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Abstract— In this paper, we show how an existing fuzzy rule
induction algorithm can incorporate missing values in the train-
ing procedure in a very natural way. The underlying algorithm
generates rules which restrict the feature space only along a
few, important attributes. This property can be used to limit
the algorithm’s three major steps to the reduced feature space
for each training instance, which allows the features for which
no values are known to be ignored. Hence no replacement is
necessary and the algorithm simply uses all available knowledge
from each training instance. We demonstrate on data sets from
the UCI repository that this method works well, generates rule
sets that have comparable classification accuracy, and are, at
times, even smaller than the rule sets generated by the original
algorithm.
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I. I NTRODUCTION

Missing values present a big obstacle for many learning
algorithms. Especially for rule induction methods, it is often
required to use training instances for which all feature values
are known. In practice this is often achieved using more or
less sophisticated imputation methods, ranging from simple
injection of the mean to online prediction of the missing values
throughout training.

Dealing with incomplete information is not a new challenge
in data mining. In [7] a Bayesian technique for extracting
class probabilities given partial data in Gaussian basis function
networks is discussed. However to find the optimal solution,
integration via all missing dimensions weighted by local
probability densities is required. A substitution methodology
to tolerate missing values in a fuzzy environment is presented
in [1]. Here, missing values are replaced by the so-calledbest
guess, that is, the model predicts the most plausible value for
a missing attribute value. More often, simply the mean or a
constant value are substituted for missing values.

In this paper we concentrate on handling missing values
by incorporating them directly into the learning process. This
is possible as the underlying fuzzy rule induction algorithm
only concentrates on a few, important attributes and hence
does not necessarily require complete feature vectors at all
times. We can use this property to have the algorithm focus
entirely on the known attributes for each individual training
example and therefore make use of all available knowledge
without introducing artifacts through artificial replacements.

The paper is organized as follows: we first give a brief
introduction of the underlying fuzzy rule learning algorithm
before explaining the extension that allows to incorporate

missing value in detail. We conclude with an evaluation section
and discussion.

II. FUZZY RULE INDUCTION

The underlying fuzzy rule learning algorithm [3] constructs
a set of fuzzy rules from given training data. We briefly
summarize the used type of fuzzy rules before explaining the
main structure of the training algorithm.

The underlying fuzzy system generates individual fuzzy
rules defined by independent membership functions for each
dimension in the feature space:
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whereRk
j represents rulej for classk. The rule base contains

rules for c classes andrk indicates the number of rules for
classk (1 ≤ j ≤ rk and1 ≤ k ≤ c).

The fuzzy setsµk
i,j : IR 7→ [0, 1] are defined for every

featurei (1 ≤ i ≤ n) and the overall degree of fulfillment of
a specific rule for an input pattern~x = (x1, . . . , xn) can be
computed using the minimum-operator as fuzzy-AND:
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j (~x) = mini=1,···,n
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.

The combined degree of membership for all rules of classk

can be calculated using the maximum-operator as fuzzy-OR:

µk(~x) = maxj=1,···,rk

{

µk
j (~x)

}

.

From these membership values the predicted classkbest for
an input pattern~x is derived then as:

kbest(~x) = arg maxk=1,...,c

{

µk(~x)
}

.

The algorithm uses trapezoid membership functions which can
be described with four parameters<ai, bi, ci, di>, whereai

anddi define the fuzzy rule’s support-, andbi andci its core-
region for each attributei of the input dimension. The training
algorithm usually only constrains few attributes, that is,most
support-regions remain infinite, leaving the rules interpretable
even in the case of high-dimensional input spaces.
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Fig. 1. The algorithm to construct a fuzzy rule set based on example data [2]
incorporating missing values.

The fuzzy rule induction method is based on an iterative
algorithm. During each learning epoch, i. e. presentation of
all training patterns, new fuzzy rules are introduced when
necessary and existing ones are adjusted whenever a conflict
occurs. Figure 1 shows the main flow of the algorithm. For
each pattern three main steps are executed:

• Cover: If a new training pattern lies inside the support-
region of an already existing fuzzy rule of the correct
class, its core-region is extended to cover the new pattern.
In addition, the weight of this rule is incremented.

• Commit: If the new pattern is not yet covered, a new
fuzzy rule belonging to the corresponding class is created.
The new example is assigned to its core-region, whereas
the overall rule’s support-region is initialized “infinite”,
that is, the new fuzzy rule is unconstrained and covers
the entire domain.

• Shrink : If a new pattern is incorrectly covered by an
existing fuzzy rule of conflicting class, this fuzzy rule’s
core- and/or support-region is reduced, so that the conflict
with the new pattern is avoided. The underlying heuristic
of this step aims to minimize the loss in volume.

The algorithm usually terminates after only few iterationsover
the training data. The final set of fuzzy rules can be used to
compute a degree of class activation for new input patterns.

As mentioned above, the training procedure relies on a
heuristic which affects the strategy to avoid conflicts. One
common approach is to shrink the dimension with minimum
loss in volume for an existing fuzzy rule:

imin = arg mini=1,···,n {Vi} .

The loss in volumeVi of a fuzzy ruleR using trapezoid
membership functions with parameters<a, b, c, d> where
(a, b) and(c, d) bound the support-region, and[b, c] the fuzzy
rule’s core-region is then:

Vi = d∗i (~x,R) ·

n
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d×j (~x,R),

whered∗i (1 ≤ i ≤ n) is the distance between example pattern
~x and the border (of the core- or support-region) of a fuzzy rule

R in dimensioni, andd×j (1 ≤ j ≤ n) indicates the distance of
fuzzy ruleR in dimensionj. Furthermore, the loss in volume
is normalized with respect to the overall volume:
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That is, the computation of this loss in volume can be
simplified because only the shrunken dimension needs to be
considered. In [4] different shrink heuristics and fuzzy norms
are evaluated. The most popular choice for these fuzzy norms
are introduced by Lotfi A. Zadeh in [8]:

⊤ (µ(x), µ(y)) = min {µ(x), µ(y)} ,

⊥ (µ(x), µ(y)) = max {µ(x), µ(y)} ,

where µ is the degree of membership of a fuzzy rule,⊤
(t-norm) the fuzzy operator for the conjunction, and⊥ (t-
conorm) the operator for the disjunction. This so-called mini-
mum/maximum norm represents the most optimistic resp. most
pessimistic choice for these operators.

III. I NCORPORATEM ISSING VALUES

The used fuzzy rule induction algorithm can easily be
adapted to handle missing values during the learning process.
New fuzzy rules are initialized by an anchor value retrieved
from the training example, a core-region with zero spread at
the anchor value and the support-region “infinity”. In case of
missing values, these dimensions are handled as unconstrained,
that means, neither core- nor support-region are defined. The
membership degree for this dimension is always1.0. If a
new pattern needs to be covered, the prototype’s core-region
is extended to cover the new pattern. In case of a missing
dimension, the anchor is initialized the first time a valid value
appears in the training data. Missing dimensions of a prototype
are not shrunken as long as no real attribute value is available
from the input data.

The three main steps (which are, cover, commit, and shrink)
need to be extended to incorporate missing values as follows:

• Cover: If a new training pattern contains missing attribute
values, these dimensions are ignored. If the prototype’s
anchor still contains missing dimensions, the algorithm
initializes the anchor with the attribute values given by
the training example if existent.

• Commit: If a new fuzzy rule needs to be committed, the
“missing” dimensions are left missing in the anchor. As
before, all dimensions are initialized unconstrained, that
is, their support area covers the entire feature space.

• Shrink : If a pattern containing missing values needs to
be shrunken, both the missing dimension of the training
example and the fuzzy rule are ignored. This is due to the
fact that no initial values (for the anchor) are yet available
to compute the loss in volume for this attribute.

If unknown instances need to be classified, the missing di-
mensions are treated as unconstrained with a membership



TABLE I

RESULTS ON THESAT IMAGE DATASET.

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 14.6 478 14.6 478 14.6 478 14.6 478

1 14.0 470 15.4 463 13.0 484 13.6 530

5 15.5 500 14.1 463 14.7 514 14.3 1577

10 15.2 461 14.4 349 15.2 530 15.4 2507

20 15.4 458 15.1 294 15.9 611 38.0 3366

40 16.4 436 16.5 165 15.7 679 44.8 3605

60 16.5 463 21.2 119 16.6 789 48.8 3662

degree of1.0, which is then used to compute the overall fuzzy
membership degree for this rule using the minimum-operator.
To find the best rule among all, the maximum-operator is
applied.

IV. EVALUATION AND RESULTS

To demonstrate the usefulness of the proposed method,
several well-known datasets from the StatLog–project [6] were
used. Training and testing were performed according to the
instructions available with the data sets, that is, for Shuttle,
SatImage, and Letter data a pre-defined split into training
and testing data was used. For the remaining data setsk-fold
cross-validation was performed to estimate the generalization
accuracy of the generated fuzzy rule model. Different levels
of distortion were randomly generated on the training data,
thus simulating different amounts of missing values for each
input feature. In addition to the method discussed here, we
also implemented the approach presented in [1], the so-called
best guess, to compare our method. Furthermore, to establish
a base line, missing values were also replaced by the overall
mean and zero values.

A. Satimage Dataset

The SatImage Dataset contains 4,435 training and 2,000 test
cases split into6 classes in a36-dimensional feature space.
Table I shows the results on this data. The first column shows
the percentage of missing values, followed by four evaluation
parts, which are our approach to incorporate missing values,
the best guess, the mean, and zero replacement technique.
All of them display the classification error in percentage and
the number of generated rules. Our algorithm works well on
this data set, always generating almost the same number of
rules for all levels of distortion. The classification accuracy
is comparable to the other procedures. Only thebest guess
approach is able to generate fewer rules. The substitution with
mean leads to a model which performs worse at higher levels
of distortion and generates a larger number of rules. Replacing
with zero increases this effect even more. Both, the dynamic
best guessreplacement method and our approach are clearly
superior to the static replacement with fixed values for this
data set.

TABLE II

RESULTS ON THESHUTTLE DATABASE.

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 0.0 20 0.0 20 0.0 20 0.0 20

1 0.01 29 0.0 16 0.01 34 0.01 39

5 0.01 89 0.0 17 0.0 84 0.01 176

10 0.02 159 0.0 11 0.0 143 0.0 476

20 0.1 1038 0.0 14 0.0 372 0.0 1143

40 3.3 8679 0.0 10 0.04 1375 0.06 2376

60 3.5 7300 0.01 24 0.0 2876 0.0 3433

B. Shuttle Dataset

The Shuttle Database consists of 43,314 training and 14,442
test cases along9 dimensions and3 classes (all other classes
with occurrences below1% were removed for this experi-
ment). Table II shows results on this benchmark. In general,
only a small number of rules are necessary to model the data.
Using more and more missing values, the model generated
by the proposed approach contains an ever-increasing number
of rules. In sharp contrast, thebest guessmethod creates
models with, essentially, a constant number of rules. This
effect is due to an interesting property of this data. One class
is separable from the others along an axes-parallel decision
line. However, points of different classes lie arbitrarilyclose
to this line, making it crucial that no other features are
used for classification except this one. In the case of our
method proposed here, every time this particular feature is
missing, the algorithm is forced to make a decision using
one of the remaining attributes, which essentially rendersthe
resulting rules useless. Not even mean or zero replacement
generates such an enormous amount of rules for higher level of
distortion. This demonstrates one disadvantage of the approach
discussed here—in case all relevant features are missing the
algorithm will generate sub-optimal rules.

C. Remaining Data Sets

The remaining experiments were conducted on the Letter,
Australian Credit, Pima Indians, Segmentation, and Vehicle
Data Sets (see tables III, IV, V, VI, VII). The general trend

TABLE III

RESULTS ON THELETTER DATASET.

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0% 16.2 2967 16.2 2967 16.2 2967 16.2 2967

1% 17.7 3193 16.4 3069 16.2 3228 17.3 3499

5% 22.8 3749 19.0 3540 19.7 4168 18.4 6022

10% 29.5 4198 20.8 3828 24.5 5071 23.8 8632

20% 21.1 5244 25.5 4030 32.3 6581 32.8 10978

40% 57.3 7554 36.8 3496 51.8 8733 52.4 12328

60% 54.3 5773 52.5 2317 67.9 10350 76.0 12307



TABLE IV

RESULTS ON THEAUSTRALIAN CREDIT APPROVAL.

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 18.8 129 18.8 129 18.8 129 18.8 129

1 18.6 132 17.2 131 17.8 131 17.5 129

5 16.2 130 17.4 127 19.3 129 19.4 140

10 20.3 137 18.8 127 19.7 145 20.1 156

20 24.1 142 22.2 121 20.9 161 19.9 204

40 35.1 163 21.9 104 28.7 187 28.1 246

60 35.1 159 18.4 66 36.5 238 30.7 231

TABLE V

RESULTS ON THEPIMA INDIANS DIABETES DATA .

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 25.9 155 25.9 155 25.9 155 25.9 155

1 27.8 157 25.9 151 28.2 153 26.8 156

5 27.3 162 28.1 150 26.3 160 27.8 154

10 28.3 165 25.9 145 29.0 171 28.9 160

20 29.2 187 29.0 135 30.0 176 30.8 164

40 30.4 231 29.4 74 30.5 186 30.3 186

60 31.3 222 31.9 40 35.0 198 30.0 213

TABLE VI

RESULTS ON THESEGMENTATION DATA .

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 3.8 118 3.8 118 3.8 118 3.8 118

1 3.7 122 4.2 120 4.3 149 4.0 128

5 4.7 147 5.2 134 4.4 343 5.1 177

10 4.8 160 6.0 148 5.4 634 7.0 256

20 6.5 181 8.7 161 7.0 971 11.5 429

40 15.4 266 21.6 177 16.9 1336 29.3 691

60 29.9 428 30.7 200 65.2 1257 58.6 912

TABLE VII

RESULTS ON THEVEHICLE SILHOUETTES DATA .

Miss. Incorp. Miss. Best Guess Use Mean Use Zero

[%] Error |R| Error |R| Error |R| Error |R|

0 32.9 195 32.9 195 32.9 195 32.9 195

1 33.9 185 32.6 191 36.0 192 31.9 193

5 32.6 184 32.1 194 35.5 269 33.9 201

10 34.3 191 34.5 198 36.7 363 35.4 218

20 32.7 181 38.4 183 46.9 461 39.5 243

40 38.7 192 45.6 134 62.2 533 47.3 280

60 42.3 200 50.1 94 73.7 538 54.9 303

from the experiments discussed above remains unchanged.
Both static replacement methods tend to produce dramatically
larger rule sets for medium to large amounts of distortion. The
proposed method performs equally well in comparison to the

best guessapproach but tends to generate larger rule sets. In
one example, the segmentation data, the proposed method did
generalize substantially better than thebest guessmethod.

V. CONCLUSION

In this paper an approach was discussed that incorporates
missing values during a fuzzy rule learning process. The
proposed methodology can handle missing values in a natural
way without any need for artificial replacement of the missing
values themselves. Results on benchmark datasets show that
the algorithm performs well and outperforms standard replace-
ment algorithms in the number of rules and with respect to
classification accuracy. Our method generates, at times, better
classification results in comparison to an earlier approachthat
uses the evolving model to compute dynamic estimates for the
missing values.
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