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Abstract
This paper presents a complex adaptive

systems approach for the verification of an
adaptive, online learning, sigma-pi neural network
that is used for the Intelligent Flight Control System
(IFCS) that has the potential of commercial aviation
application. This paper reports on the partial
completion ofmy doctoral dissertation proposal at
Nova Southeastern University, in the Graduate
School of Computer and Information Sciences. The
most significant shortcoming of the prior and
current approaches to verifying adaptive neural
networks is the application of linear approaches to a
non-linear problem. The project will use a MatLab
simulation of the sigma-pi adaptive neural network
and an aircraft simulation to fly a series of
simulated flight tests. As a result of the flight
simulations, a statistical analysis of the neural
network weights is performed as input to both a
complexity analysis and a neural network rule
extraction analysis. Complex adaptive methods are
a novel approach to overcome previous linear
analysis limitations. Future work will be required to
analyze emergent behavior of the neural network
weights to show stability and convergence
characteristics. Advances in computational power
and neural network techniques for estimating
aerodynamic stability and control derivatives
provide opportunity for real-time adaptive control.
New verification techniques are needed that
substantially increases trustworthiness in the use of
these neural network systems in life critical
systems. Verification of neural-based IFCS is
currently an urgent and significant research and
engineering topic since these systems are being
looked upon as a new approach for aircraft
survivability, for both commercial and military.

Introduction
Adaptive neural networks have shown great

promise in their application to address very
complex, dynamical, real-time intractable problems.
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The purpose of this paper is to propose a complex
adaptive systems approach for the verification of an
adaptive, online learning, sigma-pi neural network
that is being developed by NASA for IFCS
applications. For commercial avionic systems
certification, the Radio Technical Commission for
Aeronautics (RTCA) industry standard DO-178B
[1] titled "Software Considerations in Airborne
Systems and Equipment Certification" is
recognized and adhered to by the Federal Aviation
Administration as the means of demonstrating
compliance with the Federal Aviation Regulations.
For commercial flight control systems, certification
is mandatory. This certification requirement
imposes stringent verification requisites. Any
attempt at the verification of an adaptive neural
network system must address substantially different
issues compared to traditional software.

The most significant issue of all verification
efforts is trustworthiness. Traditional verification
methods do not guarantee correctness; they only
provide objective evidence that the system performs
as specified by its requirements. On-line learning
neural network (OLNN) systems are able to address
very complex problems, but they raise very difficult
verification issues. New verification techniques are
needed that substantially increases confidence in the
use of these neural network systems in life, safety,
and mission critical systems. This paper will
investigate the application of methods, models and
techniques from the science of complex adaptive
systems. It will attempt to use complex adaptive
system theory to determine an approach to define
the rules of the adaptive sigma-pi neural network.

Background
For the past several years, one of the most

interesting applications of neural network systems
is the IFCS application. For the IFCS application,
artificial neural networks have been extensively
researched at NASA Ames Research Center
because of their powerful ability in approximating
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non-linear dynamical functions. Current research
being performed by Georgia Institute of
Technology [2], Boeing Phantom Works [3], and
NASA Dryden Flight Research Center [4] is based
on a Generation II IFCS, as shown in Figure 1.

pilot
inputs

Figure 1. Gen II IFCS Architecture

Based on a dynamic inversion model, the pilot
commands are combined with the aircraft sensor
readings to calculate a desired command output.
The desired command output is fed into the
inversion model of the aircraft which provides the
actual command values that are provided to the
aircraft's control surfaces. In the nominal case, the
inversion model is an exact inversion function of
the aircraft dynamics. Due to changes in the aircraft
dynamics from system failure or damage, there are
deviations in which the adaptive sigma pi neural
network attempts to minimize the deviation by
learning from the sensor readings and previous
command output. The neural network output is an
adjusted value of the command output.

Prior Research
Because of the importance of neural network

applications, there is a rich collection of prior and
current research to reference. The major themes of
this research have been statistical methods, formal
methods, rule extraction, numerical analysis,
stability analysis and run-time monitoring. The goal
is to decrease both system output error and system
output error variability. The usefulness of neural
networks has motivated the implementation of
many systems. Unfortunately, the uncertainty of
neural network output has not been addressed in
many implementations. In safety-critical systems,
output error variability must be evaluated.

A decade ago, in the paper titled "A foundation
for neural network verification and validation" G.
E. Peterson, [5] proposed to enhance the current
verification and validation approach. This paper
also introduced the idea of statistically evaluating
true and apparent error. In addition, Peterson
addressed the subject of a neural networks
boundary of acceptable behavior and used a
confidence statistic to express the performance
within the boundary.

Formal methods have been proposed by a
number of research papers as a verification
approach for neural networks. High quality
software often uses formal method techniques from
the disciplines of logic and discrete mathematics to
develop system specifications, design and
construction. Software developed using formal
methods enable the formalization of verification
and validation. When used for testing purposes,
formal methods reduce the reliance on human
intuition and judgment. Traditional formal methods
include model checking and theorem proving. The
serious limitation of formal methods is the rigor of
mathematical proof which decreases the practical
size of the software under consideration [6].

Rule Extraction is a method that has been used
to determine the functionality of a neural network
by mapping its inputs to its outputs. The rules
extracted represent a set of if-then statements. Rule
extraction applies best to fixed neural networks that
have been trained for a specific application. In the
passed, rule extraction has been successfully
applied to multilayered perception [7], local cluster
and radical basis function neural networks. A
current research paper supporting rule extraction is
[8]. The major limitation of rule extraction is that it
supports static neural networks but does not support
adaptive neural networks.

In the paper titled "Towards Developing
Verifiable Neural Network Controller" [9], the
authors raise the question of completeness of
training data and flight envelope. The generation of
training data cannot rely solely on recorded flight
data. This data would not contain the environment
the aircraft would experience in a damaged
condition. Also, what is the performance of the
neural network in the "vicinity of the boarders of
the flight envelope?" In a more recent paper,
"Towards V&V ofNeural Network Based
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Controllers", [10], authors propose modification of
current verification methods and attention to
numerical aspect of neural network verification. In
the recent paper titled "Certifying Adaptive Flight
Control Software" [11], the authors take a fault
tolerance approach including both sensor failure
and actuator failure. With the goal of establishing
the "foundations for software certification of
adaptive flight control systems", the authors
approach is to evaluate the limitations of various
combined verification techniques, including
formalization of requirements specifications, their
formal verification, and techniques for proving the
convergence and stability properties of neural
networks.

Lyapunov stability analysis has played an
important role in the verification of neural
networks. Lyapunov stability analysis can be used
during a network's development or during its
operation. Lyapunov's direct (second) method is
widely used for stability analysis of linear and non-
linear systems, both time invariant and time varying
(neural networks are non-linear, time-varying
systems). Viewed as a generalized energy method,
it can provide insight into a system's behavior and
is used to determine if a system is stable, unstable,
or marginally stable [12]. The Lyapunov stability
analysis is used to prove the self-stabilizing
characteristics of the IFCS [13]. This analysis
proves that the neural network is convergent, but to
ensure system stability, run time monitoring is
required to assure system robustness.

Run-Time Monitoring is used to address the
possibility of the adaptive neural network
encounters unusual data patterns. The run-time
monitor is used to detect deviations of state that
could lead to unstable behavior. In the current
research literature, run-time or operational
monitoring methods appear to be the current
evolution of verification for neural networks [14].
Run-time monitoring involves evaluating the neural
network during execution, and/or evaluating
information such as event logs collected during
execution. Information collected can be used to
detect either violation of system constraints or to
manage resources at runtime. Run-time monitoring
or data sniffing can help assess the validity of input
or output of the neural network [15]. The pre-
processing of neural network input determines if the

input will cause unexpected adaptations in the
system. The post-processing approach evaluates the
neural network outputs and before they are used
determines if it is outside the normal range of
values and prevents it from being used. In actuality,
this monitoring is an indication of an incomplete
method of adaptive neural network verification.

The Approach
The approach of this paper is to use an

adaptive analysis to verify the online, learning
sigma-pi neural network of the Intelligent Flight
Control System (IFCS). The following statistical
analysis will provide a framework to determine, for
a given set of flight condition inputs, which neural
network weights actually change to produce a stable
range of command error. The adaptive analysis will
attempt to determine the rules that govern the
weights changes of the sigma-pi neural network
using the techniques of the new science of complex
adaptive systems.

The Generation II IFCS uses a direct adaptive
approach in which the command error is nulled.
The command errors are use to transform the pilot
input to the computed aircraft control surface
commands in the aircraft closed-loop control
system. As shown in Figure 2, the process of using
state information to govern the control inputs is
known as closing the loop, and the resulting system
as a closed-loop control or feedback control.

Error Control - Vehicle
(e) ) SystemDesired Statew

(yd) Actual State (e

Figure 2. A Simple Closed-Loop Control System

The aircraft controller compares the desired
control commands (Yd) to the computed control
commands (yc) and determines the aircraft
controller error (e) to be used in the next cycle of
aircraft control.

StatisticalAnalysis
For certification purposes, the certification

flight envelope would be a limited set of the neural
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networks inputs: Mach (M), altitude (h) and aircraft
pitch angle (oc). Thus

x(t) (M(t), h(t), u(t))T, 0 < t < T

where T is the observation time interval. For a
realistic flight envelope, environmental conditions
must also be modeled to account for pressure,
density, temperature, and speed-of-sound variations
with altitude. The test space of all x(t) is infinite
and is far to rich to be covered by a reasonable
number of test cases. To cover a reasonable set of
certification tests at each point in the flight
envelope, the certification flight envelope set would
be further reduced to a finite interval and to
eliminate impossible combinations of inputs. The
neural network certification database should range
from 0.1 < M < 1.3, at a minimum recovery altitude
(h=5000 ft.) to 0.3 < M < 2.0 at 50,000 ft altitude
(h). The aircraft pitch angle would range from -180
to +180 degrees. For each point in the database or
flight envelope, as shown in Figure 3, a specific M
(t), h (t) and o(t) would be input to the neural
network.

apply linear methods to non-linear systems. In the
previous section, a method to develop statistical
information about the behavior of the sigma-pi
neural network weights was proposed. In the
following section, adaptive analysis is proposed to
understand the behavior of the neural network
weighs for verification purposes. Complex adaptive
systems have an extensive set of algorithms and
techniques that can be used to develop a new
verification approach. The OLNN is a fully
adaptive sigma-pi network with one hidden layer.
Sigma-pi is a product unit neural network that was
introduced by Durbin and Rumelhart [16]. A
normal neural network used a unit summation
function:

n

i=I
Sigma-pi neural networks use a unit product

function:
n

Y=HW.Xi
i=l

where X is the activation value of the unit and W is
the weight. Figure 4, taken from [17], shows a
sigma-pi network:

h, , ~~~~~~M(t),h(t), a(t)

h L-V~~~~~~~~~C

M

Figure 3. A Point in the Flight Envelope

A computational study is required to determine
the increment of each parameter to determine the
instance of each computer run and the scaling of
each input value. For example, the increment of
altitude could be 1000 ft, Mach could be 0.25 Mach
and angle of attack could be 6 degrees. Larger
increments could be used to limit the time required
for simulations.

Adaptive Analysis
It is believed that the greatest deficit to

verifying neural networks has been the attempt to

Figure 4. Sigma-Pi Net with One Hidden Layer

where V are the first to second layer interconnection
weights, W are the second to third interconnection
weights, and c is the hidden layer activation
function. An example of a hidden layer activation
function is the sigmoidal function:

G(z) = /( 1+e)az

The damage adaptive controller uses a
backpropagation controller to change the
interconnection weights to optimize the control
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response to compensate for damage and failure
conditions of the aircraft [3]. For specific cases of
M (t), h (t), o(t) and damage condition, how do the
weights change as a function of time? Using a
network fitness distribution approach, it is proposed
that a small number of the weights change
significantly, thus the control of the outcome of the
neural network would be dominated by a few
weights as shown in Figure 5.

Figure 5. Neural Network Weight Variance

Since, it is proposed that networks weights are

characterized by the power law, there are certain
weights in the neural network that dominate. A
command error timeline would be simulated which
would characterize the control error before the
damage condition, at the time of damage, at the
time of the neural network engagement, and after
the pilot has regained control of the aircraft. As the
system changes, the point x(t) will trace a

trajectory. At each point during the simulation, the
value of each weight of the neural network would
be recorded. Using complex adaptive system
methods it could be determined whether the weights
naturally converge. Using this approach, rules that
govern the neural network weights could be
determined.

Neural Network Weights
In the study of complex adaptive systems [ 18]

a concept of interest is emergence. Emergence is
the study of complex adaptive systems that are
governed by elements that follow low-level rules
but perform sophisticated behavior. Schools of
fish, flocks of birds, bees, ant and termite colonies,
and herds of land animals are subjects of emergent
study since they all exhibit complex, adaptive
behavior [19].

As shown in Figure 6, the neuron is the
processing unit. Each neuron is characterized by an
activity level, representing the state of polarization
of the neuron, an output value - representing the
firing rate of the neuron, a set of input connections
- representing synapse on the cell and its dendrite, a
bias value - representing an internal resting level of
the neuron, and a set of output connections -
representing a neuron's axonal projections. Each
aspect is represented mathematically by real
numbers. Each connection has an associated weight
(synaptic strength) that determines the effect of the
incoming input on the activation level of the unit.
The weights may be positive (excitatory) or
negative (inhibitory) Input lines are product units
that yield an activation value for neuron j at time t.

xi

X2

Figure 6. Backpropagation Learning

Neural network learning can be defined as

simply the adjustments necessary to the set of
weights that allow the network to calculate the
desired output. The most popular form of neural
network learning is backpropagation, as shown in
Figure 6. In sigma-pi architecture, the weights of
the network are adjusted as a function of error

between the actual output and the desired output
values. In the error correction learning procedure, if
the actual output equals the desired output, the
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weights of the neural network are not changed.
However, if the output differs, change must be
made to some of the weights. The problem is to
determine which weight contributed to the error.
The total error of the system is defined as:

Xt+i = a(3xt - 4 xt3)
where a is a constant parameter; or Thompson and
Stewart [24]:

E= (dip-yidp
p, 1

where i indexes the output units, p indexes the
input/output pairs, dI,p is the desired output yi,p is
the actual output and E is the total error for the
system. The goal is to change the weights to
minimize this function. That is, change the weights
of the system in proportion to the derivative of the
error with respect to the weights. The change in w
is thus proportional to:

aE ay

With this understanding of weight change and
the proposed statistical analysis, the non-linear,
dynamical system behavior can possibility be
characterized using complex adaptive system
methods. The following subsections will outline
possible techniques that can possibility be used.

Chaos Theory Analysis
According to [20], complex dynamic behavior

has the following characteristics: a) independence: a
large number of relatively independent components,
b) dynamic: each component responds to its fellow
component, c) adaptiveness: the system conforms to
new situations to bring about some realignment, d)
self-organization: order forms, e) local rules:
govern each component, and f) hierarchical nature
of structure. Developing a non-linear, dynamical
algorithm for a system determination could be
based on chaos theory. The initial effort in the
determination of a new system algorithm based on
chaos theory is to identify at least one control
parameter [21]. There is a large number of
published examples of non-linear equations that can
lead to chaos. Using a quadratic map approach,
Devaney [22]:

xt+i c+xt2

where c is a constant parameter; or Lorenz [23]
quadratic map approach:

Ot+i = Ot +(a/22t)sin22t Ot + b

where 0 is an angular variable and b is a constant.

One of the most used non-linear equations that
can characterize steady state, bifurcation and chaos
is the logistic equation, by May [25]:

xt+l = kxt(1-xt)
where xt+± is the updated value of the control
parameter during a time period. This equation,
originally developed to model long-term population
dynamics, provides a one-dimensional feedback
system with discrete time intervals. To use the
logistics equation, would require the substitution of
population with the control parameter and a suitable
delta time. The logistics equation is suitable in
depicting order (convergence to a constant value),
complexity (constant osculation between two
values) and chaotic activity (persistent instability),
as shown in Figure 7.

Values of k

Figure 7. Chaos Theory Phases

The logistics equation than plots a parabola
with xt on the abscissa and xt±j on the ordinate and
the value of x between 0 and 1. The constant k
governs the steepness and height of the parabola
above the abscissa. The peak chosen is k= 4, with
the range of k from 0 to 4.0.
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The characteristics of the logistic equation
with these limits are very interesting. For values of
k from 0 to <3.0 the time series trajectory always
converges to a constant value or steady state. This
condition is true for any initial condition. In chaos
theory terms, the forward trajectory is a single
attractor, which means that for any value of xo the
resulting set of points will move towards a constant.
An attractor is a dynamical system's set of stable
conditions. It is the equilibrium state for the system,
such that if the system is started from another state
it will evolve until it arrives at the attractor. Each
weight will be analyzed to determine if it has a k
value from 0 to < 3.0 and is convergent.

Chaos theory contents that there are particular
universal phases that dynamical systems transition
from regular motion to irregular motion. For k from
3.0 to 3.7, the dynamics of the time series system is
unstable, transitioning from stable to chaotic. In this
phase, systems will continually oscillate which
represents complexity. For k < 3.7 to 4.0 the time
series is chaotic. In the chaotic phase, the system
will continually oscillate chaotically which
represent an unstable system.

Thus, if a weight is analyzed using the logistic
equation to determine k as:

k =xt+ / (Xt (1-xt))

First consider 0 < k < 3. Whatever value of k is
used the time series using that value will converge
to constant value. If k = 2.43 and the control
parameter xt is 0.40, then xt+1 = kxt(1-xt) yields
2.43(0.4)(1-0.4) = 0.5832. Using the calculated
value for xt, then xt+1 = 0.59076. As shown in
Table 1 below, this series converges to a steady
state value of 0.58847, which in chaos theory
represents stability. Trials show that all iteration at
constant k for k < 3.0 decay to a steady state,
regardless of xo. Therefore, if the value of k
calculated the control parameter is less than 3.0, the
weight can determine as convergent or stable.

Table 1. Normalized Control Parameter x0=0.40

xO = 0.4 Order Complexity Chaos
Delta t k=2.43 k=3.30 k=3.95
1 0.58320 0.79200 0.94800
2 0.59067 0.54362 0.19471
3 0.58751 0.81871 0.61937
4 0.58888 0.48978 0.93121
5 0.58830 0.82465 0.25302
6 0.58855 0.47717 0.74656
7 0.58844 0.82328 0.74737
8 0.58849 0.48011 0.74578
9 0.58847 0.82369 0.74887
10 0.58847 0.47948 0.74284
11 0.58847 0.82357 0.75455
12 0.58847 0.47948 0.73155
13 0.58847 0.82361 0.77570
14 0.58847 0.47941 0.68724
15 0.58847 0.82360 0.84900
16 0.58847 0.47942 0.50636
17 0.58847 0.82360 0.98734

Similarly, Table 1 demonstrate the case when
k = 3.30 and shows that persistent oscillation
occurs. Finally, Table 1 demonstrates the case
where k = 3.95 and shows a profile of chaotic
oscillation occurring.

Linear Time Series Statistical Analysis
The adaptive neural network is a dynamical

system, thus a linear statistical time series analysis
can be preformed. Even through this adaptive
neural network in non-linear, a first attempt will be
made to characterize it behavior using linear
statistical time series model [26]. If the
nonlinearities are cooperative enough they may
appear as noise and allow a model to be determined.
If this approach does not produce sufficient result
the knowledge gained will be applicable to the non-
linear statistical dynamic time series analysis.

Statistical Learning and Data Mining
Analysis

Statistical learning and data mining methods
will be employed which have extended statistical
analysis beyond the low-dimensional, independent
data. Recent developments in the science of
complex adaptive systems provide statistics and
machine learning techniques that will allow this
research the possibility to infer a reliable, predictive
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model from data, even when the data from the
weights are strongly dependent variables. Such data
mining can possibility disclose the nature of the
patterns that the values of the weight change show.
The basic idea of data mining is to fit a model with
minimal assumptions about what the correct model
should be, or how the variables in the data are
related. This differs from such classical statistical
questions as testing specific hypotheses about
specific models, such as the presence of interactions
between certain variables. This is facilitated by the
development of an extremely flexible class of
models called nonparametric or mega-parametric.
They are able to approximate any function. This
research will attempt to use these mega-parametric
models to derive a method to characterize the
behavior of an adaptive neural network. Numerous
mega-parametric models and their applications are
described by Hastie, Trbshirani and Friedman [27].

Causal Inference Analysis
Causal inference is currently an active area of

research in the field of complex adaptive systems
science. In a causal model, the goal is to predict
how changes will propagate through the system.
The main difficulty is to determine if the predictive
relationships are confounded by the influence of
other variables and other relationships that are not
recognized in the causal model. Causal inference
attempts to overcome this limitation. This research
will investigate the many recently developed causal
inference models [28] to characterize the behavior
of the sigma-pi adaptive neural network that will
provide an approach to verification.

Non-Linear Dynamic Filter Analysis
Non-linear dynamic filter is a model of a state-

space of a time series. A non-linear dynamic filter
can help characterize dynamical system emergent
behavior. A filter is a function which provides a
future estimate base on the past. Filters are suited to
on-line use, since a complete history of previous
observations is not required. The problem of
optimal linear filters for stationary processes was
solved by the founders of complex systems science,
Kolomogorov and Wiener. In the 1960s, Kalman
and Bucy solved the problem of optimal recursive
filtering, assuming linear dynamics, linear
observation and additive noise. In the resulting
Kalman filter, the new estimate of the state is a
weighted combination of the old state, extrapolated

forward, and the state which would be inferred from
the new observation alone. Non-linear solutions go
back to the late 1 960s. Unlike the Kalman filter,
which gave point estimates, the Stratonovich-
Kushner approach calculates the complete
conditional distribution of the state and point
estimates take the form of the mean or the most
probable state. Current developments of non-linear
filters have made sufficient improvements including
approaches which exploit the geometry of the non-
linear dynamics [29] and approaches that yield
tractable numerical approximations to the optimal
filters [30].

Conclusion
This research will investigate the application

of methods, models, and techniques from the new
science of complex adaptive systems to determine a
new verification methodology for the adaptive
sigma-pi neural network that is used for the IFCS.
Verification is defined as a method that provides
objective evidence that the online, learning sigma-
pi neural network system performs consistently as
specified by its requirements. The hypothesis of this
research is an adaptive neural network is a non-
linear, dynamical system and a complex adaptive
approach should be used to discover a verification
methodology. The logistic equation is an example
of a mathematical characterization of complexity
and can be used to characterize the change of the
sigma-pi neural network weights. The logistic
equation or similar equations can be used to define
the rules in which the weights of the neural network
change and can be use to determine their
convergent or divergent nature. In addition,
adaptive methods and models provided including
linear time series statistical analysis, statistical
learning and data mining analysis, causal inference
analysis and non-linear dynamic filter analysis are
powerful tools to characterize the non-linear
dynamics of an adaptive neural network. This
research will lead to a new verification
methodology for the adaptive, online learning
sigma-pi neural network that is currently being used
for aircraft damage adaptive flight control.
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