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Abstract. In this paper we present the novel SD-Map algorithm for exhaustive
but efficient subgroup discovery. SD-Map guarantees to identify all interesting
subgroup patterns contained in a data set, in contrast to heuristic or sampling-
based methods. The SD-Map algorithm utilizes the well-known FP-growth method
for mining association rules with adaptations for the subgroup discovery task. We
show how SD-Map can handle missing values, and provide an experimental eval-
uation of the performance of the algorithm using synthetic data.

1 Introduction

Subgroup discovery [1–4] is a powerful and broadly applicable method that focuses
on discovering interesting subgroups of individuals. It is usually applied for data ex-
ploration and descriptive induction, in order to identify relations between a dependent
(target) variable and usually many independent variables, e.g., ”the subgroup of 16-25
year old men that own a sports car are more likely to pay high insurance rates than the
people in the general population”, but can also be used for classification (e.g., [5]).

Due to the exponential search space commonly heuristic (e.g., [2, 6]) or sampling
approaches (e.g., [7]) are applied in order to discover the k best subgroups. However,
these do not guarantee the discovery of all the optimal (most interesting) patterns. For
example, if a heuristic method implements a greedy approach or uses certain pruning
heuristics, then whole subspaces of the search space are not considered. Furthermore,
heuristic approaches usually have ”blind spots” that prevent certain patterns from being
discovered: Considering beam search for example, if only a combination of factors is
interesting, where each single factor is not, then the combination might not be identified
[2]. In consequence, often not all interesting patterns can be discovered by the heuris-
tic methods, and only estimates about the best k subgroups are obtained. This can be
a problem especially for explorative and descriptive methods since some of the truly
interesting patterns cannot be identified. In contrast to heuristic methods exhaustive ap-
proaches guarantee to discover the best solutions. However, then the runtime costs of
an exhaustive algorithm usually prohibit its application for larger search spaces.

In this paper we propose the novel SD-Map algorithm for fast and exhaustive sub-
group discovery, based upon the FP-growth algorithm [8] for mining association rules
with adaptations for the subgroup discovery task. We show how SD-Map can efficiently



handle missing values that are common for some domains, and also how the algorithm
can be applied for more complex description languages using internal disjunctions. Ad-
ditionally, we provide an experimental evaluation of the algorithm using synthetic data.

The rest of the paper is organized as follows: We introduce the subgroup discovery
setting in Section 2, and present the SD-Map algorithm in Section 3. After that, an
experimental evaluation of the algorithm using synthetic data is provided in Section 4.
Finally, we conclude the paper with a discussion of the presented work, and we show
promising directions for future work in Section 5.

2 Subgroup Discovery

The main application areas of subgroup discovery are exploration and descriptive in-
duction, to obtain an overview of the relations between a target variable and a set of
explaining variables. Then, not necessarily complete relations but also partial relations,
i.e., (small) subgroups with ”interesting” characteristics can be sufficient.

Before describing the subgroup discovery setting, we first introduce the necessary
notions concerning the used knowledge representation: Let ΩA be the set of all at-
tributes. For each attribute a ∈ ΩA a range dom(a) of values is defined. Furthermore,
we assume VA to be the (universal) set of attribute values of the form (a = v), where
a ∈ ΩA is an attribute and v ∈ dom(a) is an assignable value. We consider nominal
attributes only so that numeric attributes need to be discretized accordingly. Let CB
be the case base (data set) containing all available cases, also often called instances. A
case c ∈ CB is given by the n-tuple c = ((a1 = v1), (a2 = v2), . . . , (an = vn)) of
n = |ΩA| attribute values, where vi ∈ dom(ai) for each ai.

A subgroup discovery setting mainly relies on the following four main properties:
the target variable, the subgroup description language, the quality function, and the
search strategy. In this paper we focus on binary target variables. Similar to the MIDOS
approach [3] we try to identify subgroups that are, e.g., as large as possible, and have
the most unusual (distributional) characteristics with respect to the concept of interest
given by the target variable.

The description language specifies the individuals belonging to the subgroup. In the
case of single-relational propositional languages a subgroup description can be defined
as follows:

Definition 1 (Subgroup Description). A subgroup description sd = {e1, e2, . . . , en}
is defined by the conjunction of a set of selection expressions. These selectors ei =
(ai, Vi) are selections on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai). We define
Ωsd as the set of all possible subgroup descriptions.

A quality function measures the interestingness of the subgroup mainly based on
a statistical evaluation function, e.g., the chi-squared statistical test. It is used by the
search method to rank the discovered subgroups during search. Typical quality criteria
include the difference in the distribution of the target variable concerning the subgroup
and the general population, and the subgroup size. We assume that the user specifies
a minimum support threshold TSupp corresponding to the number of target class cases
contained in the subgroup in order to prune very small and therefore uninteresting sub-
group patterns.



Definition 2 (Quality Function). Given a particular target variable t ∈ VA, a qual-
ity function q : Ωsd × VA → R is used in order to evaluate a subgroup description
sd ∈ Ωsd, and to rank the discovered subgroups during search.

Several quality functions were proposed, e.g., [1, 2, 7]. For binary target variables,
examples for quality functions are given by

qBT =
(p− p0) ·

√
n√

p0 · (1− p0)
·
√

N

N − n
, qRG =

p− p0

p0 · (1− p0)
,

where p is the relative frequency of the target variable in the subgroup, p0 is the relative
frequency of the target variable in the total population, N = |CB | is the size of the total
population, and n denotes the size of the subgroup.

Considering the subgroup search strategy an efficient search is necessary, since the
search space is exponential concerning all the possible selectors of a subgroup descrip-
tion. In the next section, we propose the novel SD-Map algorithm for exhaustive sub-
group discovery based on the FP-growth [8] method.

3 SD-Map

SD-Map is an exhaustive search method, dependent on a minimum support threshold: If
we set the minimum support to zero, then the algorithm performs an exhaustive search
covering the whole unpruned search space. We first introduce the basics of the FP-
growth method, referring to Han et al. [8] for a detailed description. We then discuss
the SD-Map algorithm and describe the extensions and adaptations of the FP-growth
method for the subgroup discovery task. After that, we describe how SD-Map can be
applied efficiently for the special case of (strictly) conjunctive languages using internal
disjunctions, and discuss related work.

3.1 The Basic FP-Growth Algorithm

The FP-growth [8] algorithm is an efficient approach for mining frequent patterns. Sim-
ilar to the Apriori algorithm [9], FP-growth operates on a set of items which are given
by a set of selectors in our context. The main improvement of the FP-growth method
compared to Apriori is the feature of avoiding multiple scans of the database for testing
each frequent pattern. Instead, a recursive divide-and-conquer technique is applied.

As a special data structure, the frequent pattern tree or FP-tree is implemented as an
extended prefix-tree-structure that stores count information about the frequent patterns.
Each node in the tree is a tuple (selector, count, node-link): The count measures the
number of times the respective selector is contained in cases reached by this path, and
the node-link links to the nodes in the FP-tree with the same assigned selector. The
construction of an FP-tree only needs two passes through the set of cases: In the first
pass the case base is scanned collecting the set of frequent selectors L that is sorted
in support descending order. In the second pass, for each case of the case base the
contained frequent selectors are inserted into the tree according to the order of L, such
that the chances of sharing common prefixes (subsets of selectors) are increased. After



construction, the paths of the tree contain the count information of the frequent selectors
(and patterns), usually in a much more compact form than the case base.

For determining the set of frequent patterns, the FP-growth algorithm applies a di-
vide and conquer method, first mining frequent patterns containing one selector and
then recursively mining patterns conditioned on the occurrence of a (prefix) 1-selector.
For the recursive step, a conditional FP-tree is constructed, given the conditional pattern
base of a frequent selector of the FP-Tree and its corresponding nodes in the tree. The
conditional pattern base consists of all the prefix paths of such a node v, i.e., consid-
ering all the paths Pv that node v participates in. Given the conditional pattern base,
a (smaller) FP-tree is generated, the conditional FP-tree of v utilizing the adapted fre-
quency counts of the nodes. If the conditional FP-Tree just consists of one path, then
the frequent patterns can be generated by considering all the combinations of the nodes
contained in the path. Otherwise, the process is performed recursively.

3.2 The SD-Map Algorithm

Compared to association rules that measure the confidence (precision) and the support
of rules [9], subgroup discovery uses a special quality function to measure the inter-
estingness of a subgroup. A naive adaptation of the FP-growth algorithm for subgroup
discovery just uses the FP-growth method to collect the frequent patterns; then we also
need to test the patterns using the quality function.

For the subgroup quality computation mainly four parameters are used: The true
positives tp (cases containing the target variable t in the given subgroup s), the false
positives fp (cases not containing the target t in the subgroup s), and the positives
TP and negatives FP regarding the target variable t in the general population of size
N . Thus, we could just apply the FP-growth method as is, and compute the subgroup
parameters as

– n = count(s),
– tp = support(s) = count(s ∧ t),
– fp = n− tp,
– p = tp/(tp + fp), and
– TP = count(t),
– FP = N − TP ,
– p0 = TP/(TP + FP).

However, one problem encountered in data mining remains: The missing value
problem. If missing values are present in the case base, then not all cases may have
a defined value for each attribute, e.g., if the attribute value has not been recorded. For
association rule mining this usually does not occur, since we only consider items in
a transaction: An item is present or not, and never undefined or missing. In contrast
missing values are a significant problem for subgroup mining in some domains, e.g.,
in the medical domain [4, 10]. If the missing values cannot be eliminated they need
to be considered in the subgroup discovery method when computing the quality of a
subgroup: We basically need to adjust the counts for the population by identifying the
cases where the subgroup variables or the target are not defined, i.e., where these have
missing values.



So, the simple approach described above is redundant and also not sufficient, since
(a) we would get a larger tree if we used a normal node for the target; (b) if there
are missing values, then we need to restrict the parameters TP and FP to the cases
for which all the attributes of the selectors contained in the subgroup description have
defined values; (c) furthermore, if we derived fp = n−tp, then we could not distinguish
the cases where the target is not defined.

In order to improve this situation, and to reduce the size of the constructed FP-tree,
we consider the following important observations:
1. For estimating the subgroup quality we only need to determine the four basic sub-

group parameters tp, fp, TP , and FP with a potential adaptation for missing val-
ues. Then, the other parameters can be derived: n = tp + fp, N = TP + FP .

2. For subgroup discovery, the concept of interest, i.e., the target variable is fixed,
in contrast to the arbitrary ”rule head” of association rules. Thus, the necessary
parameters described above can be directly computed, e.g., considering the true
positives tp, if a case contains the target and a particular selector, then the tp count
of the respective node of the FP-tree is incremented.

If the tp, fp counts are stored in the nodes of the FP-tree, then we can compute the qual-
ity of the subgroups directly while generating the frequent patterns. Furthermore, we
only need to create nodes for the independent variables, not for the dependent (target)
variable. In the SD-Map algorithm, we just count for each node if the target variable oc-
curs (incrementing tp) or not (incrementing fp), restricted to cases for which the target
variable has a defined value. The counts in the general population can then be acquired
as a by-product.

For handling missing values we propose to construct a second FP-tree-structure, the
Missing-FP-tree. The FP-tree for counting the missing values can be restricted to the set
of frequent attributes of the main FP-Tree, since only these can form subgroup descrip-
tions that later need to be checked with respect to missing values. Then, the Missing-
FP-tree needs to be evaluated in a special way to obtain the respective missing counts.
To adjust for missing values we only need to adjust the number of TP , FP correspond-
ing to the population, since the counts for the subgroup FP-tree were obtained for cases
where the target was defined, and the subgroup description only takes cases into account
where the selectors are defined. Using the Missing-FP-tree, we can identify the situa-
tions where any of the attributes contained in the subgroup description is undefined:
For a subgroup description sd = (e1 ∧ e2 ∧ · · · ∧ en), ei = (ai, Vi), Vi ⊆ dom(ai) we
need to compute the missing counts missing(a1∨a2∨· · ·∨an) for the set of attributes
M = {a1, . . . , an}. This can be obtained applying the following transformation:

missing(a1 ∨ · · · ∨ an) =
n∑

i=1

missing(ai)−
∑

m∈2M

missing(m) , (1)

where |m| ≥ 2. Thus, in order to obtain the missing adjustment with respect to the set
M containing the attributes of the subgroup, we need to add the entries of the header
nodes of the Missing-FP-tree corresponding to the individual attributes, and subtract
the entries of every suffix path ending in an element of M that contains at least another
element of M .



Algorithm 1 SD-Map algorithm
Require: target variable t, quality function q, set of selectors E (search space)
1: Scan 1 – Collect the frequent set of selectors, and construct the frequent node list L for the

main FP-tree:
1. For each case for which the target variable has a defined value, count the (tpe, fpe) for

each selector e ∈ E.
2. Prune all selectors which are below a minimum support TSupp , i.e., tp(e) =

frequency(e ∧ t) < TSupp .
3. Using the unpruned selectors e ∈ E, construct and sort the frequent node list L in

support/frequency descending order.
2: Scan 2 – Build the main FP-tree:

For each node contained in the frequent node list, insert the node into the FP-tree (according
to the order of L), if observed in a case, and count the number of (tp, fp) for each node

3: Scan 3 – Build the Missing-FP-tree (This step can also be integrated as a logical step into
scan 2):

1. For all frequent attributes, i.e., the attributes contained in the frequent nodes L of the
FP-tree, generate a node denoting the missing value for this attribute.

2. Then, construct the Missing-FP-tree, counting the (tp, fp) for each (attribute) node.
4: Perform the adapted FP-growth method to generate subgroup patterns:
5: repeat
6: for each subgroup si that denotes a frequent subgroup pattern do
7: Compute the adjusted population counts TP ′,FP ′ as shown in Equation 2
8: Given the parameters tp, fp,TP ′,FP ′ compute the subgroup quality q(si) using a

quality function q
9: until FP-growth is finished

10: Post-process the set of the obtained subgroup patterns, e.g., return the k best subgroups, or
return the subgroup set S = {s | q(s) ≥ qmin}, for a minimal quality threshold qmin ∈ R
(This step can also be integrated as a logical filtering step in the discovery loop (lines 5-9)).

By considering the (tp, fp) counts contained in the Missing-FP-tree we obtain the
number of (TPmissing ,FPmissing) where the cases cannot be evaluated statistically
since any of the subgroup variables are not defined, i.e., at least one attribute contained
in M is missing. To adjust the counts of the population, we compute the correct counts
as follows:

TP ′ = TP − TPmissing ,FP ′ = FP − FPmissing . (2)

Then, we can compute the subgroup quality based on the parameters tp, fp,TP ′,FP ′.
Thus, in contrast to the standard FP-growth method, we do not only compute the fre-
quent patterns in the FP-growth algorithm, but we can also directly compute the quality
of the frequent subgroup patterns, since all the parameters can be obtained in the FP-
growth step. So, we perform an integrated grow-and-test step, accumulating the sub-
groups directly. The SD-Map algorithm is shown in Algorithm 1.

SD-Map includes a post-processing step for the selection and the potential redun-
dancy management of the obtained set of subgroups. Usually, the user is interested only
in the best k subgroups and does not want to inspect all the discovered subgroups. Thus,
we could just select the best k subgroups according to the quality function and return
these. Alternatively, we could also choose all the subgroups above a minimum quality



threshold. Furthermore, in order to reduce overlapping and thus potentially redundant
subgroups, we can apply post-processing, e.g., clustering methods or a weighted cov-
ering approach (e.g., [11]), as in the Apriori-SD [12] algorithm. The post-processing
step could potentially also be integrated into the ”discovery loop” (while applying the
adapted FP-growth method), see Algorithm 1.

A subgroup description as defined in Section 2 can either contain selectors with
internal disjunctions, or not. Using a subgroup description language without internal
disjunctions is often sufficient for many domains, e.g., for the medical domain [4, 10].
In this case the description language matches the setting of the common association rule
mining methods. If internal disjunctions are not required in the subgroup descriptions,
then the SD-Map method can be applied in a straight-forward manner: If we construct
a selector e = (a, {vi}) for each value vi of an attribute a, then the SD-Map method
just derives the desired subgroup descriptions: Since the selectors do not overlap, a
conjunction of selectors for the same attribute results in an empty set of covered cases.
Thus, only conjunctions of selectors will be regarded as interesting if these correspond
to a disjoint set of attributes. Furthermore, each path of a constructed frequent pattern
tree will also only contain a set of selectors belonging to a disjoint set of attributes.

If internal disjunctions are required, then the search space is significantly enlarged
in general, since there are 2m − 1 (non-empty) value combinations for an attribute with
m values. However, the algorithm can also be applied efficiently for the special case
of a description language using selectors with internal disjunctions. In the following
section we describe two approaches for handling that situation.

3.3 Applying SD-Map for Subgroup Descriptions with Internal Disjunctions
Efficiently

Naive Approach First, we can just consider all possible selectors with internal dis-
junctions for a particular attribute. This technique can also be applied if not all internal
disjunctions are required, and if only a selection of aggregated values should be used.
For example, a subset of the value combinations can be defined by a taxonomy, by the
ordinality of an attribute, or by background knowledge, e.g., [4].

If all possible disjunctions need to be considered, then it is easy to see that adding
the selectors corresponding to all internal disjunctions significantly extends the set of
selectors that are represented in the paths of the tree compared to a subgroup description
language without internal disjunctions. Additionally, the selectors overlap: Then, the
sizes of many conditional trees being constructed during the mining phase is increased.
However, in order to improve the efficiency of this approach we can apply the following
pruning techniques:
1. During construction of a conditional tree, we can prune all parent nodes that con-

tain the same attribute as the conditioning node, since these are subsumed by the
conditioning selector.

2. When constructing the combinations of the selectors on a single path of the FP-tree
we only need to consider the combinations for disjoint sets of the corresponding
attributes.



Using Negated Selectors An alternative approach is especially suitable if all internal
disjunctions of an attribute are required. The key idea is to express an internal disjunc-
tion by a conjunction of negated selectors: For example, consider the attribute a with
the values v1, v2, v3, v4; instead of the disjunctive selector (a, {v1, v2}) corresponding
to the value v1 ∨ v2 we can utilize the conjunctive expression ¬(a, {v3}) ∧ ¬(a, {v4})
corresponding to ¬v3 ∧ ¬v4.

This works for data sets that do not contain missing values. If missing values are
present, then we just need to exclude the missing values for such a negated selec-
tor: For the negated selectors of the example above, we create ¬(a, {v3, vmissing}) ∧
¬(a, {v4, vmissing}). Then, the missing values are not counted for the negated selectors.
If we need to consider the disjunction of the all attribute values, then we add a selector
¬(a, {vmissing}) for each attribute a. Applying this approach, we only need to create
negated selectors for each attribute value of an attribute, instead of adding all internal
disjunctions: The set of selectors that are contained in the frequent pattern tree is then
significantly reduced compared to the naive approach described above. The evaluation
of the negated selectors can be performed without any modifications of the algorithm.
Before the subgroup patterns are returned, they are transformed to subgroup descrip-
tions without negation by merging and replacing the negated selectors by semantically
equivalent selectors containing internal disjunctions.

3.4 Discussion

Using association rules for classification has already been proposed, e.g., in the CBA [13],
the CorClass [14], and the Apriori-C [15] algorithms. Based upon the latter, the Apriori-
SD [12] algorithm is an adaptation for the subgroup discovery task. Applying the notion
of class association rules, all of the mentioned algorithms focus on association rules
containing exactly one selector in the rule head.

Compared to the existing approaches, we use the exhaustive FP-growth method that
is usually faster than the Apriori approach. To the best of the authors’ knowledge, it is
the first time that an (adapted) FP-growth method has been applied for subgroup dis-
covery. The adaptations of the Apriori-style methods are also valid for the FP-growth
method. Then, due the subgroup discovery setting the memory and runtime complexity
of FP-growth can usually be reduced (c.f., [15, 12]). In comparison to the Apriori-based
methods and a naive application of the FP-growth algorithm, the SD-Map method uti-
lizes a modified FP-growth step that can compute the subgroup quality directly without
referring to other intermediate results. If the subgroup selection step is included as a
logical filtering step, then the memory complexity can also be decreased even further.

Moreover, none of the existing algorithms tackles the problem of missing values
explicitly. Therefore, we propose an efficient integrated method for handling missing
values. Such an approach is essential for data sets containing very many missing values.
Without applying such a technique, an efficient evaluation of the quality of a subgroup
is not possible, since either too many subgroups would need to be considered in a post-
processing step, or subgroups with a high quality might be erroneously excluded.

Furthermore, in contrast to algorithms that apply branch-and-bound techniques re-
quiring special (convex) quality functions, e.g., the Cluster-Grouping [16] and the Cor-
Class [14] algorithms, SD-Map can utilize arbitrary quality functions.



4 Evaluation

In our evaluation we apply a data generator for synthetic data that uses a Bayesian
network as its knowledge representation. The prior-sample algorithm is then applied
in order to generate data sets with the same characteristics, but different sizes. The
Bayesian network used for data generation is shown in Figure 1. It models an artificial
vehicle insurance domain containing 15 attributes with a mean of 3 attribute values.

Fig. 1. Artificial vehicle insurance domain: Basic Bayesian network used for generating the syn-
thetic evaluation data.

The conditional probability tables of the network were initialized with uniform
value distributions, i.e., each value in the table of an unconditioned node is equiprob-
able, and the conditional entries of a conditioned node are also defined by a uniform
distribution.

In the experiments described below we compare three subgroup discovery algo-
rithms: a standard beam search algorithm [2], the Apriori-SD method [12] and the pro-
posed novel SD-Map algorithm. The beam search method and the Apriori-SD approach
were implemented to the best of our knowledge based on the descriptions in the litera-
ture. All the experiments are performed on a 3.0 GHZ Pentium 4 PC machine running
Windows XP, providing a maximum of 1GB main memory for each experiment (the
size of the main memory was never a limiting factor in the experiments).



4.1 Results

We generated data sets containing 1000, 10000 and 100000 instances. In each of these,
there are exponentially numerous frequent attribute value combinations as the support
threshold is reduced, considering the total search space of about 1010 patterns with
respect to all combinations of the attribute values without internal disjunctions.

We measured the run-times of the algorithms by averaging five runs for each al-
gorithm for each of the test data sets. For the beam search method we applied a quite
low beam width (w = 10) in order to compare a fast beam search approach to the
other methods. However, since beam search is a heuristic discovery method it could
never discover all of the interesting subgroups compared to the exhaustive SD-Map and
Apriori-SD algorithms in our experiments.

Since the minimal support threshold is the parameter that is common to all search
methods we can utilize it in order to compare their scalability: In the experiments, we
used two different low support thresholds, 0.01 and 0.05, to estimate the effect of in-
creasing the pruning threshold, and to test the performance of the algorithms concerning
quite small subgroups that are nevertheless considered as interesting in some domains,
e.g., in the medical domain. We furthermore vary the number of instances, and the num-
ber of attributes provided to the subgroup discovery method in order to study the effect
of a restricted search space compared to a larger one. Thus, by initially utilizing 5, then
10 and finally 15 attributes, an exponential increase in the search space for a fixed data
set could be simulated. We thus performed 18 experiments for each algorithm in total,
for each description language variant. The results are shown in the tables in Figure 2.
Due to the limited space we only include the results for the 0.05 minimum support level
with respect to the description language using selectors with internal disjunctions.

4.2 Discussion

The results of the experiments show that the SD-Map algorithm clearly outperforms
the other methods. All methods perform linearly when the number of cases/instances is
increased. However, the SD-Map method is at least faster by one magnitude compared
to beam search, and about two magnitudes faster than Apriori-SD.

When the search space is increased exponentially all search method scale propor-
tionally. In this case, the SD-Map method is still significantly faster than the beam
search method, even if SD-Map needs to handle an exponential increase in the size of
the search space. The SD-Map method also shows significantly better scalability than
the Apriori-SD method for which the runtime grows exponentially for an exponential
increase in the search space (number of attributes). In contrast, the run time of the
SD-Map method grows in a much more conservative way. This is due to the fact that
Apriori-SD applies the candidate-generation and test strategy depending on multiple
scans of the data set and thus on the size of the data set. SD-Map benefits from its
divide-and-conquer approach adapted from the FP-growth method by avoiding a large
number of generate-and-test steps.

As shown in the tables in Figure 2 minimal support pruning has a significant effect
on the exhaustive search methods. The run-time for SD-Map is reduced by more than
half for larger search spaces, and for Apriori-SD the decrease is even more significant.



MinSupport=0.01
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map 0.06 0.19 1.0 0.2 0.6 4.4 2.0 3.9 24.2
Beam search (w=10) 0.7 2.2 4.8 6.8 26.4 45.8 63.0 275.4 421.3
Apriori-SD 1.3 39.2 360.1 11.7 366.0 2336.1 108.7 3762.1 22128.5

MinSupport=0.05
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map 0.02 0.05 0.14 0.2 0.4 1.1 2.0 3.7 9.2
Beam search (w=10) 0.5 1.8 3.1 4.6 12.2 25.7 49.4 173.0 295.8
Apriori-SD 0.3 2.3 6.0 2.4 23.2 63.7 23.7 229.5 632.6

MinSupport=0.05
#Attributes 5 10 15 5 10 15 5 10 15
SD-Map (Negated S.) 0.05 0.4 8.5 0.3 1.4 38.7 2.8 6.1 144.5
SD-Map (Naive) 0.09 0.8 13.9 0.6 3.5 91.0 5.5 12.9 425.6
Beam search (w=10) 3.6 6.9 15.9 34.1 63.7 142.9 450.2 473.5 1093.6
Apriori-SD 6.9 124.3 7307.4 59.7 1000.2 23846.3 609.3 10148.3 208849

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)
1000 instances 10000 instances 100000 instances

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)
1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

Fig. 2. Efficiency: Runtime of the algorithms for a conjunctive description language either using
internal disjunctions or not.

The results for the description language using internal disjunctions (shown in the
third table of Figure 2) are similar to these for the non-disjunctive case. The SD-Map
approach for handling internal disjunctions using negated selectors is shown in the first
row, while the naive approach is shown in the second row of the table: It is easy to see
that the first scales usually better than the latter. Furthermore, both outperform the beam
search and Apriori-SD methods clearly.

5 Summary And Future Work

In this paper we have presented the novel SD-Map algorithm for fast but exhaustive
subgroup discovery. SD-Map is based on the efficient FP-growth algorithm for mining
association rules, adapted to the subgroup discovery setting. We described, how SD-
Map can handle missing values, and how internal disjunctions in the subgroup descrip-
tion can be implemented efficiently. An experimental evaluation showed, that SD-Map
provides huge performance gains compared to the Apriori-SD algorithm and even to
the heuristic beam search approach.



In the future, we are planning to combine the SD-Map algorithm with sampling ap-
proaches and pruning techniques. Furthermore, integrated clustering methods for sub-
group set selection are an interesting issue to consider for future work.
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