
Comparison of machine learning methods for
intelligent tutoring systems

Wilhelmiina Hämäläinen1 and Mikko Vinni1

Department of Computer Science, University of Joensuu,
P.O. Box 111, FI-80101 Joensuu

FINLAND
{whamalai, mvinni}@cs.joensuu.fi

Abstract. To implement real intelligence or adaptivity, the models for
intelligent tutoring systems should be learnt from data. However, the
educational data sets are so small that machine learning methods cannot
be applied directly. In this paper, we tackle this problem, and give general
outlines for creating accurate classifiers for educational data. We describe
our experiment, where we were able to predict course success with more
than 80% accuracy in the middle of course, given only hundred rows of
data.

1 Introduction

Ability to learn is often considered as one of the main characteristics of in-
telligence. In this sense most of the intelligent tutoring systems are far from
intelligent. They are like old-fashioned expert systems, which perform mechanic
reasoning according to predefined rules. They may use very intelligent-sounding
methods like Bayesian networks, decision trees or fuzzy logic, but almost always
these methods are used only for model representation. They determine only, how
to reason in the model, but the model itself is predefined.

Table 1. The basic terminology used in this paper.

Concept Meaning

Model structure Defines the variables and their relations in the model.
E.g. nodes and edges in a Bayesian network, or independent
and dependent variables in linear regression.

Model parameters Assigned numerical values, which describe the variables and
their relations in the given model. E.g. prior and conditional
probabilities in a Bayesian network, or regression coefficients
in linear regression.

Modelling paradigm General modelling principles like definitions, assumption and
techniques for constructing and using models. E.g. Bayesian
networks, linear regression, neural networks, or decision trees.



This situation is very surprising, compared to other fields, where machine
learning methods are widely used. In modern adaptive systems both the model
structure and model parameters (see terminology in Table 1) are learnt from
data. However, in educational applications, it is rare that even the model pa-
rameters are learnt from data.

The main problem is the lack of data. The educational data sets are very
small – the size of class, which is often only 50-100 rows. In distance learning
setting, the course sizes are larger, and it is possible to pool data from several
years, if the course has remained unchanged. Still we can be happy, if we get data
from 200-300 students. This is really little, when we recall that most machine
learning methods require thousands of rows of data.

Another problem is that the data is often mixed, and contains both numeric
and categorial variables. Numeric variables can always be transformed to catego-
rial, but the opposite is generally not possible (we can transform all variables to
binary, but in the cost of model complexity). This is not necessarily a problem,
because the best methods for really small data sets use categorial data. Educa-
tional data has also one advantage compared to several other domains: the data
sets are usually very clean, i.e. the values are correct and do not contain any
noise from measuring devices.

In the following, we will tackle these problems. In Section 2, we describe the
general appoach, which allows us to infer also the model structure from data. In
Section 3, we give general guidelines for modelling educational data. We concen-
trate on constructing a classifier from real student data, alhtough some principles
apply to other predicting tasks, as well. In Section 4, we report our empirical
results, which demonstrate that quite accurate classifiers can be constructed
from small data sets (around 100 rows data) with careful data preprocessing
and selection of modelling paradigms. We compare the classification accuracy of
multiple linear regression, support vector machines and three variations of naive
Bayes classifiers. In Section 5, we introduce related research, and in Section 6,
we draw the final conclusions.

2 Approach

Combination of descriptive and predictive modelling is often very fruitful, when
we do not have enough data to learn models purely from data but on the other
hand we do not want to rely on any ad hoc assumptions. The idea is to ana-
lyze the data first by descriptive techniques (classical data mining) to discover
existing patterns in data. The patterns can be for example association rules,
correlations or clusterings. Often the process is iterative and we have to try
with different feature sets, before we find any meaningful patterns. In a success-
ful case, we discover significant dependencies between the outcome variable and
other variables and get information about the form of dependency. All this infor-
mation is utilized in the predictive modelling phase (classical machine learning),
which produces the actual models for prediction.



In the second phase, the system constructor should first decide the most ap-
propriate modelling paradigm or paradigms and then restrict the set of suitable
model structures. The selection of modelling paradigm depends on several fac-
tors like data size, number and type of attributes, form of dependencies (linear
or non-linear). In the next section, we will give some general guidelines for the
educational domain, but the most successful descriptive paradigms do also hint
suitable predictive paradigms. For example, strong correlations support linear
regression and strong associations support Bayesian methods.

If we have very little data, the model structure cannot be defined from data,
but we can compose it according to descriptive patterns found in the first phase.
If the descriptive analysis suggests several alternative model structures, it is
best to test all of them, and select the one with smallest generalization error.
The model parameters are always learnt from data. In small data sets it often
happens that some parameters cannot be defined, because of the lack of data.
A couple of missing variables can be handled by well-known heuristic tricks, but
several missing variables is a sign of too complex a model.

3 Classifiers for educational data

The main problem in ITSs is classification. Before we can select any tutoring
action, we should classify the situation: whether the student masters the topic or
not, whether she or he will pass the course or not. However, the problem contains
so many uncertain or unknown factors that we cannot classify the students
deterministically into two mutual classes. Rather, we should use additional class
values (e.g. the mastering level is good, average, or poor) or estimate the class
probabilities. The latter approach is more recommendable, because additional
variables always increase the model complexity and make it more inaccurate. On
the other hand, the class probabilities can always be interpreted as intermediate
class values, if needed.

Typically, the student profile contains too many attributes for building ac-
curate classifiers, and we should select only the most influencing factors for pre-
dicting purposes. In addition, the domains of numeric attributes are large, and
the data is not representative. In practice, we have to combine attributes and
reduce their domains as much as possible, without losing their predictive power.
As a rule of thumb, it is suggested that the data set should contain at least 10
rows of data per each model parameter. In simplest models, like naive Bayes
classifiers using binary attributes, this means about n

20 independent attributes,
where n is the data size.

The other consequence of this simple calculation is the model complexity. We
should select modelling paradigms, which use as simple models as possible. In the
following, we will suggest good candidates for both numeric and categorial data.
All these classifiers are able to produce class probabilities or similar measures,
instead of deterministic class decisions. We have excluded such commonly used
methods like nearest neighbour classifiers, neural networks and variations of
decision trees, which would require much more data to work accurately.



3.1 Classifiers for numeric data

The simplest predictive model for numeric data is linear regression. In multiple
linear regression we can predict the dependent variable Y , given independent
variables X1, ..., Xk, by a linear equation Y = αkXk+αk−1Xk−1+...+α1X1+α0.
Although the result is numeric value, it can be easily interpreted as a class value
in binary class problem.

The main assumption in the linear regression is that the relationship should
be approximately linear. However, the model can tolerate quite large deviations
from linearity, if the trend is correct. On the other hand, we can use linear re-
gression as a descriptive tool to identify, how linear or non-linear the relationship
is. This is done by checking the square of multiple correlation coefficient

r2 =
V ar(Y )−MSE

V ar(Y )
,

where V ar(Y ) is Y ’s variance and MSE is the mean of squared errors. As a rule
of thumb, if r2 > 0.4, the linear tendency is significant, and we can quite safely
use linear regression.

The main limitations of applying linear regression in educational domain
concern outliers and collinearity. The linear regression model is very sensitive to
outliers, and educational data contains almost always exceptional students, who
can pass the course with minimal effort or fail without any visible reason. If the
data contains several clear outliers, robust regression [4] can be tried instead.
Collinearity means strong linear dependencies between independent variables.
These are very typical in educational data, where all factors are more or less
related to each other. It is hard to give any exact values, when the correlations are
harmless, but in our experiment the accuracy of linear regression model classifier
suffered, when the correlation coefficient was r > 0.7. The weaker correlations
did not have any significant effect.

Support vector machines (SVM) [7] are another good candidate for classifying
educational data. The idea is to find data points (”support vectors”) which define
the widest linear margin between two classes. Non-linear class boundaries can be
handled by two tricks: first, the data can be mapped to a higher dimension, where
the boundary is linear, and second, we can define a soft margin, which allows
some misclassification. To avoid overfitting but still achieving good classification
accuracy, a compromise of these two approaches is selected.

Support vector machines suit especially well for small data sets, because the
classification is based on only some data points, and data dimension–size ratio
has no effect on model complexity. In practice, SVMs have produced excellent
results, and they are generally considered as best classifiers. The only shortcom-
ing is the ”black-box” nature of the model. This is in contrast with the general
requirement that models in ITS should be transparent. In addition, selecting
appropriate kernel function and other parameters is difficult, and often we have
to test different settings empirically.



3.2 Bayesian classifiers for categorial data

The previously mentioned classifiers suit only for numeric and binary data. Now
we will turn to classifiers, which use categorial data. This type of classifiers are
more general, because we can always discretize numeric data into categorial with
desired precision. The resulting models are simpler, more robust and generalize
better, when the course content and students change.

Bayesian networks are very attractive method for educational domain, where
uncertainty is always involved and we look for a transparent, easily understand-
able model. Unfortunately, the general Bayesian networks are too complex for
small data sets, and the models overfit easily. Naive Bayes models avoid this
problem. The network structure consist of only two layers, the class variable in
the root node and all the other variables in the leaf nodes. In addition, it is as-
sumed that all leaf nodes are conditionally independent, given the class value. In
reality this so called Naive Bayes assumption is often unrealistic, but in practice
the naive Bayes model has worked very well. One reason is that according to
[1] Naive Bayes assumption is not a necessary but only sufficient condition for
naive Bayes optimality. In empirical tests, naive Bayes classifiers have often out-
performed more sophisticated classifiers like decision trees or general Bayesian
networks, especially with small datasets (up to 1000 rows) [1].

In the educational domain, the Naive Bayes assumption is nearly always
violated, because the variables are often interconnected. However, Naive Bayes
classifier can tolerate surprisingly strong dependencies between independent vari-
ables. In our experiments, the model accuracy suffered only when the conditional
probability between two leaf node values was P (F = 0|E = 0) = 0.96. The av-
erage mutual information between those variables was also high, AMI(E, F ) =
0.178, of the same magnitude as the dependencies between class variable and
leaf variables (AMI ∈ [0.130, 0.300]). The effect to classification accuracy was
about the same as in linear regression model.

Tree augmented naive Bayes models (TAN models) [2] enlarge naive Bayes
models by allowing additional dependencies. The TAN model structure is oth-
erwise like in the naive Bayes model, but each leaf node can depend on another
leaf node, in addition to class variable. This is often a good compromise between
a naive Bayes model and a general Bayesian network: the model structure is
simple enough to avoid overfitting, but strong dependencies can be taken into
account. In the empirical tests by [2] the TAN model outperformed the standard
naive Bayes, but in our experiments the improvements were not so striking.

Bayesian multinets [3] generalize the naive Bayes classifier further. In Bayesian
multinets we can define a different network structure for every class value. This
is especially useful, when classes have different independence assertions. For ex-
ample, when we try to classify the course outcomes, it is very common that
failed and passed students have different dependencies. In addition, the class of
failed students is often much smaller and thus harder to recognize, because of
less accurate parameter values. When we define for both classes their own model
structures, the failed students can be modelled more accurately. In addition,



the resulting model is often much simpler (and never more complex) than the
corresponding standard naive Bayes model, which improves generalization.

Friedman & al. [2] have observed that the classification accuracy in both TAN
and Bayesian multinet models can be further improved by certain parameter
smoothing operations. In ”Dirichlet smoothing” or standard parameterization
the conditional probability of Xi given its parent ΠXi

is calculated by

P (Xi = xk|ΠXi = yj) =
m(Xi = xk,ΠXi = yj) + αijk

m(ΠXi
= yj) + αij

,

where αij =
∑

k αijk are Dirichlet hyperparameters. If αijk = 0, the pa-
rameters reduce to relative frequencies. Other values can be used to integrate
domain knowledge. When nothing else is known, a common choice is to use val-
ues αijk = 1. This correction is known as Laplace smoothing. In empirical tests
by [2] it produced significant improvements especially in small data sets, but in
our experiments the improvements were quite insignificant.

4 Empirical results

Our empirical tests are related to distance learning Computer Science program
ViSCoS, in the University of Joensuu, Finland. One of the main goals in ViS-
CoS is to develop an intelligent tutoring system based on real student data.
Java Programming courses have been selected as our pilot courses, because of
their importance and large drop-out and failing rates. In the first phase, we
have developed classifiers, which can predict the course success (either passed
or failed/drop-out) as early as possible. Currently this information serves only
course teachers, but the next step is to integrate intelligent tutors into course
environment.

4.1 Data

Our data set consisted of only exercise points and final grades. The data hah been
collected in two programming courses, (Prog.1 and Prog.2), in two consecutive
years 2002-2003 and 2003-2004. In Prog.1 course, the students study to use Java
in a procedural way, and object-oriented programming is studied only in Prog.2.

The first problem in our modelling task was feature extraction and feature se-
lection. Each class consisted of only 50-60 students, but each student had solved
exercises in 19 weeks. To increase the data size and decrease the number of
attributes, we created new attributes, which abstracted away the differences be-
tween two academic years. This was relatively easy, because the course objectives
had remained the same. The exercises could be divided into six categories: ba-
sic programming skills, loops and arrays, applets, object-oriented programming,
graphical applications and error handling. The exercise points in each category
were summed and normalized so that the maximum points were the same in
both years. After that the data sets could be combined. The resulting Prog.1



Table 2. Selected attributes, their numerical domain (NDom), binary-valued qualita-
tive domain (QDom), and description.

Attr. NDom. QDom. Description

A {0, .., 12} {little, lot} Exercise points in basic programming structures.
B {0, .., 14} {little, lot} Exercise points in loops and arrays.
C {0, .., 12} {little, lot} Exercise points in applets.
D {0, .., 8} {little, lot} Exercise points in object-oriented programming.
E {0, .., 19} {little, lot} Exercise points in graphical applications.
F {0, .., 10} {little, lot} Exercise points in error handling.
TP1 {0, .., 30} {little, lot} Total points in Prog.1.
TP2 {0, .., 30} {little, lot} Total points in Prog.2.
FR1 {0, 1} {fail, pass} Final result in Prog.1.
FR2 {0, 1} {fail, pass} Final result in Prog.2.

data set contained 125 rows and four attributes and Prog.2 data set contained
88 rows and eight attributes.

The attributes, their domains and descriptions are presented in Table 2. In
the original data set, all attributes were numerical, but for Bayesian classifiers
we converted them to binary-valued qualitative attributes.

4.2 Classifiers

For model construction, we performed descriptive data analysis, where we searched
dependencies between numeric and categorial attributes by correlation, correla-
tion ratio, mutual information and association rules. The analysis revealed that
total points TP in both courses depended heavily on exercise points and the
dependency was quite linear. Even stronger dependencies were discovered by
association rules between final results FR and binary versions of exercise at-
tributes. The dependency analysis revealed also dependencies between exercise
attributes. Most of them were moderate, except the dependency between E and
F . In addition, we found that final results in Prog.2 depended strongly on Prog.1
attributes B, C and TP1. B attribute affected mostly among successful students
and C among failed students, but generally TP1 was the most affecting factor.

The goal was to predict the course final results FR1 and FR2 as early as
possible, and thus we tested seven different cases:

1. A ⇒ FR1 4. TP1 ⇒ FR2
2. A,B ⇒ FR1 5. TP1, D ⇒ FR2
3. A,B, C ⇒ FR1 6. TP1, D, E ⇒ FR2

7. TP1, D, E, F ⇒ FR2
Two numeric classification methods (multiple linear regression and support

vector machines) were applied to numeric data, and three versions of naive Bayes
classifiers (standard NB, TAN and Bayesian multinets) to categorial data. In
numerical methods, we had to learn seven different models in both paradigms,
but for naive Bayes classifiers, it was enough to learn just one model for Prog.1



NB1 TAN1 BMN1

FR1

A B C

FR1

A B C

FR1=0

A B C

FR1=1

A B C

NB2 TAN2 BMN2

TP1

FR2

D E F

TP1

FR2

D E F

FR2=0

D E F

C

FR2=1

D E F

B

Fig. 1. Naive Bayes (NB1, NB2), Tree-augmented Naive Bayes (TAN1, TAN2),
and Bayesian multinet (BMN1, BMN2) classifiers for predicting the final results
(FR1, FR2) in Prog.1 and Prog.2 courses. A, B, C, D, E and F are exercise points.
Either total points in Prog.1 TP1 or exercise points in B or C categories have been
used as background variables for Prog.2 models.

and one for Prog.2 and update the class probabilities by Bayes rule, when new
exercise attributes were known.

The naive Bayes model structures are described in Figure 1. In TAN models,
we have included the strongest dependencies between exercise attributes. The
Bayesian multinet structures are quite similar, because the dependencies among
failed and successful students were mostly same. The biggest difference is that
in the Prog.2 model, we use attribute B to initialize P (FR2) in the succeeders’
network and C in the failers’ network. The model parameters in TAN models and
Bayesian networks were calculated both with and without Laplace smoothing.

4.3 Results

The models have been compared in all test cases by 10-fold cross-validation.
The generalization error has been expressed as true positive and true negative
rates, which tell the proportion of correctly predicted successful students from all
successful students, and similarly for failed students. The results are represented
in Table 3.

We observe that generally the support vector machine performed best, es-
pecially in the last cases, when several attributes were included. However, in
Prog.1 data, the naive Bayes classifiers predicted the failers better than the sup-
port vector machine. Predicting potential failers/drop-outs accurately is more
important, because they would need special tutoring. In addition, the real prob-
abilities reveal more information.

When we compare different naive Bayes classifiers, we observe that the results
are quite controversal. In Prog.1, the TAN and Bayesian multinet models achieve



Table 3. Comparison of five classification methods. Linear regression (LR) and support
vector machine (SVM) classifiers were trained with numeric course data, and Naive
Bayes (NB), tree-augmented Bayesian networks (TAN) and Bayesian multinets (BMN)
with categorial data. The generalization error has been estimated by 10-fold cross-
validation and for each model structure and classification method true positive TP
and true negative TN rates are reported.

Model LR SVM NB TAN BMN
structure TP TN TP TN TP TN TP TN TP TN

A ⇒ FR1 0.83 0.47 0.91 0.42 0.96 0.31 0.96 0.31 0.96 0.31

A, B ⇒ FR1 0.91 0.72 0.93 0.69 0.80 0.81 0.82 0.83 0.82 0.83

A, B, C ⇒ FR1 0.93 0.81 0.94 0.78 0.83 0.81 0.84 0.81 0.85 0.81

TP1 ⇒ FR2 0.70 0.68 0.88 0.59 0.96 0.51 0.96 0.51 0.75 0.38

TP1, D ⇒ FR2 0.78 0.85 0.86 0.76 0.71 0.68 0.71 0.68 0.73 0.73

TP1, D, E ⇒ FR2 0.75 0.90 0.98 0.82 0.82 0.86 0.82 0.81 0.78 0.81

TP1, D, E, F ⇒ FR2 0.70 0.92 0.94 0.82 0.86 0.86 0.84 0.81 0.78 0.81

a slight improvement, but in Prog2, the standard naive Bayes model performs
better. The results by TAN and Bayesian multinets are quite similar especially in
Prog.1. This is not surprising, because the model structures are nearly the same.
However, in Prog.2, the TAN model outperforms multinet model in almost all
cases. This suggests that total points in Prog.1 is a better background variable
than exercise points in B or C.

We have also tried the Laplace smoothing in all Bayesian models, but it
did not produce any improvement. In fact, in some cases it only increased the
generalization error.

5 Related research

So far, none of the existing ITSs learn the model from data, but there have been
some experiments to this direction. Two studies have tackled quite a similar
problem to ours, but the data sizes were much larger and the data sets contained
very different features. The prediction accuracy in these studies was of the same
magnitude as in our case, although in the second study, the prediction was done
in the end of course.

Kotsiantis et al. [5] have compared six classification methods (Naive Bayes,
decision tree, feed-forward neural network, support vector machine, 3-nearest
neighbour and logistic regression) to predict drop-outs in the middle of course.
The data set contained demographic data, results of the first writing assignments
and participation to group meetings. The data set contained 350 students. The
best classifiers, Naive Bayes and neural network, were able to predict about 80%
of drop-outs.

Minaei-Bidgoli et al. [6] have compared six classifiers (quadratic Bayesian
classifier, 1-nearest neighbours, k-nearest neighbours, Parzen window, feed-forward



neural network, and decision tree) to predict the course final results from a learn-
ing system log data. The data contained attributes concerning each task solved
and other actions like participating in the communication mechanism and read-
ing support material. The data set contained 250 students. The best classifier,
k-nearest neighbours, achieved over 80% accuracy, when the final results had
only two classes (pass/fail).

6 Conclusions

In this paper, we have tackled a difficult problem of learning classifiers for ITS
from real data. The main problem is the small size of educational data sets, and
the traditional machine learning methods cannot be applied directly. However,
with careful preprocessing and selection of modelling paradigms we can learn
quite accurate classifiers.

We have given general outlines, how to classify successfully small data sets of
both numeric and categorial data. We recommend especially variations of naive
Bayes classifiers, which are robust, can handle mixed variables and produce
informative results (class probabilities).

We have also reported our empirical study, where we compared five classifi-
cation methods for predicting the course outcomes as early as possible. The data
consisted of only exercise points and the data sets were very small (in Prog.1
course 125 rows and in Prog.2 course 88 rows).

For numerical data, we used multiple linear regression and support vector
machine classifiers, and for categorial data, three variations of naive Bayes clas-
sifier (the standard model, TAN model and Bayesian multinets). All methods
achieved about the same accuracy. In Prog.1, 80% accuracy was achieved in the
middle of course and in Prog.2 already in the beginning of course.

References

1. P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning, 29:103–130, 1997.

2. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29(2-3):131–163, 1997.

3. D. Geiger and D. Heckerman. Knowledge representation and inference in similarity
networks and Bayesian multinets. Artificial Intelligence, 82:45–74, 1996.

4. P.J. Huber. Robust estimation of a location parameter. Annals of mathematical
statistics, 35:73–101, 1964.

5. S.B. Kotsiantis, C.J. Pierrakeas, and P.E. Pintelas. Preventing student dropout in
distance learning using machine learning techniques. In Proceedings of 7th Inter-
national Conference on Knowledge-Based Intelligent Information and Engineering
Systems (KES), pages 267–274, 2003.

6. B. Minaei-Bidgoli, D.A. Kashy, G. Kortemeyer, and W. Punch. Predicting student
performance: an application of data mining methods with an educational web-based
system. In Proceedings of 33rd Frontiers in Education Conference, pages T2A13–
T2A18, 2003.

7. V.N. Vapnik. Statistical learning theory. John Wiley & Sons, 1998.


