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Abstract 

In this paper, we propose a new data reduction al-
gorithm that iteratively selects some samples and ig-
nores others that can be absorbed, or represented, by 
those selected. This algorithm differs from the con-
densed nearest neighbor (CNN) rule in its employment 
of a strong absorption criterion, in contrast to the weak 
criterion employed by CNN; hence, it is called the gen-
eralized CNN (GCNN) algorithm. The new criterion 
allows GCNN to incorporate CNN as a special case, 
and can achieve consistency, or asymptotic Bayes-risk 
efficiency, under certain conditions. GCNN, moreover, 
can yield significantly better accuracy than other in-
stance-based data reduction methods. We demonstrate 
the last claim through experiments on five datasets, 
some of which contain a very large number of samples. 

1. Introduction 

Most data reduction schemes are based on certain 

prototype learning methods (Devroye et al. [1], chapter 

19), which can be divided into two types. The first em-

ploys samples as prototypes and are thus called in-

stance-based learning (IBL) algorithms. The CNN rule 

(Hart [2]) is the original, and perhaps simplest, of many 

such methods, all of which attempt to extract a subset 

from an entire set of samples. The common idea of 

these algorithms is to execute a process iteratively to 

check the satisfaction of certain criteria for the current 

set of prototypes, and add or drop prototypes until a 

stop condition is met. Wilson and Martinez [3] de-

scribed and compared many algorithms of this type. 

Methods of the second type can be called cluster-

ing-based learning (CBL) algorithms. In these algo-

rithms, prototypes are not samples per se, but are 

weighted averages of samples. The various proposals 

for CBL include k-means clustering algorithm, fuzzy 

c-means algorithm, etc. 

In this paper, we focus on IBL algorithms. They 

have the advantage of extracting prototypes rapidly, 

since they adopt samples as prototypes and thereby 

avoid the rather costly computation of clustering. The 

proposed IBL algorithm is called the generalized con-

densed nearest neighbor rule, which is similar to CNN 

but adopts a stronger criterion for the absorption or 

representation of samples by prototypes. GCNN has the 

following advantages. First, it incorporates CNN as a 

special case and can thus outperform the latter. Second, 

under certain conditions, GCNN is consistent. Third, 

one of the above conditions requires that any two sets 

of data with different labels have a positive separation. 

This is more flexible than the corresponding condition 

for SVM (Vapnik [4]), which requires a margin be-

tween two such datasets (Figure 1). Fourth, GCNN cre-

ates prototypes for all labels simultaneously, in contrast 

to SVM, which creates support vectors for one pair of 

labels at a time. 

(a) (b) 

Figure 1. (a) A positive distance exists between two 
sets A and B. (b) A margin exists between two sets C 
and D. 

The remainder of this paper is organized as fol-

lows. In Section 2, we describe GCNN and its relation 

to CNN. In Section 3, the convergence of GCNN and 

its consistency under certain conditions is presented. 

Section 4 contains experimental studies of GCNN and 

comparisons with two other instance-based algorithms. 

Finally, in Section 5, we present our conclusion. 

2. The GCNN Algorithm 

We assume that a set of observed data, or samples, 

(x1, y1), (x2, y2), ..., (xn, yn) is given, where xi is a sam-

ple and yi denotes the label of xi for i = 1, 2, …, n. Let 

Xn = {x1, x2, …, xn}. Our goal is to extract a subset Un
from Xn such that if u is the nearest member of Un to xi,

then l(u) = yi, where l(u) is the label of u. Members of 

Un are called prototypes and those of {(u, l(u)): u Un}

are called prototype data pairs. Moreover, samples that 

match in label with their nearest prototypes are said to 

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00  © 2006



be absorbed.

The CNN rule provides a simple solution to the 

above problem. Starting with Un = {x0}, where x0 is 

randomly chosen from Xn, CNN scans all members of 

Xn, and adds to Un a member x of Xn whose nearest 

prototype does not match in label with x. The algorithm 

scans Xn as many times as necessary, until all members 

of Xn have been absorbed or, equivalently, no more 

prototypes can be added to Un. For convenience, we say 

that two labeled entities are homogeneous if they have 

the same label, and heterogeneous otherwise. 

We want to apply the GCNN rule in a similar 

fashion to CNN, but we need to modify the absorption 

criterion. For CNN, a sample x is absorbed if 

0,|||||||| pxqx    (1) 

where p and q are prototypes: p is the nearest homoge-

neous prototype to x, and q is the nearest heterogeneous 

prototype to x. For GCNN, however, we adopt the fol-

lowing criterion: 

|||||||| pxqx n, for )1,0[ , (2) 

where n = min{||xi – xj||: l(xi) l(xj), and xi, xj Xn}.

We say that a sample is weakly absorbed if it satisfies 

(1), and strongly absorbed if it satisfies (2). Note that (1) 

corresponds to the case when =0 in (2). Below, we 

detail the steps of GCNN. 

S1 Initiation: For each label y, randomly select a 

y-sample as a new y-prototype. 

S2 Absorption Check: Check whether all samples 

have been strongly absorbed. If so, terminate the 

process; otherwise, proceed to the next step. 

S3 Prototype Augmentation: For each y, if there are 

any unabsorbed y-samples, randomly select one 

as a new y-prototype; otherwise, no new proto-

type is added to label y. Proceed to step S2. 

3. Consistency of GCNN 

Lemma 1. GCNN prototypes satisfy the following 

properties. (1) For each prototype p, |||| px n for 

all x with )()( px ll . (2) For any two heterogeneous 

prototypes p and q, |||| qp n. (3) For any two ho-

mogeneous prototypes m and n, |||| nm (1- ) n.

Lemma 2 The number of GCNN prototypes cannot 

exceed [(2Rn+ n)/(1- ) n]
d
, where Rn is the radius of the 

smallest ball containing all samples in Xn. Moreover, 

the number of GCNN iterations cannot exceed this 

bound either. 

Since { n} is non-increasing, there exists a  such 

that n  as n , and  is the minimal distance 

between heterogeneous samples. The consistency of 

GCNN can be proved under the following conditions: 

(1) all samples are included in a bounded set; and (2) 

the minimal distance  between heterogeneous samples 

is positive. 

Theorem 1. Let gn be the classifier using the 1-NN rule 

based on GCNN prototype data pairs. The conditions of 

boundedness and minimal positive distance ensure that 

for any ,0

.0|)()(|supPrlim})(Pr{lim
:

gLgLgL n
Rgnnn d

 (3) 

Note that when a classification rule produces clas-

sifiers {gn} in such a way that 

,0|)()(|supPrlim
:

gLgL n
Rgn d

 it is said to be con-

sistent. 

4. Experimental Results 

To test the effectiveness of GCNN, we set up ex-

periments using five datasets as a test bed. In the first 

experiment, we compare GCNN with two IBL algo-

rithms: CNN and DROP3 [3]. While CNN starts with 

an empty set and gradually builds prototypes, DROP3 

starts with all samples and gradually removes them. In 

the latter, a sample is removed if at least k of its nearest 

neighbors can be classified correctly without it. DROP3 

also uses a filter to remove noisy samples from the set 

of prototypes. 

Among the five datasets listed in Table 1, “Seg-

mentation” and “Forest” are from the UCI repository 

[5], “Letter” is from the Statlog collection [6], “UPS” is 

used in [4], and “Multilingual” is used in [7]. The last 

dataset contains samples of Chinese, Japanese, and 

English characters segmented from scanned images of 

newspapers and magazines. The first three datasets are 

considered small, as each has less than 20,000 samples; 

while the other two are considered large, as each con-

tains more than 581,000 samples. 

Table 1. Datasets used in the experiments. 

Dataset No. of 
Samples

No. of   
Features 

No. of 
Classes

Segmentation 2,310 19 7 
Letter 20,000 16 26 
UPS 9,298 256 10 

Forest 581,012 54 7 
Multilingual 880,490 256 3 

To evaluate the three algorithms we perform a 

five-fold cross-validation task on each dataset to obtain 

the average accuracy rate of the validation data. The 

computational experiments were conducted on an Intel 

Pentium 4 CPU 2.2GHz with a 2G MB RAM. For 
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DROP3, we employ the toolkit developed by Wilson 

and Martinez [3]. Whenever parameters need to be 

specified by users, we adopt the default values sug-

gested by the software. For comparison, we also apply 

the k-nearest neighbor (k-NN) algorithm to the same 

datasets and the same five-fold cross-validation task to 

obtain the average accuracy rate. In the testing process, 

the three IBL algorithms behave like k-NN, in that they 

determine the label of each test sample based on its k
nearest prototypes and a voting mechanism. The opti-

mal value of k is determined by the same 

cross-validation. 

We first apply GCNN with five values of  ( =0, 

0.25, 0.5, 0.75, and 0.99) to the Letter dataset. This 

includes CNN as a special case, since GCNN is the 

same as CNN when =0. The experiment results, pre-

sented in Table 2, show: (i) the average accuracy rate, 

expressed as a percentage; (ii) the training time, ex-

pressed in seconds; (iii) the data reduction rate, defined 

as the proportion of samples that are prototypes; and (iv) 

the optimal value of k. The results show that CNN 

yields the best reduction rate, but the lowest accuracy 

rate – 3.8% lower than that of k-NN. However, if we 

apply GCNN and increase  from 0 to 0.99, we obtain 

more prototypes and better accuracy rates. The results 

clearly show that the additional prototypes improve 

overall accuracy rates. In fact, when =0.99, we obtain 

95.2% accuracy, which is only 0.7 lower than that of 

k-NN, and a reduction rate of 42.6%. We find the same 

pattern in other datasets, i.e., the higher the value of ,

the larger the number of prototypes, and the higher the 

accuracy rates. Thus, hereafter, we only report the 

GCNN results for =0.99.

Table 2. Results of applying k-NN, CNN, and GCNN 
to the Letter dataset.

Method Accuracy Training 
Time 

Reduction 
Rate k

k-NN 95.9 0 100 4
CNN 92.1 69 15.4 1

GCNN =0.25 93.7 89 22.2 1
GCNN =0.50 94.4 138 28.5 1
GCNN =0.75 94.9 170 35.8 1
GCNN =0.99 95.2 187 42.6 1

Table 3 lists the results of applying the three IBL 

algorithms to the five datasets and the k-NN results for 

comparison. For each dataset the differences in accu-

racy between the IBL algorithms and k-NN are also 

shown. Some entries are missing from DROP3 because 

it needs a huge amount of computation resources and 

training time for the two large datasets, Forest and Mul-

tilingual, and we cannot produce results for them. The 

results show that CNN requires the least amount of 

training time and obtains the best reduction rate, and 

GCNN achieves better accuracy rates than the other 

two algorithms for all the datasets. We observe that all 

the differences in accuracy between GCNN and k-NN 

are less than 0.8%. In the Multilingual case, GCNN 

even outperforms k-NN by a slight margin. 

We can apply SVM to post-process the set of pro-

totypes produced by CNN or GCNN. To do this, we 

employ the soft-margin version of SVM and the RBF 

kernel function (Vapnik [4]). The RBF function in-

volves a parameter , whose value range is {10
-a

: a = 0, 

1,…, 8}. An additional parameter C is used as a penalty 

factor for the soft-margin version of SVM. Its value 

range is {10
b
: b = -1, 0, ,1,…, 5}. Since SVM only 

deals with one binary classification at a time, we need a 

decomposition scheme to apply it to multi-class data-

sets. We use the one-against-others scheme (Bottou et 

al. [8]) in our experiment. That is, if there are n labels 

in a dataset, we train n SVM classifiers, each of which 

classifies a sample as A or not A, where A is one of the 

n labels. The toolkit we use in the SVM training and 

testing steps is LIBSVM (Hsu and Lin [9]). 

Table 4 details the results of three hybrid classifi-

ers, Full SVM, CNN+SVM, and GCNN+SVM, in 

which SVM is applied, as a post-process, to the full 

datasets and the prototypes constructed by GCNN and 

CNN, respectively. As expected, CNN+SVM requires 

the least computing time for training, but its accuracy is 

substantially lower than that of Full SVM. Meanwhile, 

Full SVM achieves the best accuracy, but requires an 

intolerable amount of training time for the two large 

datasets. GCNN+SVM stands in the middle in terms of 

both accuracy and training time. Note that for Segmen-

tation, the accuracy of GCNN +SVM is 1.4% lower 

than that of Full SVM. However, using GCNN alone 

yields better accuracy than GCNN+SVM (96.4% ver-

sus 95.7%), as Tables 3 and 4 show. This suggests that 

we should not use SVM as a post-process for Segmen-

tation. For Letter and UPS, GCNN+SVM achieves 

comparable accuracy rates to those of Full SVM, while 

requiring only 21% and 2% of Full SVM’s training 

time, respectively. For Forest and Multilingual, the ac-

curacy of Full SVM is not available because the train-

ing process is too long. 

We made the following interesting observation 

while conducting this experiment. In SVM+GCNN, 

finding the optimal values of the SVM parameters re-

quires training SVM on GCNN prototypes with various 

combinations of parameter values. This lengthy process 

can be reduced if we train SVM on CNN prototypes. 

The optimal parameter values thus obtained are as ac-

curate as those derived by training SVM on the GCNN 

prototypes; however, the test accuracy can deviate sig-

nificantly. To remedy the latter discrepancy, we can 

further train SVM on the GCNN prototypes, using the 

optimal parameter values obtained previously. Thus, the 

training time for SVM+GCNN, as listed in Table 4, is 
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comprised of the CNN training time, the time spent 

searching for the optimal values of the SVM parameters 

on the CNN prototypes, and the SVM training time 

spent on the GCNN prototypes using the optimal values. 

Full SVM, on the other hand, is applied to the complete 

datasets in the search for optimal parameter values and 

the computation of accuracy rates. 

5. Conclusion 

From theorectical and experimenal works, we find 

that GCNN serves as a good data-reduction algorithm, 

since it achieves reasonable reduction rates, as well as 

accuracy rates close to those for the full datasets. Also, 

applying SVM as a post-process to the GCNN 

prototypes can yield better accuracy rates. Note that 

what is described in this paper is not the most powerful 

version of GCNN, due to its use of random fashion in 

picking up seeds for clustering and its insistency of 

zero training error that can compromise the 

generalization power of the resultant classifiers. The 

GCNN in its full version as well as a systematic 

comparison of such a version with other instance-based 

learning methods will be reported in forthcoming 

papers. 
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Table 3. Results of applying the three IBL algorithms to the five datasets. 

Dataset Segmentation Letter UPS Forest Multilingual Average
k-NN 97.0 95.9 96.9 96.9 99.95 97.33 

GCNN 96.4 95.2 96.7 96.1 99.96 96.87 
CNN 95.2 92.1 95.3 95.4 99.83 95.57 

Accuracy 

DROP3 95.1 92.4 87.3 ------ ------ 91.6 
GCNN 3.1 259 350 123,031 301,155 ------ 
CNN 0.8 74 78 48,620 28,290 ------ Training Time 

DROP3 395 15,220 6,003 ------ ------ ------ 
GCNN 16.2 42.6 44.0 19.2 3.2 25.04 
CNN 11.2 15.4 12.8 11.8 0.6 10.36 

Data Reduction 
Rate 

DROP3 11.5 16.9 9.9 ------ ------ 12.77 
GCNN -0.6 -0.7 -0.2 -0.8 +0.01 -0.46 

CNN -1.8 -3.8 -1.6 -1.5 -0.12 -1.76 Differences in 
Accuracy 

DROP3 -1.9 -3.5 -9.6 ------ ------ -5.0 

Table 4. Results of applying SVM to the full datasets, GCNN prototypes, and CNN prototypes. 

 Segmentation Letter UPS Forest Multilingual
Full SVM 97.1 97.6 97.8 ------ ------ 

GCNN+SVM 95.7 97.0 97.6 94.5 99.91 Accuracy 
CNN+SVM 93.7 95.0 97.3 92.7 99.52 
Full SVM 1,676 30,115 243,834 ------ ------ 

GCNN+SVM 110 6,373 5,858 62 days 375,936 Training Time 
CNN+SVM 105 6,104 5,430 60 days 68,085 

GCNN+SVM -1.4 -0.6 -0.2 ------ ------ Differences in 
Accuracy CNN+SVM -3.4 -2.6 -0.5 ------ ------ 
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