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2 Jožef Stefan Institute

Jamova 39, 1000 Ljubljana, Slovenia
nada.lavrac@ijs.si

Abstract. This paper discusses actionable knowledge generation. Ac-
tionable knowledge is explicit symbolic knowledge, typically presented
in the form of rules, that allows the decision maker to recognize some
important relations and to perform an action, such as targeting a di-
rect marketing campaign, or planning a population screening campaign
aimed at targeting individuals with high disease risk. The disadvantages
of using standard classification rule learning for this task are discussed,
and a subgroup discovery approach proposed. This approach uses a novel
definition of rule quality which is extensively discussed.

1 Introduction

In KDD one can distinguish between predictive and descriptive induction tasks.
Classification rule learning [2,10] is a form of predictive induction. The distin-
guishing feature of predictive induction is the input data formed of labeled
training examples (with class assigned to each training instance), and the out-
put aimed at solving classification and prediction tasks. This paper provides
arguments for actionable knowledge generation through recently developed de-
scriptive induction approaches. These involve mining of association rules (e.g.,
APRIORI [1]), subgroup discovery (e.g., MIDOS [16]), and other approaches
to non-classificatory induction. In this work we are particularly interested in
subgroup discovery, where a subgroup discovery task can be defined as follows:
given a population of individuals and a property of those individuals we are
interested in, find population subgroups that are statistically ‘most interesting’,
e.g., are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the property of interest.

Actionable knowledge is explicit symbolic knowledge that allows the decision
maker to perform an action, such as, for instance, select customers for a direct
marketing campaign, or select individuals for population screening concerning
high disease risk. The term actionability [14] denotes a subjective measure of
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interestingness of a discovered pattern: “a pattern is interesting if the user can
do something with it to his or her advantage” [13,14].1

This paper presents some shortcomings of actionable knowledge generation
through predictive induction and proposes an approach to expert-guided knowl-
edge discovery, where the induction task is to detect different, potentially impor-
tant subgroups among which the expert will be able to select the patterns which
are actionable. The paper is organized as follows. Section 2 discusses the types of
induced knowledge and shortcomings of standard classification rule learning for
actionable knowledge generation. Section 3 presents the advantages of subgroup
discovery approaches for the formation of actionable knowledge, and proposes an
approach to subgroup discovery, developed by adapting an existing confirmation
rule learning algorithm. We conclude with some experimental evaluation results
in Section 4 and lessons learned in Section 5.

2 Shortcomings of Classification Rule Learning for
Actionable Knowledge Generation

In symbolic predictive induction, two most common approaches are rule learning
and decision tree learning. The goal of rule learning is to generate separate mod-
els, one for each class, inducing class characteristics in terms of class properties
occurring in the descriptions of training examples. Classification rule learning
results in characteristic descriptions, usually generated separately for each class
by repeatedly applying the covering algorithm. In decision tree learning, on the
other hand, the rules which can be formed of paths leading from the root node to
class labels in the leaves represent discriminating descriptions, formed of prop-
erties that best discriminate between the classes. Hence, classification rules serve
two different purposes: characterization and discrimination.

An open question, discussed in this paper, is whether the knowledge induced
by rule learning and decision tree learning is actionable in medical and marketing
applications, outlined in this paper, whose goal is to uncover the properties of
subgroups of the population which can guide a decision maker in directing some
targeted campaign. The motivation for this work comes from two applications

– A medical problem of population screening aimed at spotting the individuals
in a town or region with high risk for Coronary Heart Disease (CHD) [5].
In this application, the hard problem is to find suspect CHD cases with
slightly abnormal values of risk parameters and in cases when combinations
of different risk factors occur. The risk group models should help general
practitioners to recognize CHD and/or to detect the illness even before the
first symptoms actually occur.

– A marketing problem of direct mailing aimed at spotting potential customers
of a certain product [3]. In this application. the problem is to select subgroups
of potential customers that can be targeted by an advertising campaign. The

1 The other subjective measure introduced in [14] is unexpectedness: “a pattern is
interesting to the user if it is surprizing to the user”.
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specific task is to find significant characteristics of customer subgroups who
do not know a brand, relative to the characteristics of the population that
recognizes the brand.

We argue that for such and similar tasks the models induced through classi-
fication rule learning and decision tree learning are not actionable. Besides sub-
jective reasons [14] that can be due to the inappropriate choice of parameters
used in induced descriptions, some objective reasons for the non-actionability of
induced patterns that are due to the method used are listed below:

– Classification rules and decision trees could be used to classify all individuals
of a selected population, but this is unpractical and virtually impossible.

– Rules formed of decision tree paths are discriminant descriptions, hence they
are not actionable for the above tasks.

– Classification rules forming characteristic descriptions are intuitively ex-
pected to be actionable. However, the fact that they have been generated by
a covering algorithm (used in AQ [10], CN2 [2], and most other rule learners)
hinders their actionability. Only first few rules induced by a covering algo-
rithm may be of interest as subgroup descriptions with sufficient coverage.
Subsequent rules are induced from smaller and strongly biased example sub-
sets, e.g., subsets including only positive examples not covered by previously
induced rules. This bias prevents a covering algorithm to induce descriptions
uncovering significant subgroup properties of the entire population.

A deeper analysis of the reasons for the non-actionability of patterns in-
duced by decision tree and classification rule induction can be found in [9].
Our approach to dealing with the above deficiencies is described in this paper,
proposing an approach to actionable knowledge generation where the goal is to
uncover properties of individuals for actions like population screening or target-
ing a marketing campaign. For such tasks, actionable rules are characterized by
high coverage (support), as well as high sensitivity and specificity2, even if this
can achieved only at a price of lower classification accuracy, which is a quality
to be optimized in classification/prediction tasks.

3 Actionable Knowledge Generation through Subgroup
Discovery

Subgroup discovery has the potential for inducing actionable knowledge to be
used by a decision maker. The approach described in this paper is an approach to
2 Sensitivity measures the fraction of positive cases that are classified as positive,

whereas specificity measures the fraction of negative cases classified as negative. If
TP denotes true positives, TN true negatives, FP false positives, FN false negatives,
Pos all positives, and Neg all negatives, then Sensitivity = TPr = TP

TP+F N
= TP

Pos
,

and Specificity = TN
TN+F P

= TN
Neg

, and FalseAlarm = FPr = 1 − Specificity =
F P

TN+F P
= F P

Neg
. Quality measures in association rule learning are support and confi-

dence: Support = TP
Pos+Neg

and Confidence = TP
TP+F P

.
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descriptive induction, but the underlying methodology uses elements and tech-
niques from predictive induction. By basing the induction on labeled training
instances, the induction process can be targeted to uncovering properties form-
ing actionable knowledge. On the other hand, the standard assumptions like
“induced rules should be as distinct as possible, covering different parts of the
population” (which is the case in decision tree learning, as well as in rule learn-
ing using the covering algorithm) need to be relaxed; this enables the discovery
of intersecting subgroups with high coverage/support, describing some popula-
tion segments in a multiplicity of ways. This knowledge is redundant, if viewed
purely from a classifier perspective, but extremely valuable in terms of its de-
scriptive power, uncovering genuine properties of subpopulations from different
viewpoints.

3.1 Algorithm SD for Subgroup Discovery

Algorithm SD is outlined in Figure 1. The algorithm is used in the Data Mining
Server available on-line at http://dms.irb.hr and the reader can test it there.
The algorithm assumes that the user selects one class as a target class, and
learns subgroup descriptions of the form TargetClass ← Cond, where Cond
is a conjunction of features. The result is a set of best rules, induced using a
heuristic beam search algorithm that allows for the induction of relatively general
rules which may cover also some non-target class examples.

The aim of this heuristic rule learning algorithm is the search for rules with a
maximal q value, where q is computed using the user-defined TP/FP−tradeoff
function. This function defines a tradeoff between true positives TP and false
positives FP (see also Footnote 2). By searching for rules with high quality q,
this algorithm tries to find rules that cover many examples of the target class and
a low number of non-target examples. By changing a parameter of the tradeoff
function the user can obtain rules of variable generality.

Typically, Algorithm SD can generate many rules of high quality q satisfying
the requested condition of a minimal number of covered target class examples,
defined by the min support parameter. Accepting all these rules as actionable
knowledge is generally not desired. A solution to this problem is to select a rel-
atively small number of rules which are as diverse as possible. The algorithm
implemented in the confirmation rule set concept [4] accepts as diverse those
rules that cover diverse sets of target class examples. The approach cannot guar-
antee statistical independence of the selected rules, but ensures the diversity of
generated models. Application of this algorithm is suggested for postprocessing
of detected subgroups.

3.2 Rule Quality Measures for Subgroup Discovery

Various rule evaluation measures and heuristics have been studied for subgroup
discovery [7,16], aimed at balancing the size of a group (referred to as factor g
in [7]) with its distributional unusualness (referred to as factor p). The proper-
ties of functions that combine these two factors have been extensively studied
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Algorithm SD: Subgroup Discovery
Input: E = P ∪N (E training set, P positive (target class) examples,

N negative (non-target class) examples)
L set of all defined features (attribute values), l ∈ L

rule quality (user-defined TP/FP − tradeoff function)
min support (minimal support for rule acceptance)
beam width (number of rules in the beam)

Output: S = {TargetClass← Cond}
(set of rules formed of beam width best conditions Cond)

(1) for all rules in the beam (i = 1 to beam width) do
initialize condition part of the rule to be empty, Cond(i)← {}
initialize rule quality, q(i)← 0

(2) while there are improvements in the beam do
(3) for all rules in the beam (i = 1 to beam width) do
(4) for all l ∈ L do
(5) form a new rule by forming a new condition as a conjunction of the

condition from the beam and feature l, Cond(i)← Cond(i) ∧ l
(6) compute rule quality q defined by the TP/FP − tradeoff function
(7) if TP ≥ min support and q is larger than any q(i) in the beam do
(8) replace the worst rule in the beam with the new rule and

reorder the rules with respect to their quality
(9) end for features
(10) end for rules from the beam
(11) end while

Fig. 1. Heuristic beam search rule construction algorithm for subgroup discovery

(the “p-g-space”, [7]). Similarly, the weighted relative accuracy heuristic, used
in [15], trades off generality of the rule (p(Cond), i.e., rule coverage) and relative
accuracy (p(Class|Cond)− p(Cond)).

In contrast with the above measures, in which the generality of a rule is used
in the generality/unusualness or generality/relative-accuracy tradeoff, the mea-
sure used in Algorithm SD is aimed to enable expert guided subgroup discovery
in the TP/FP space, in which FP (plotted on the X-axis) needs to be min-
imized, and TP (plotted on the Y -axis) needs to be maximized. The TP/FP
space is similar to the ROC (Receiver Operating Characteristic) space [11] in
which a point in the ROC space shows classifier performance in terms of false
alarm or false positive rate FPr = FP

TN+FP (plotted on the X-axis) that needs
to be minimized, and sensitivity or true positive rate TPr = TP

TP+FN (plotted
on the Y -axis) that needs to be maximized. In the ROC space, an appropriate
tradeoff, determined by the expert, can be achieved by applying different algo-
rithms, as well as by different parameter settings of a selected mining algorithm.
The ROC space and the TP/FP space are equivalent if a single problem is being
analysed: in the ROC space the results are evaluated based on the TPr/FPr
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tradeoff, and in the TP/FP space based on the TP/FP tradeoff - the ”rate” is
just a normalising factor enabling us intra-domain comparisons.

It is well known from the ROC analysis, that in order to achieve the best
results, the discovered rules should be as close as possible to the top-left corner
of the ROC space. This means that in the TPr/FPr tradeoff, TPr should be as
large as possible, and FPr as small as possible. Similarly, in the TP/FP space,
TP should be as large as possible, and FP as small as possible.

For marketing problems, for instance, we have learned that intuitions like
“how expensive is every FP prediction in terms of additional TP ’s that should
be covered by the rule” are useful for understanding the problem and directing
the search. Suppose that some cost parameter c is defined that says: “For every
additional FP , the rule should cover more than c additional TP examples in
order to be better.” Based on this reasoning, we can define a quality measure qc,
using the following TP/FP tradeoff: qc = TP − c ∗ FP . Quality measure qc is
easy to use because of the intuitive interpretation of parameter c. It also has a
nice property for subgroup discovery: by changing the c value we can move in
the TP/FP space and select the optimal point based on parameter c.

Consider a different quality measure qg, using another TP/FP tradeoff: qg =
TP/(FP + g). This quality measure is actually used in Algorithm SD for the
evaluation of different rules in the TP/FP space, as well as for heuristic con-
struction of interesting rules. Below we explain why this quality measure has
been selected, and not some other more intuitive quality measure like the qc

measure defined above.

3.3 Analysis of the qg Quality Measure

The selected quality measure qg and generalization parameter g used in it, enable
that by changing parameter g, different optimal points (rules) in the TP/FP
space can be selected as the final solution. Although large g means that more
general solutions can be expected, sometimes we would like to know in advance

Fig. 2. Properties of quality qg Fig. 3. Rules with highest quality in-
cluded into the beam for qg =
TP/(FP + g)
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Fig. 4. Rules with highest quality in-
cluded in the beam for qc = TP −c∗FP

Fig. 5. Placement of interesting fea-
tures in the TP/FP space after the
first iteration

what properties of the selected rule can be expected for the selected g value,
or, stated alternatively, by determining the desired properties of the rule under
construction, what parameter value g should we select.

In Algorithm SD, increased generality (increasing g means moving to the right
in the TP/FP space) results in more general subgroups discovered, covering
more instances. If the value of g is low (1 or less) then covering of any non-
target instance is made relatively very expensive and the final result are rules
that cover only few target cases but also nearly no non-target class cases. This
results in rules with high specificity (high confidence or low false alarm rate). If
the value of parameter g is high (10 or higher) then covering of few non-target
examples is not so expensive and more general rules can be generated. This
approach is very appropriate for domains in which false positive predictions are
not very expensive, like risk group detection in medical problems or detection of
interesting customer groups in marketing, in which ‘pure’ rules would have too
low coverage, making them unactionable.

If the algorithm employs exhaustive search (or if all points in the TP/FP
space are known in advance) then there is no difference between the two mea-
sures qg and qc. Any of the two could be used for selecting the optimal point,
only the values that must be selected for parameters g and c would be different.
In this case, qc might be even better because its interpretation is more intuitive.

However, since Algorithm SD is a heuristic beam search algorithm, the sit-
uation is different. Subgroup discovery is an iterative process, performing one
or more iterations (typically 2–5) until good rules are constructed by forming
conjunctions of features in the rule body. In this process, a rule quality measure
is used for rule selection (for which the two measures qg and qc are equivalent)
as well as for the selection of features and their conjunctions that have high
potential for the construction of high quality rules in subsequent iterations; for
this use, rule quality measure qg is better than qc. Let us explain why.

Suppose that we have a point (a rule) x in the TP/FP space, where tx is
its TP value and fx its FP value, respectively. For a selected g value, qg can be
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Fig. 6. The quality qc employing the c
parameter tends to select points with
small TP values, while quality qg em-
ploying the g parameter will include
also many points with large TP values
(from the right part of the TP/FP
space) that have a chance to take part
in building conjunctions of high qual-
ity rules

determined for this point x. It can be shown that all points that have the same
quality qg as the point (rule) x lie on a line defined by the following function:

t =
tx ∗ f

fx + g
+

tx ∗ g

fx + g
=

tx ∗ (f + g)
fx + g

.

In this function, t represents the TP value of the rule with quality qg which
covers exactly f = FP negative examples. By selecting different f ’s, correspond-
ing t’s can be determined by this function.

The line, determined by this function, crosses the t(TP ) line at point t =
tx ∗ g/(fx + g) and the f(FP ) line at point f = −g. This is shown in Figure 2.
The slope of this line is equal to the quality of point X , which equals tx/(fx +g).

In the TP/FP space, points with higher quality than qg are above this line,
in the direction of the upper left corner. Notice that in the TP/FP space the
top-left is the preferred part of the space: points in that part represent rules
with the best TP/FP tradeoff. This reasoning indicates that points that will be
included in the beam must all lie above the line of equal weights qbeam which is
defined by the last point (rule) in the beam.

If represented graphically, first beam width number of rules, found in the
TP/FP space when rotating the line from point (0, Pos) in the clockwise direc-
tion, will be included in the beam. The center of rotation is point (−g, 0). This
is illustrated in Figure 3. On the other hand, for the qc quality measure defined
by qc = TP − c∗FP the situation is similar but not identical. Again points with
same quality lie on a line, but its slope is constant and equal to c. Points with
higher quality lie above the line in the direction of the left upper corner. The
points that will be included into the beam are the first beam width points in
the TP/FP space found by a parallel movement of the line with slope c, start-
ing from point (0, Pos) in the direction towards the lower right corner. This is
illustrated in Figure 4.

Let us now assume that we are looking for an optimal rule which is very
specific. In this case, parameter c will have a high value while parameter g will
have a very small value. The intention is to find the same optimal rule in the
TP/FP space. At the first level of rule construction only single features are
considered and most probably their quality as the final solution is rather poor.
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See Figure 5 for a typical placement of potentially interesting features in the
TP/FP space.

The primary function of these features is to be good building blocks so that
by conjunctively adding other features, high quality rules can be constructed. By
adding conjunctions, solutions generally move in the direction of the left lower
corner. The reason is that conjunctions can reduce the number of FP predictions,
but they reduce the number of TP ’s as well. Consequently, by conjunctively
adding features to rules that are already in the left lower corner, the algorithm
will not be able to find their specializations nearer to the left upper corner. Only
the rules that have high TP value, and are in the right part of the TP/FP space,
have a chance to take part in the construction of interesting new rules.

Figure 6 illustrates the main difference between quality measures qg and qc:
the former tends to select more general features from the right upper part of
the TP/FP space (points in the so-called ‘g space’), while the later ‘prefers’
specific features from the left lower corner (points in the so-called ‘c space’). In
cases when c is very large and g is very small, the effect can be so important
that it may prevent the algorithm from finding the optimal solution even with a
large beam width. Notice, however, that Algorithm SD is heuristic in its nature
and no statements are true for all cases. This means that in some, but very rare
cases, the quality based on parameter c may result in a better final solution.

4 Experimental Evaluation

We have verified the claimed properties of the proposed rule quality measure
in the medical Coronary Heart Disease (CHD) problem [5]. The task is the
detection of subgroups which can be used as risk group models. The domain
includes three levels of descriptors (basic level A with 10, level B with 16, and
level C with 21 descriptors) and the results of subgroup discovery are five models
(A1 and A2 for level A, B1 and B2 for level B, and C1 for level C), presented
in [5]. Algorithm SD with the qg measure was used for subgroup detection, with
the goal of detecting different, potentially relevant subgroups. The algorithm
was used iteratively many times with different g values. In each iteration few
best solutions from the beam were shown to the domain expert. The selection
of subgroups which will be used as model descriptions was based on the expert
knowledge. The position of the expert selected subgroups in the TP/FP space is
presented in Figures 7–9. It can be noticed that the selected subgroups do not lie
on the ROC curves: this means that expert-selected actionability properties of
subgroups were more important than the optimization of their TP/FP tradeoff.

For the purpose of comparing the qg and qc measures we have constructed
one ROC curve for each of the two measures. The procedure was repeated for
all levels A–C. The ROC curve for the qg measure was constructed so that
for g values between 1 and 100 the best subgroups lying on the convex hull in
the TP/FP space were selected: this results is the thick lines in Figures 7–9.
The thin lines represent ROC curves obtained for subgroups induced by the qc

measure for c values between 0.1 and 50.
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Fig. 7. TP/FP space presenting the
ROC curves of subgroups induced us-
ing quality measures qg = TP/(FP +
g) (thick line) and qc = TP − c ∗ FP
(thin line) at data level A. Labels A1–
C1 denote positions of subgroups se-
lected by the medical expert as inter-
esting risk group descriptions [8,5]

Figure 7 for level A demonstrates that both curves agree in the largest part
of the TP/FP space, but that for small FP values the qg measure is able to
find subgroups covering more positive examples. According to the analysis in the
previous section, this was the expected result. In order to make the difference
more obvious, for levels B and C, only the left part of the TP/FP space is shown
in Figures 8 and 9. Similar curve properties can be noticed for different data sets.

The differences between the ROC curves for qg and qc measures may seem
small and insignificant, but in reality it is not so. The majority of interesting
subgroups (this claim is supported also by models A1–C1 selected by the domain
expert) are subgroups with a small false positive rate which lie in the range in
which qg works better. In addition, for subgroups with FP = 0 the true positive
rate in our examples was about two times larger for subgroups induced with qg

than with qc. Furthermore, note that for levels A and B there are two out of five
subgroups (A2 and C1) which lie in the gap between the ROC curves. If the qc

measure instead of qg measure were used in the experiments described in [5], at
least subgroup A2 could not have been detected.

5 Conclusions and Lessons Learned

This work describes actionable knowledge generation in the descriptive induc-
tion framework, pointing out the importance of effective expert-guided subgroup
discovery in the TP/FP space. Its main advantages are the possibility to induce
knowledge with different generalization levels (achieved by tuning the g param-
eter of the subgroup discovery algorithm) and the measure that ensures high
quality rules also in the heuristic environment. In addition, the paper argues
that expert’s involvement in the induction process is substantial for successful
actionable knowledge generation.

The presented methodology has been applied to different medical and mar-
keting domains. In the medical problem of detecting and describing of Coronary
Heart Disease risk groups we have learned a few important lessons. The main
is that in this type of problem, there are no predefined specificity or sensitivity
levels to be satisfied. The actionability of induced models, based on the detected
subgroups, largely depends on the applied subgroup discovery method, but also
on (a) whether the attributes used in the induced model can be easily and reliably
measured, and (b) how interesting/unexpected are the subgroup descriptions in
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Fig. 8. The left part of the ROC curves
representing subgroups induced at data
level B

Fig. 9. The left part of the ROC
curves representing subgroups in-
duced at data level C

the given population. Evaluation of such properties is completely based on ex-
pert knowledge and the success of the search depends on expert involvement.
The aim of machine learning based subgroup detection described in this work
is thus to enable the domain expert to effectively search the hypothesis space,
ranging from very specific to very general models.

In the marketing problems where the task is to find significant characteristics
of customer subgroups who do not know a brand compared to the characteristics
of the population that recognizes the brand, the main lesson learned is that the
ROC space is very appropriate for the comparison of induced models. Only sub-
groups lying on the convex hull may be optimal solutions and all other subgroups
can be immediately discarded. When concrete parameters of the mailing cam-
paign are known, like marginal cost per mailing and the size of the population,
they define the slope of the lines with equal profit in the ROC space. Movements
in the ROC space along these lines will not change the amount of total profit
while movements upward or downward will increase or decrease the profit, re-
spectively. The optimal subgroup in a concrete marketing situation is the point
on the convex hull which has an equal profit line as its tangent. In terms of
actionability, however, the appropriate parameters for subgroup discovery need
to be determined in data preprocessing.
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4. Gamberger, D. & Lavrač, N. (2000) Confirmation rule sets. In Proc. of 4th
European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD2000), pp.34–43, Springer. 166
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