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Abstract—In this paper, we show how an existing fuzzy rule missing value in detail. We conclude with an evaluationisect
induction algorithm can incorporate missing values in the train- and discussion.
ing procedure in a very natural way. The underlying algorithm
generates rules which restrict the feature space only along a II. Fuzzy RULE INDUCTION

few, important attributes. This property can be used to limit Th derlving f el . lqorithm 13 tsict
the algorithm’s three major steps to the reduced feature space e underlying fuzzy rule learning algorithm [3] constrac

for each training instance, which allows the features for which @ Set of fuzzy rules from given training data. We briefly
no values are known to be ignored. Hence no replacement is summarize the used type of fuzzy rules before explaining the
necessary and the algorithm simply uses all available knowledge main structure of the training algorithm.

from each training instance. We demonstrate on data sets from The underlying fuzzy system generates individual fuzzy

the UCI repository that this method works well, generates rule les defined by ind dent bershin funci f h
sets that have comparable classification accuracy, and are, at rules denined Dy independent membership functions for eac

times, even smaller than the rule sets generated by the original dimension in the feature space:

algorithm. 1 1 1
. - Ri : IF xq IS AN x, IS THEN class 1
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. INTRODUCTION RL: IF @1 IS p}, A---A x, IS pl,, THEN class 1

Missing values present a big obstacle for many learning : :
algorithms. Especially for rule induction methods, it ideof &
required to use training instances for which all featuraueal J
are known. In practice this is often achieved using more or : : :
less sophisticated imputation methods, ranging from ®mplR¢ : IF 2y IS puf, A---A x, IS pug, THEN class ¢
injection of the mean to online prediction of the missingues
throughout training.

Dealing with incomplete information is not a new challeng
in data mining. In [7] a Bayesian technique for extractinﬁI
class probabilities given partial data in Gaussian basistfan
networks is discussed. However to find the optimal soluti
integration via all missing dimensions weighted by loc
probability densities is required. A substitution methiody
to tolerate mis;ing values in a fuzzy environment is presgnt M?(f) = min_;...., {uﬁj(%)} ]
in [1]. Here, missing values are replaced by the so-cdlest
guess that is, the model predicts the most plausible value fdhe combined degree of membership for all rules of class
a missing attribute value. More often, simply the mean or@n be calculated using the maximum-operator as fagzy-
constant value are substituted for missing _value;. . 4F(Z) = maxj_q...., {Mf(f)} _

In this paper we concentrate on handling missing values
by incorporating them directly into the learning processisT From these membership values the predicted class for
is possible as the underlying fuzzy rule induction algarith an input patternz is derived then as:
only concentrates on a few, important attributes and hence Fpest () — arg max { k (f)}
does not necessarily require complete feature vectorslat al best & k=10 W1 ’
times. We can use this property to have the algorithm focitie algorithm uses trapezoid membership functions which ca
entirely on the known attributes for each individual traimi be described with four parametets:;, b;, ¢;, d;>, wherea;
example and therefore make use of all available knowledgadd; define the fuzzy rule’s support-, agd and¢; its core-
without introducing artifacts through artificial replacents.  region for each attributéof the input dimension. The training

The paper is organized as follows: we first give a brigdlgorithm usually only constrains few attributes, thatnmst
introduction of the underlying fuzzy rule learning algbrit  support-regions remain infinite, leaving the rules intetable
before explaining the extension that allows to incorporatven in the case of high-dimensional input spaces.

: IF a2y IS puf; A---A x, IS py ; THEN class k

WhereRé? represents rulg for classk. The rule base contains
éules for ¢ classes and, indicates the number of rules for
assk (1 <j<rpandl <k<o).

The fuzzy setsuf; : R — [0,1] are defined for every
Ofﬁaturei (1 < i < n) and the overall degree of fulfilment of
A specific rule for an input patterfi = (z1,...,z,) can be
computed using the minimum-operator as fu2xp:



— ! R in dimensiory, anddjX (1 < j < n)indicates the distance of
one epoch fuzzy ruleR in dimensionj. Furthermore, the loss in volume
o] next pattern is normalized with respect to the overall volume:
present one pattern|

n
— X (=
d@R) - 1 @R
adjust Fuzzy Rules ynorm _ j=1,5#1 4y (‘T, )
cover commit shrink i - n - d>< - .
o (T, R
increase core of introduce new fuzzy adjust support of dJX (I‘,R) 4 ( ’ )
best fuzzy rule rule conflicting fuzzy rules J=1
try to complete with unconstrained only for non-missing . . . .
missing dimensions missing dimensions dimensions That |S, the Computaﬂon Of thIS IOSS N V0|lee can be
I simplified because only the shrunken dimension needs to be

considered. In [4] different shrink heuristics and fuzzymse
[ are evaluated. The most popular choice for these fuzzy norms
are introduced by Lotfi A. Zadeh in [8]:

Fig. 1. The algorithm to construct a fuzzy rule set based @mpte data [2] .
incorporating missing values. T (u(z), u(y)) = min{u(z),n(y)},

L(u(x),u(y)) = max{u(z),n(y)},

The fuzzy rule induction method is based on an iteratighere 1 is the degree of membership of a fuzzy rulg,
algorithm. During each learning epoch, i.e. presentatibn @-norm) the fuzzy operator for the conjunction, ard (t-
all training patterns, new fuzzy rules are introduced whefbnorm) the operator for the disjunction. This so-calleaimi
necessary and existing ones are adjusted whenever a conffigim/maximum norm represents the most optimistic resp. most
occurs. Figure 1 shows the main flow of the algorithm. Fgsessimistic choice for these operators.
each pattern three main steps are executed:

o Cover: If a new training pattern lies inside the support-
region of an already existing fuzzy rule of the correct The used fuzzy rule induction algorithm can easily be
class, its core-region is extended to cover the new patteadlapted to handle missing values during the learning psoces
In addition, the weight of this rule is incremented. New fuzzy rules are initialized by an anchor value retrieved

« Commit: If the new pattern is not yet covered, a nevirom the training example, a core-region with zero spread at
fuzzy rule belonging to the corresponding class is creatdtie anchor value and the support-region “infinity”. In case o
The new example is assigned to its core-region, whereasssing values, these dimensions are handled as uncowestrai
the overall rule’s support-region is initialized “infinite that means, neither core- nor support-region are defineel. Th
that is, the new fuzzy rule is unconstrained and covergembership degree for this dimension is alway8. If a
the entire domain. new pattern needs to be covered, the prototype’s corefregio

« Shrink: If a new pattern is incorrectly covered by aris extended to cover the new pattern. In case of a missing
existing fuzzy rule of conflicting class, this fuzzy rule’sdimension, the anchor is initialized the first time a validuea
core- and/or support-region is reduced, so that the conflgpppears in the training data. Missing dimensions of a pyp#ot
with the new pattern is avoided. The underlying heuristigre not shrunken as long as no real attribute value is alailab
of this step aims to minimize the loss in volume. from the input data.

The algorithm usually terminates after only few iterationgr ~ The three main steps (which are, cover, commit, and shrink)
the training data. The final set of fuzzy rules can be used f€€d to be extended to incorporate missing values as fallows
compute a degree of class activation for new input patterns. « Cover: If a new training pattern contains missing attribute

As mentioned above, the training procedure relies on a values, these dimensions are ignored. If the prototype’s

heuristic which affects the strategy to avoid conflicts. One anchor still contains missing dimensions, the algorithm
common approach is to shrink the dimension with minimum initializes the anchor with the attribute values given by
loss in volume for an existing fuzzy rule: the training example if existent.

o Commit: If a new fuzzy rule needs to be committed, the

“missing” dimensions are left missing in the anchor. As

Ill. | NCORPORATEMISSING VALUES

imin = argming_; .. , {Vi}.

The loss in volumeV; of a fuzzy rule R using trapezoid before, all dimensions are initialized unconstrainedt tha
membership functions with parametetsa, b, c,d> where is, their support area covers the entire feature space.
(a,b) and(c, d) bound the support-region, aiid c| the fuzzy ~ « Shrink: If a pattern containing missing values needs to
rule’s core-region is then: be shrunken, both the missing dimension of the training
n example and the fuzzy rule are ignored. This is due to the
Vi=d;(Z,R) - H d; (Z,R), fact that no initial values (for the anchor) are yet avaiabl
J=1,5#i to compute the loss in volume for this attribute.

whered? (1 <14 < n) is the distance between example patterti unknown instances need to be classified, the missing di-
Z and the border (of the core- or support-region) of a fuzzg rumensions are treated as unconstrained with a membership



TABLE | TABLE I

RESULTS ON THESATIMAGE DATASET. RESULTS ON THESHUTTLE DATABASE.

Miss.| Incorp. Miss. | Best Guess| Use Mean Use Zero Miss.| Incorp. Miss. | Best Guess| Use Mean Use Zero
[%] | Error| |R| Error| |R| | Error| |[R| | Error| |R| [%] | Error| |R| Error| |R| | Error| |R| | Error| |R|]
0 14.6 | 478 14.6 | 478 | 14.6 | 478 | 14.6 | 478 0 0.0 20 0.0 20 0.0 20 0.0 20

1 14.0 | 470 154 | 463 | 13.0 | 484 | 13.6 | 530 1 0.01 | 29 0.0 16 0.01 | 34 0.01 | 39

5 15.5 | 500 14.1 | 463 14.7 | 514 14.3 | 1577 5 0.01 | 89 0.0 17 0.0 84 0.01 | 176
10 15.2 | 461 14.4 | 349 | 15.2 | 530 | 15.4 | 2507 10 0.02 | 159 0.0 11 0.0 143 | 0.0 476
20 15.4 | 458 15.1 | 294 | 15.9 | 611 | 38.0 | 3366 20 0.1 1038 | 0.0 14 0.0 372 | 0.0 1143
40 16.4 | 436 16.5 | 165 15.7 | 679 44.8 | 3605 40 3.3 8679 | 0.0 10 0.04 | 1375| 0.06 | 2376
60 16.5 | 463 21.2 | 119 | 16.6 | 789 | 48.8 | 3662 60 3.5 7300 | 0.01 | 24 0.0 2876 | 0.0 3433

degree ofl.0, which is then used to compute the overall fuzz{. Shuttle Dataset

membership degree for this rule using the minimum-operator The Shuttle Database consists of 43,314 training and 14,442
To find the best rule among all, the maximum-operator {gst cases alonf dimensions an@ classes (all other classes
applied. with occurrences below% were removed for this experi-

ment). Table Il shows results on this benchmark. In general,

IV. EVALUATION AND RESULTS only a small number of rules are necessary to model the data.

&ing more and more missing values, the model generated

several well-known datasets from the StatLog—project [6ijev y'the proposed approach contains an ever-increasing mumbe

used. Training and testing were performed according to tRE ;ulles. I‘?h sharp ?{.OTltraSt’ thbetst tguess*getho]fj clreate_ls:h.
instructions available with the data sets, that is, for Séut models with, essentially, a constant number ot rules. IS

Satimage, and Letter data a pre-defined split into trainilféfed is due to an interesting property of this data. Onescla

and testing data was used. For the remaining datakskikl separable from_ the oth.ers along an axe S'paTa”e.' decisio
cross-validation was performed to estimate the genetadiza I|ne£h!-|0\|/yever, pc:(l_nts F;f dn‘fer eln'E[th::\sses “tf] art::tratm:lkose

accuracy of the generated fuzzy rule model. Different evel dI?‘ mel, m? 'r][.g ! CI’UCI:’;I th'a no ? ?rr] cd uresfare
of distortion were randomly generated on the training dat >ed for classiiication except this one.in the case of our

thus simulating different amounts of missing values forheacgnethoOI proposed here, every time this particular feature is

input feature. In addition to the method discussed here, Msanfgt,hthe algo.nthmttls_bf(:rced :]9 rr]nake at.dltlamsmnl using
also implemented the approach presented in [1], the seecalP® I?' € rlema|n|rllg a rll\l ut €s, which essentially renl t
best guessto compare our method. Furthermore, to establidfSU'iNg rules Useless. Not even mean or zero replacemen

a base line, missing values were also replaced by the ove ﬁsqgrr;(t)is 'I%E::sh daer;nei)nnosrtr;?s; (?rrlneogig;?;/;ur:s; fg:)?'t%r;fr Ié\r/el 0
mean and zero values. : 9 aph

discussed here—in case all relevant features are missing the
algorithm will generate sub-optimal rules.

To demonstrate the usefulness of the proposed meth

A. Satimage Dataset

The Satimage Dataset contains 4,435 training and 2,000 festReémaining Data Sets
cases split intd5 classes in @6-dimensional feature space. The remaining experiments were conducted on the Letter,
Table | shows the results on this data. The first column showsastralian Credit, Pima Indians, Segmentation, and Vehicl
the percentage of missing values, followed by four evatumati Data Sets (see tables I, IV, V, VI, VII). The general trend
parts, which are our approach to incorporate missing values
the best guessthe mean, and zero replacement technique.
All of them display the classification error in percentage an
the number of generated rules. Our algorithm works well on
this data set, always generating almost the same number (Ofjss [ incorp. Miss. | Best Guess| Use Mean Use Zero
rules for all levels of distortion. The classification a@wr | 1) | grvor| [R| | Error| [R| | Eror| R | Eror| |R]
is comparable to the other procedures. Only Hest guess 0% | 162 | 2967 | 16.2 | 2967 | 16.2 | 2967 | 16.2 | 2967
approach is able to genera?e fewer rules. The subs_titutitjn Wi o | 177 | 3193 | 164 | 3069 | 16.2 | 3928 | 17.3 | 3499
mean Iea_lds to a model which performs worse at hlgh_er IevelsS% 028 | 3749 | 10.0 | 3540 | 107 | 4168 | 18.4 | 6022
of distortion and generates a larger number of rules. Reygac
with zero increases this effect even more. Both, the dynam 10% | 20.5 | 4108 | 20.8 | 3828 | 24.5 | 5071 | 23.8 | 8632
best guesseplacement method and our approach are clear 20% | 211 | 5244 | 255 | 4030 32.3 | 6581 | 32.8 | 10978

superior to the static replacement with fixed values for thig 407 | 57:3 | 7554 | 36.8 | 3496| 51.8 | 8733 | 524 | 12528
data set 60% | 54.3 | 5773 | 52.5 | 2317| 67.9 | 10350| 76.0 | 12307

TABLE Il
RESULTS ON THELETTER DATASET.

< .0




TABLE IV

RESULTS ON THEAUSTRALIAN CREDIT APPROVAL best guesgpproach but tends to generate larger rule sets. In

one example, the segmentation data, the proposed method did

Miss.| Incorp. Miss.| Best Guess| Use Mean Use Zero generalize substantially better than thest guessnethod.
[%] | Error| |R| Error| |R| | Error| |[R| | Error| |R| V. CONCLUSION
0 18.8 1120 | 18.8 | 129 1 18.8 ) 129 ) 18.8 ) 129 In this paper an approach was discussed that incorporates
! 18.6 1 132 ) 17.2/1 131 ) 17.8 1 131 1 17.5 ) 129 missing values during a fuzzy rule learning process. The
5 | 1621130\ 1741 127 | 19.3 | 129 | 194 140 proposed methodology can handle missing values in a natural
10 120.3 1 137 | 18.8 | 127 | 19.7 | 145 | 20.1 | 156 way without any need for artificial replacement of the migsin
20 | 241142 | 222 121 | 209 | 161 | 19.9 | 204 values themselves. Results on benchmark datasets show that
40 | 351 | 163 | 21.9 | 104 | 28.7 | 187 | 28.1 | 246 the algorithm performs well and outperforms standard pla
60 | 351 ] 159 | 184 | 66 | 36.5 | 238 | 30.7 | 231 ment algorithms in the number of rules and with respect to

TABLE V classification accuracy. Our method generates, at timéerbe

RESULTS ON THEPIMA INDIANS DIABETES DATA . classification results in comparison to an earlier apprabah
uses the evolving model to compute dynamic estimates for the
Miss.| Incorp. Miss. | Best Guess| Use Mean Use Zero missing values.
[%] | Error| |R| Error| |R| | Error| |R| | Error| |R|
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20 29.2 | 187 29.0 | 135 | 30.0 | 176 | 30.8 | 164 REFERENCES
40 304 | 231 294 74 30.5 | 186 | 30.3 | 186 [1] M. R. Berthold and K.-P. HubefTolerating Missing Values In A Fuzzy
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Miss.| Incorp. Miss. | Best Guess| Use Mean Use Zero

[%] | Error| |R| | Error| |R| | Ermror| |[R| | Error| |R| Journal of Approximate Reasoning (IJAR), 35:195-202, Eése?004.

0 3.8 118 3.8 118 | 3.8 118 | 3.8 118 [5] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editoidachine
Learning, Neural and Statistical Classificatiokllis Horwood Limited,

1 3.7 122 4.2 120 4.3 149 4.0 128 1994.

5 4.7 147 5.2 134 | 44 343 | 5.1 177 [6] P. M. Murphy and D. W. Aha.UCI repository of machine learn-

10 48 160 6.0 148 | 5.4 634 | 7.0 956 ing databases Machine-readable data repository at ics.uci.edu in
pub/machine-learning-databases.

20 65 | 181 |87 | 161 | 7.0 | 971 | 11.5 | 429 [7] V. Tresp and S. AhmadSome solutions to the missing feature problem

40 15.4 | 266 216 | 177 | 16.9 | 1336| 29.3 | 691 in vision In Stephen J. Hanson, Jack D. Cowan, and C. Lee Giles,

. . . . editors. Advances in Neural Information Processing Systé&n3§3—400,

60 29.9 | 428 30.7 | 200 65.2 | 1257 | 58.6 | 912 California, 1993. Morgan Kaufmann.

TABLE VI [8] L. A. Zadeh.Fuzzy setsInformation and Control, 8:338-353, 1965.

RESULTS ON THEVEHICLE SILHOUETTES DATA.

Miss.| Incorp. Miss. | Best Guess| Use Mean Use Zero
[%] | Error| |R| Error| |R| | Error| |R| | Error| |R|

0 329 | 195 329 | 195 | 329 | 195 | 329 | 195
1 33.9 | 185 326 | 191 | 36.0 | 192 | 31.9 | 193
5 32.6 | 184 32.1 | 194 | 35.5 | 269 | 33.9 | 201

10 34.3 | 191 34.5 | 198 | 36.7 | 363 | 35.4 | 218
20 32.7 | 181 384 | 183 | 46.9 | 461 | 39.5 | 243
40 38.7 | 192 45.6 | 134 | 62.2 | 533 | 47.3 | 280
60 42.3 | 200 50.1 | 94 73.7 | 538 | 54.9 | 303

from the experiments discussed above remains unchanged.
Both static replacement methods tend to produce dramigtical
larger rule sets for medium to large amounts of distortidme T
proposed method performs equally well in comparison to the



