machine Learning: Proceedings of the Fifth European Conference (EWSL-91),
pages 151–163, 1991.

7. K. A. DeJong, W. M. Spears and D. F. Gordon. Using genetic algorithms for
concept learning. Machine Learning, 1(13):161–188, 1993.

8. F. Divina and E. Marchiori, Evolutionary Concept Learning, Genetic and Evolu-
tionary Computation Conference - GECCO 2002, W.B. Langdon et al. eds, Morgan
Kaufmann, NY, USA, 2002, pp. 343–350.

9. P. Domingos. Rule induction and instance-based learning: A unified approach. In
Proceedings of International Joint Conference on Artificial Intelligence, 1995.

10. R. Giráldez, J. S. Aguilar-Ruiz, J. C. Riquelme y D. Mateos Discretization Ori-
ented to Decision Rule Generation, In Proceedings of International Conference
on Knowledge-Based Intelligent Information & Engineering Systems, pp. 275–279,
IOS Press, Crema, Italy, 2002.

11. R. Giráldez, J. S. Aguilar-Ruiz and J. C. Riquelme. Natural Coding: A More Ef-
ficient Representation for Evolutionary Learning. Genetic and Evolutionary Com-
putation Conference - GECCO 2003, pp. 279–290. Chicago, USA, 2003.

12. R. Giráldez and J. S. Aguilar–Ruiz and J. C. Riquelme. Knowledge-based Fast
Evaluation for Evolutionary Learning, IEEE Transactions on Systems, Man &
Cybernetics – Part C, (in press), 2005.

13. C. Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 1(13):169–228, 1993.

14. H. Liu and H. Motoda Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic, 1998.

15. S. K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 1994.

16. K. Shim. SIGKDD Explorations. December 2000. Volume 2, Issue 2.
17. G. Venturini. SIA: a supervised inductive algorithm with genetic search for learning

attributes based concepts. In Proceedings of European Conference on Machine
Learning, pages 281–296, 1993.

18. D. R. Wilson and T. R. Martinez, Reduction Techniques for Instance–Based Learn-
ing Algorithms. Machine Learning, 38(3):257–286,2000.

	Introduction
	Motivation
	Example Reduction Method
	Algorithm
	Discrete Attributes

	Empirical Results
	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

