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Abstract 

One of the main obstacles to the widespread use of ar- 
tijcial neural networks is the difJiculty of adequately de- 
fine values f o r  their free parameters. This article discusses 
how Radial Basis Function, RBF; networks can have their 
parameters defined by genetic algorithms. For such, it 
presents an overall view of the problems involved and the 
different approaches used to genetically optimize RBF net- 
works. Finally, a model is proposed which includes repre- 
sentation, crossover operator and multiobjective optimiza- 
tion criteria. Experimental results using this model are pre- 
sented. 

1. Introduction 

Although artificial neural networks, ANNs, have usually 
achieved good performances when applied to a large num- 
ber of application domains, these performances are directly 
influenced by the appropriate choice of architecture and 
learning parameters. Several alternative approaches have 
been proposed to select the network parameters. These ap- 
proaches may be grouped in four different categories: 

0 Trial and error; 

0 Pruning techniques; 

0 Constructive training algorithms; 

0 Evolutionary design. 

becomes more apparent if, after the choice of the best val- 
ues, the pattems set is changed, making necessary to re-start 
the design process. This search can be made more efficient 
if heuristics are used to guide it. The use of pruning tech- 
niques optimizes trained networks by removing neurons and 
connections that are irrelevant or redundant. In the con- 
structive approach, a network starts its training with a min- 
imal topology and, according to the problem complexity, 
new neurons and connections are inserted, aiming to im- 
prove the network performance. The evolutionary approach 
uses genetic algorithms, GAS, to generate several networks 
variations and combine the features of those with the best 
performance, thus generating new networks with improved 
performances through a number of generations. A good sur- 
vey on genetic algorithms can be found in [9]. 

RBF networks are briefly described in Section 2. Sec- 
tion 3 discusses the evolutionary optimization of RBF neu- 
ral networks. Section 4 explains the proposed approach. 
Experimental studies comparing the proposed approach 
with different approaches are shown in the Section 5. Fi- 
nally, Section 6 presents the conclusions. 

2. Radial Basis Function Networks 

RBF networks have their origin in the solution of the 
multivariate interpolation problem [20, 41. These networks 
have traditionally only one hidden layer. Properly trained, 
they can approximate an arbitrary function f : Rn ---f R by 
mapping: 

m 

f (4 = WO + Cn,,5, (4 (1) 
J=1 

When trial and error is employed, different values for the 
network parameters must be selected, trained and compared 
before the choice of an ultimate network. This disadvantage 

where, x E Rn, {wz; z = 1, . . . , m} denotes the weights 
coefficients, wo is the bias and z j  (x) represents the activa- 
tionfunction (also known as radial basis function), which is 
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T where 1 1 . 1 1  is the Euclidean norm, cg = [c.,~, c . ,~ ,  . . . , cJn] 
is the center vector, uJ is the width, which is a scaling fac- 
tor for the radius (Ix - c., 11, and 4 (.) is a non-linear func- 
tion that monotonically decreases (or increases) as x moves 
away from cg .  A common example of a radial basis func- 
tion is the Gaussian function 4 ( U )  = exp (-v2/2). Oth- 
ers examples are: q5 ( U )  = U (linear); q5 ( U )  = v 3  (cubic); 
4 (U)  = U' log U (thin plate spline); 4 (U)  = d m  (mul- 
tiquadratic); q5 ( U )  = 1/Jm (inverse multiquadratic). 

2.1 Hybrid Learning of RBF networks 

Several training techniques have been proposed to train 
RBF networks. A well known RBF training technique [16] 
employs a hybrid approach that combines unsupervised and 
supervised learning. In order to see how it works, let 

{(xz,tJ; i =  I , . . ' , P }  (3) 

be the set of the training patterns where x, is a input vector 
and t ,  its desired output. 

The unsupervised learning stage defines the center and 
width of the radial basis functions. Simple methods make 
c, = xa,, for i  = 1, .  . . , m, where cy, E (1,. . . , p }  is 
randomly chosen. Usually, the number of centers, m, is 
determined by trial and error. Nevertheless, this approach is 
prone to generate large networks, overfitting, and numerical 
problems (mainly when the data set is noisy) [18]. 

A more efficient approach employs a clustering algo- 
rithm, such as K-means [2] or self-organizing feature map 
[12]. Roughly, the K-means starts by randomly assigning 
the p input vectors xg to K sets SI,. . . , S K .  Next, it com- 
putes the mean vectors of each set as: 

c x3 1 
m, = - 

IS,l X,ES, 
(4) 

In the following steps, it re-assigns all input vectors xg 
to the nearest cluster S, (i.e. nearest mean vector) and re- 
calculates the mean vector for each cluster. This two steps 
procedure is repeated until there is no further change in the 
mean vectors. The mean vectors become the centers (i.e. 
c ,  = m, for i = 1,.  . . , K). Another alternative is to parti- 
tion the input space in regions using a decision-tree and fix 
the centers on strategic positions inside these regions [ 131. 

The widths are usually defined through heuristics. Some 
use a single value U for all basis functions. In [16], the use 
of ~7 = (/IC, - c.,(I) is suggested. where c., is the nearest 
center from c, and (.) indicates the average over all such 
pairs. Other methods use a different value 0, for each basis 

function. As an example, let 9i be the set of the N training 
patterns nearest to c , .  The local width ui is thus given by: 

( 5 )  

where LY is an overlap factor. 
In the supervised learning stage, the RBF network with 

fixed centers and widths can be interpreted as a case of lin- 
ear regression on the training set: 

t = Z w + e  (6) 

where t = [tl ,  t 2 ,  . . . , tp] ' , is the desired output, Z is the 
transformed input, which is a matrix with the j th column 

is the output layer weight vector and e is the error. The vec- 
tor w is determined minimizing the sum of squared errors 
SSE = eTe. The solution to this least square problem can 
be obtained solving the well-known linear system: 

T T 
[z., (XI), z., ( X l ) ,  . . . > zj (x,)1 , w = b 1 1  W Z l . .  ' , Wml 

(ZTZ) w = ZTt (7) 

In order to avoid possible numerical problems (ill- 
conditioning) in solving (7), the use of Singular Value De- 
composition, SVD, has been recommended [21]. SVD 
computes the pseudo-inverse matrix Z+. Thus, the weight 
vector w is given by w = Z+t where Z+ = (ZTZ)-' ZT. 
The LMS algorithm [24] can also be used to determinate the 
weight vector w or to fine-tune the solution of (6) found by 
SVD. 

3. Evolutionary Optimization of Neural Net- 
works 

The evolutionary optimization of ANNs may occur, 
roughly, in three different ways: 

0 Optimization of topology and training parameters: this 
parameters may include the number of layers, the num- 
ber of hidden units, the activation function, the learn- 
ing rate, etc; 

0 ANN training: a CA may be used as a training algo- 
rithm to optimize the values of the network weights; 

0 Learning rule optimization: given an ANN, this 
method looks for an efficient learning rule. 

This article is concerned with the optimization of the topol- 
ogy and training parameters, named here evolutionary de- 
sign. In the evolutionary design of ANNs, each chro- 
mosome usually corresponds to a network architecture. 
The evolutionary process starts with a population of chro- 
mosomes randomly generated. All the chromosomes are 
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trained with the same training set. Next, a fitness function 
is used to evaluate the population, establishing the fitness 
for each chromosome according to its performance on the 
training set. The best networks are selected to the next gen- 
eration, where genetic operators, like crossover and mu- 
tation, produce a new population. The selection process 
drives the population to better networks. Crossover and 
Mutation drive it to explore unknown regions of the search 
space. Eventually, the population converges to the best net- 
work architecture. 

Although most of the evolutionary approaches for neural 
networks design have been focused on MLP networks, their 
long training time is a strong negative factor concerning the 
design efficiency. RBF networks are known for requiring 
a much shorter training period. To take advantage of this 
feature, a few methods have also been proposed to optimize 
the parameters of RBF networks. 

The optimization of the RBF network topology has been 
pursued by through other approaches, like OLS (Orthogonal 
Least Square) [6] and RAN (Resource Allocating Network) 
[ 191. Despite being very fast, these methods do local search; 
thus they can easily fall in local minima and produce sub- 
optimal solutions. GAS, on the other hand, are global search 
methods. Thus, they can provide an efficient alternative for 
the optimization of RBF networks. 

Next, a few methods that have been proposed in the lit- 
erature to optimize RBF networks using GAS are discussed. 

3.1. Selecting Centers from Patterns 

In [3] was addressed the combinatorial aspect of the RBF 
network optimization whose aim is to extract a subset of 
patterns to set centers vectors. The chromosome represents 
a subset of patterns by means of a variable length list of 
labels which each label represents a pattem. Per example, 
the chromosome 

(100,7,411,286) 

represents four centers drawn from patterns labeled as 100, 
7, 411 and 286. The genetic operators are the same used 
to solve the so-called subser selection problem [14]. This 
simple representation reduced significantly the number of 
centers compared with traditional approaches. To evaluate 
the performance of their approach, the authors calculated 
the individuals' fitness using the AIC (Akaike's Informa- 
tion Criterion) [ l ]  over the training and validation set with 
a Multiobjective CA [9]. 

In [15], it was modified the model proposed in [3] by al- 
lowing the centers to be fixed not only on the training input 
vectors. In this model was also investigated the use of mixed 
radial basis functions in the same network. According to 
authors, the networks with different radial basis functions 

presented a smaller number of hidden nodes and achieved 
lower error rates than those with only Gaussian functions. 

3.2. Crossing Hypervolumes 

In [5] was proposed a method to genetically optimize the 
centers and widths of a RBF network. In their representa- 
tion, the chromosome is represented by a list de genes where 
each gene represents a hidden unit. It was used a different 
Gaussian basis function which may have a width for each 
component of the center vector. This basis function is given 
bv 

Each gene of chromossome is represented by tuple: 

P, = (Cl, I Ul,, c2, 1 U23 > ' ' ' 3 cm, , U m 3 )  . (9) 

The authors also proposed a modified 2-point crossover, 
which exchanges hypervolumes of the input space instead 
of chunks of the chromosome structure. This hypervolume 
is determined by two crosspoint vectors a, b E Sn, whose 
elements are given by: 

a, = min, + (max, - min,) TI  (10) 

b, = a, + (max, - min,) r;'" (1  1)  

where r1 and 7-2 are randomly selected from the range [0,1] 
with uniform probability density and [min, , max,] is the 
allowed range for the component x, of the input vector x. 

The main advantage of this crossover operator is that, 
by crossing hypervolumes of the input space, most of the 
fknctional equivalence problem can be avoided. 

3.3. Functional Equivalence 

A model proposed by [17] tackles the functional equiv- 
alence problem (also called competing conventions prob- 
lem). Two chromosomes are functionally equivalent if they 
code RBF networks performing the same input-output map- 
ping. This can happen for two networks whose hidden 
nodes are the same, but located at different positions. Fig- 
ure 1 illustrates this situation. This problem substantially 
increases the search space by generating, without need, dif- 
ferent chromosomes for networks with the same functional- 
ity. 

To deal with this problem, the author created a unique 
representation for a class of functionally equivalent RBF 
networks. Such representation was based on a lexicographic 
ordering of the genes defined by the author. It was also pro- 
posed genetic operators specially suited to work with this 
representation. However, in the article consulted, the au- 
thor did not present any experimental results for his model. 
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Figure 1. Functionally equivalent RBF net- 
works. 

~ 

Let Pi, Q1. be two parents and C their child. 
for j = 1 to K then 

if p3 # 0 and 91 # 0 then 

else 

endif 

c3 = crossover(p,, Q) 

c3 = p3 or 91 with equal probability. 

endfor 

3.4. Others Models 

Additional models have been suggested for the evolu- 
tionary design of RBF networks. In [22], it was proposed 
a genetic representation that evolves space-filling curves to 
define the centers of the RBFs. The basic idea behind their 
representation is the mapping of the centers m-dimensional 
space, situated along the space filling curves, to a unidimen- 
sional space in which the chromosome is encoded. In an- 
other model proposed by same authors [23], the centers and 
widths of the RBFs evolve through an elegant cooperative- 
competitive genetic algorithm. In this model, each individ- 
ual encodes only one hidden unit. The whole population 
represents just one IU3F network. In [7], RBF networks are 
trained using the OLS algorithm with regularization. GAS 
are employed to evolve the widths and regularization pa- 
rameters, after the OLS algorithm defines automatically the 
number and position of the RBF centers. 

4. Proposed Model 

This section presents the evolutionary approach pro- 
posed in this article by describing the chromosome rep- 
resentation, genetic operators and objective function em- 
ployed. 

4.1. Representation 

The solutions representation is one of the key aspects to 
be considered when using GAS. In the proposed representa- 
tion, the ith chromosome of the population is a list of genes 
given by: 

p, = (0, P1,  P21 . . . , P K )  (12) 

where U is the width for all basis function and p., encodes a 
hidden unit which is given by 

which represents the j t h  basis function of the network 
whose center is cj = [cj l ,  . . . , cjrLIT. Each pj can be empty 
(pj = 0) or non empty (pj # 0). Thus chromosomes Pi 

~ 

Figure 2. New crossover operator. 

can represent variable size networks topologies. The pa- 
rameters are encoded as floating-point values. 

The index j of pj also indicates that the center cj is in- 
side a region Rj of the input space (this region is discussed 
in the next section). 

4.2. Partitioning the input space 

The partitioning of the input space creates a set of K 
regions { R I , .  . . , RK}.  The regions are placed in the ar- 
eas of higher density of training patterns. Each region R, 
is obtained from the cluster S, generated by the K-means 
algorithm. Each region R, has the shape of a hypercube 
whose length I ,  of its edge is given by 

where m, is the mean of cluster Si. Thus the region Ri 
embraces all points of the cluster S,. 

4.3. Genetic Operators 

A new crossover operator is used by the authors. 
Figure 2 illustrates this operator where the function 
crossover ( ) represents any traditional crossover for 
floating-point values. This crossover is an uniform 
crossover that crosses regions Ri instead of structural 
chunks of chromosomes. This modification avoids most 
of the duplication of hidden units in the chromosomes and, 
consequently, most of the functional equivalence problems. 

The traditional mutation operator and a few variations 
are also used. Creep mutation adds a Gaussian noise with a 
Normal distribution to widths and centers. The added noise 
is small, so creep mutation plays the role of a local search. 
Addition and removal operators add and delete hidden units 
randomly chosen. 

4.4. The choice of the objective function 

After decoding the chromosome, the output-layer 
weights are determined by a pseudoinverse matrix. Next, 
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the chromossome is evaluated. Since the topology will be 
optimized, such evaluation should consider not only the net- 
work performance, but stimulate a good balance between its 
performance and complexity. 

A good criterion for the objective function would be the 
use of crossvalidation. However, it is computationally in- 
tensive. For RBF networks with fixed centers and widths 
there are more computationally efficient criteria for their 
evaluation. A good candidate for the objective function is 
the Generalized Crossvalidation (GCV) [IO]. The GCV is 
defined as: 

p SSE 
f l =  GCV = ~ 

( P  - mI2 
where SSE denotes sum of squared errors on the training 
set, m is the number of weights (free parameters) and p is 
the number of the training set pattems. 

In previous studies, the objective function employed has 
been based on the training set error rates. As this may result 
in overfitting, the experiments reported in this article used a 
validation set too. As a result, a second objective function 
must be optimized: 

where SSEvalzd denotes the sum of squared errors over val- 
idation set. This result into a multiobjective optimization 
problem. The Multiobjective optimization using GAS can 
be found in [8] 

Experimental studies showed the following procedure 
performed in each evaluation of chromossome improve the 
generalization: 

1 .  join both training and validation set into a unique large 
dataset. 

2 .  shuffle the large dataset. 

3. sample a new training set and validation set from the 
large dataset. 

If a chromossome pass to next generation, it should be 
evaluated again using the above procedure. 

Next Section presents the results achieved using differ- 
ent techniques to set the RBF networks parameters for a 
Hermite Polynomial approximation task. 

5. Experimental Studies 

In this section the proposed GA is applied to a bench- 
mark problem: a Hermite polynomial approximation, which 
is given by: 

Table 1. GA parameters 
Crossover rate 

Creep std dev. 0.001 
Addition rate 
Deletion rate 0.3 

The genetic algorithm ran with the parameters from Ta- 
ble l .  The results obtained were compared to two con- 
structive algorithms used to determinate the RBF network 
topology. Namely, RAN-EKF (Resource Allocating Net- 
work with Extended Kalmon Filter) [I  11 and ROLS (Regu- 
larized Orthogonal Least Square) [18]. Both RAN-EKF and 
ROLS used training sets with 40 pattems randomly chosen 
in range [-4, +4] and noise added. As GA needs validation 
set, then the genetics RBF networks was trained with 90% 
(36 pattems) of the original training set and remainder 10% 
was left to the validation set. 

The results was performed over a test set with 200 uni- 
formly spaced noiseless pattems in the range [-4, +4]. Re- 
sults of GA were averaged over 10 runs for each different 
noise added to the training set. In Figures 3 and 4 is showed 
how the number of centers and the root mean squared er- 
ror for the test set varies with the noise variance. The 
RAN-EKF and ROLS results were extracted from [18]. As 
showed in Figure 4, GA generated RBF networks with a 
very small number of centers in all levels of noise whereas 
their generalization capacities, Figure 3, was compatible 
with the ROLS algorithm. 

6. Conclusions 

This paper investigated the performance of RBF net- 
works optimized by a Genetic Algorithm using two objec- 
tive functions. CA was compared to two approaches to op- 
timize RBF networks. The GA approach was as accurate as 
the best of the others approaches and yields networks with 
significantly less number of hidden units in all experiments 
this work. The final conclusion is that GA is able to generate 
parsimonious networks and still keep good generalization. 
Nevertheless, CA took a long training time (which is orders 
of magnitude greater than other approaches) to achieved 
these results. But for a large number of applications, where 
recognition performance is more important than the training 
time, the results obtained suggest that the genetic approach 
is an attractive solution for the design of efficient ANNs 
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Figure 3. Performance over several noise lev- 
els 
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Figure 4. Variation of the number of centers 
over several noise levels 
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