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Abstract

Subgroup discovery can be applied for explo-
ration or descriptive induction in order to dis-
cover ”interesting” subgroups of the general pop-
ulation, given a certain property of interest. In
domains with available background knowledge,
the user usually wants to utilize this to improve
the quality of the subgroup discovery results.
We describe a knowledge-intensive approach for
subgroup discovery utilizing several types of
background knowledge, which can be applied in-
crementally. Our application area is the medical
domain of sonography. The context of our work
is to identify interesting diagnostic patterns using
subgroup discovery techniques, to supplement a
medical documentation and consultation system.
We present an experimental evaluation of our ap-
proach using a case base from a real world appli-
cation.

1 Introduction
Knowledge discovery in databases (KDD)[Fayyadet al.,
1996] is concerned with the computer-aided extraction of
novel, potentially useful, and interesting knowledge from
(large) databases.Subgroup discovery[Wrobel, 1997;
Kl ösgen, 2002] is a subclass of knowledge discovery tasks
to discover ”interesting” subgroups of individuals. These
”interesting” subgroup individuals can be defined as a sub-
set of the target population with a distributional unusual-
ness concerning a certain property we are interested in.
Subgroup discovery methods take relations between in-
dependent (explaining) variables and a dependent (target)
variable into account. These relations are rated by a certain
user-defined ”interestingness” measure.

The main application areas of subgroup discovery are ex-
ploration and descriptive induction, when the user wants
to obtain an overview of the dependencies between a spe-
cific target variable and usually many explaining variables.
Therefore, the subgroup discovery approach does not nec-
essarily focus on finding complete relations between the
target and the explaining variables; partial relations, i.e.,
subgroups with ”interesting” characteristics, e.g., with a
significant deviation from the total population, are suffi-
cient. Due to this criterion the discovered patterns do not
necessarily fulfill high support criteria, which are necessary
for other prominent data mining approaches, e.g., methods
for association rule discovery[Agrawal and Srikant, 1994].

Our application area for subgroup discovery is the med-
ical domain of sonography. In general, in the medical

domain often the relations with high support are already
known. However, the manual discovery of significant cor-
relations in a restricted population subset is quite difficult.
In such a scenario, (automatic) subgroup discovery meth-
ods can be applied for descriptive and exploratory data min-
ing, to acquire novel, potentially useful, and interesting
knowledge in medical case bases.

Background knowledge can help to improve subgroup
discovery in several ways. For example, it can focus the
mining algorithm on the relevant patterns according to spe-
cific criteria, thus reducing uninteresting patterns and re-
stricting the search space. This helps to improve the quality
of the discovered set of subgroups, and also increases the
efficiency of the search method. In the medical domain, for
example, often a lot of background knowledge is available.
This can be utilized by formalizing it and supplying it to
the data mining method in a semi-automatic approach.

Besides constraints the applicable background knowl-
edge for the knowledge-intensive process consists of two
categories: a task-specific subset of derived attributes used
for analysis and general ontological background knowl-
edge. In the knowledge-intensive process for subgroup
discovery we basically want to use as much background
knowledge as possible. In addition, subgroup discovery re-
sults can be formalized as background knowledge incre-
mentally and can be provided to the search-method for fur-
ther analysis. We will introduce this approach in this paper.

Our implementation and evaluation is based on the
knowledge-based documentation and consultation system
for sonography SONOCONSULT [Huettiget al., 2004] de-
veloped with the diagnostic shell kit D3[Puppe, 1998].
SONOCONSULT is in routine use in the DRK-hospital in
Berlin/Köpenick. The system documents an average of
300 cases per month. In addition to a documentation sys-
tem, SONOCONSULT also infers diagnoses with heuristic
expert knowledge. The cases are detailed descriptions of
findings of the examination(s), together with the inferred
diagnoses (concepts). The inferred diagnoses can be cor-
rected manually, but are usually correct due to first evalua-
tions of SONOCONSULT. This setting yields a high quality
of the case base with detailed and usually correct case de-
scriptions.

The rest of the paper is organized as follows: In Section 2
we describe the knowledge-intensive process for subgroup
discovery. We introduce the necessary background knowl-
edge and present the application of background knowledge
for subgroup discovery. An experimental evaluation of the
knowledge-intensive subgroup discovery method is given
in Section 3. We conclude the paper in Section 4 with a
discussion of the presented work and we show promising
directions for future work.



2 Knowledge-Intensive Subgroup Discovery
In this section, we first give an overview of the proposed
knowledge-intensive subgroup discovery process. Then,
we describe the basic components of the process in detail.
We define the subgroup discovery task and the necessary
basic concepts of our knowledge representation schema.
After that, we introduce the background knowledge which
is necessary for the knowledge-intensive subgroup discov-
ery task. Then, we present the subgroup discovery process
utilizing the described background knowledge in a semi-
automatic manner.

2.1 The Knowledge-Intensive Process for
Subgroup Discovery

Subgroup discovery[Wrobel, 1997; Kl̈osgen, 2002] is a
method to identify ”interesting” subgroups of individuals.
These are defined as a subset of the target population with a
distributional unusualness concerning a certain target prop-
erty. Subgroup discovery takes relations between indepen-
dent (explaining) variables and a dependent (target) vari-
able into account. These relations are rated by a certain
”interestingness” measure. For example, subgroups can be
considered, where the distribution of the target variable dif-
fers significantly from the general population, and where
the subgroups should be as large as possible.

To guide the subgroup discovery process we propose to
apply as much background knowledge as possible to sup-
port the discovery method. In knowledge-rich domains,
e.g., in the medical domain, often a lot of knowledge is
available beforehand. Providing this background knowl-
edge to the discovery method can improve the results sig-
nificantly concerning the interests of the user. Since of-
ten the main aim of the mining process is to find novel
knowledge, the number of uninteresting results should be
reduced. Also, the search space can be constrained signifi-
cantly. Therefore we favor a knowledge-intensive approach
in which background knowledge can be applied initially at
the start of the process, but also incrementally during the
discovery process.

Types of Background Knowledge There are different
classes of background knowledge which are used in the
knowledge-intensive process for subgroup discovery. In
the following we summarize the main ideas and describe
the relation to the knowledge-intensive process.

Constraints are a form of background knowledge, which
are simple to apply in the subgroup discovery process:
• Constraints for value-sets of attributes: the attribute

values can be restricted to the relevant values, i.e. val-
ues can be excluded. Additionally specific attribute
groups defining an abstracted value can be specified,
e.g., intervals for numerical values. Attribute groups
are not restricted to intervals, but can cover any com-
binations of values of an attribute value range.

• Constraints for attributes: attributes can be excluded
from the search space. Furthermore, inclusion and/or
exclusion conditions for combinations of attributes
can be defined.

• General constraints customizing the search process:
constraints restricting the syntactical form of the dis-
covered subgroups, or quality constraints for the dis-
covered subgroups can be applied.

Using such constraints we can both restrict the search space
and focus the search process.

Besides constraints there are other types of background
knowledge which can be included in the knowledge-
intensive process for subgroup discovery:

• Pattern knowledge, which defines already known sub-
groups, for example. These subgroups can then be
directly applied in the discovery process, e.g., for sub-
group refinement.

• Ontological knowledge which is typically available in
knowledge systems, e.g., attribute weights, similari-
ties between attribute values, and abnormality knowl-
edge about attribute values.

• Abstraction knowledge: this type of background
knowledge specifies special ontological knowledge
which is constructed according to user requirements
and analysis goals.

Using these types of background knowledge, additional
constraints can be defined as well. We will discuss the
background knowledge in Section 2.3 in more detail.

Process for Knowledge-Intensive Subgroup Discovery
The proposed knowledge-intensive process for subgroup
discovery is depicted in Figure 1. We start with a defined
population given as a case baseCB and optionally with
existing background knowledge. For the analysis task de-
fined by asubgroup discovery problemthe subgroup dis-
covery method generates a set of subgroups. If these sub-
groups are interesting according to the user’s goals the re-
sults are presented, and the process is finished. Otherwise,
the subgroups are analyzed either automatically or semi-
automatically guided by user interaction. As a result of
this analysis background knowledge and additional con-
straints for the subgroup discovery problem are provided
to the search method. Additionally, selected subgroups can
be provided to the subgroup discovery method for refine-
ment. Then the process continues with a new iteration.

Figure 1: Knowledge-Intensive Process for Subgroup Dis-
covery

2.2 Subgroup Discovery
The main application areas of subgroup discovery are ex-
ploration and descriptive induction, when the user wants
to get an overview of the dependencies between a certain
target variable and usually many explaining variables. The
deviations of a subgroup from the performance of the gen-
eral population are usually not simply due to statistical fluc-
tuations, but are caused by local factors. Identifying these
factors helps to understand the data in general and has a
huge impact, e.g., on diagnostic, preventive or therapeutic
issues concerning medical questions. Thus, subgroup dis-
covery has become more important in the medical domain
[Gambergeret al., 2003], lately.



The subgroup discovery task relies on the following four
main properties:

• The type of the target variable, i.e., the target analysis
object. A target variable may be binary, nominal or
numeric. Depending on the type of the target variable
different analytic questions are possible. For example,
for a numeric target variable we can search for signif-
icant deviations of the mean of the target variable.

• The description language specifying the individuals
from the reference population belonging to the sub-
group. Mainly conjunctive languages are used. The
subgroup description consists of a set of selection ex-
pressions (selectors). In the simplest case, a selection
expression is one-valued, however negation or internal
disjunctions are possible, too.

• The quality function measuring the interestingness of
the subgroup. A variety of quality functions were pro-
posed (e.g.,[Kl ösgen, 1996; 2002; Gambergeret al.,
2003]). The applicable set of quality functions is de-
termined by the type of the target variable and the an-
alytic problem.

• Finally, the search strategy is very important, since the
search space is exponential concerning all the possi-
ble selectors of a subgroup description. Commonly,
a beam search strategy is used due to its efficiency
[Kl ösgen, 2002].

Before introducing the subgroup discovery task method-
ology, we first define the necessary notions concerning our
knowledge representation schema.

Basic Definitions Let ΩD be the set of all diagnoses and
ΩA the set of all attributes. For each attributea ∈ ΩA a
rangedom(a) of values is defined. Furthermore, we as-
sumeΩF to be the (universal) set of findings of the form
(a = v), wherea ∈ ΩA is an attribute andv ∈ dom(a)
is an assignable value. For each diagnosisd ∈ ΩD

we define a rangedom(d): ∀d ∈ ΩD : dom(d) =
{established ,not established} , i.e., the diagnosis denotes
a boolean variable.

Let CB be the case base containing all available cases.
A casec ∈ CB is defined as a tuplec = (Fc,Dc), where
Fc ⊆ ΩF is the set of findings observed in the casec. The
setDc ⊆ ΩD is the set of diagnoses describing thesolution
for this case. The occurrence of a diagnosisd in a casec,
i.e.,d ∈ Fc, d ∈ ΩD, c ∈ CB indicates the ’finding’(d =
established). The valuenot established does not occur
in our case base. Thus, the unionΩF ∪ ΩD denotes the
(universal) set of all possible generalized findings which
can occur in the case baseCB .

We define the subgroup description language and the
specification of the target property as follows. For the
subgroup descriptions, selection expressions (selectors) are
used to characterize the subgroup instances.

Definition 1 (Subgroup Description) As a description of
the subgroup instances, a subgroup descriptionsd = {ei}
consists of a set of selection expressionsei ∈ ΩE which
are selections on domains of attributes, i.e.,ei = (ai, Vi),
whereai ∈ ΩA, Vi ⊆ dom(ai). ΩE is defined as the set of
all possible selection expressions. A subgroup description
is defined as the conjunction of its contained selection ex-
pressions. We defineΩsd as the set of all possible subgroup
descriptions.

A subgroup discovery problem encapsulates the target
property (target variable) for the subgroup discovery task,
the search space of independent variables, the general pop-
ulation, and additional constraints.

Definition 2 (Subgroup Discovery Problem) A subgroup
discovery problemSP is defined as the tuple

SP = (T,A, C,CB) ,

whereT ∈ ΩA ∪ ΩF ∪ ΩD is a target variable.
A ⊆ ΩA ∪ ΩD is the set of attributes to be included in the
subgroup discovery process.CB is the case base repre-
senting the general population used for subgroup discov-
ery. C specifies (optional) constraints for the discovery
method. For example,C can contain constraints concern-
ing the construction of selection expressions, i.e., restric-
tions to sub-domains of attributes contained inA. Fur-
thermore,C can contain additional constraints for the sub-
group discovery task, for example range restrictions for the
number of variables to include in the subgroup description.
We defineΩSP as the set of all possible subgroup discovery
problems.

The definition above allows arbitrary target variables.
However, for our analytic questions we will focus on sub-
group discovery problems with binary target variables, i.e.,
T ∈ ΩF ∪ ΩD.

Given a subgroup discovery problemSP ∈ ΩSP , the
subgroup search method is guided by a quality function for
identifying interesting subgroups.

Definition 3 (Quality Function) A subgroup quality func-
tion

q : Ωsd × ΩSP → R

evaluates a subgroup descriptionsd ∈ Ωsd concerning a
specific subgroup discovery problemSP ∈ ΩSP . It is used
by the search method to rank the discovered subgroups
when processing the defined search space.

The applicable quality functions are dependent on the
type of the target variable. Since we restrict our analytic
questions to binary target variables, e.g., a patient has a
certain disease or not, we present two exemplary quality
functions for this kind of questions.

A classic quality function described by[Kl ösgen, 1996]
is the binomial test.

qBT =
p− p0√

p0 · (1− p0)

√
n

√
N

N − n
, (1)

wherep is the relative frequency of the target variable in the
subgroup,p0 is the relative frequency of the target variable
in the total population,N = |CB | is the size of the total
population, andn denotes the size of the subgroup. This
test takes both the deviation of the subgroup from the total
population and the size of the subgroup into account.

Another quality function which is especially useful in the
medical context is described by[Gambergeret al., 2003].

qTP =
tp

fp + g
, (2)

where tp denotes the number oftrue positives, i.e., the
number of objects belonging to the subgroup that also con-
tain the target variable.fp denotes the remaining elements
of the subgroup, i.e. thefalse positives. g is a generaliza-
tion parameter. Ifg is set to low values, then fewer false
positives are tolerated. Otherwise more general subgroups
are allowed.



In contrast to the functionqBT , the quality functionqTP

does not measure the deviation from a reference popula-
tion, but assigns the highest rank to subgroups with a max-
imum number of true positives and a minimum number of
false positives.

For our search strategy, we use a modified beam search
strategy, where an initial subgroup description can be se-
lected as the initial value for the beam. Beam search starts
with a subgroup discovery problemSP ∈ ΩSP and a given
initial subgroup descriptionsd ∈ Ωsd. If no initial sub-
group description is provided, thensd does not contain any
selectors. In each iteration a selection expression is added
to the subgroup description. Then, the quality of the new
subgroup description is evaluated by a quality functionq
using the subgroup discovery problemSP . For each beam
search iteration thek best subgroup descriptions are used
in the next iteration until the quality of thek best subgroup
descriptions is not improved any further.

For characterization of the discovered subgroups we
have two alternatives: Besides the principal factors con-
tained in the subgroup description there are also supporting
factors. These are generalized findingssupp ⊆ ΩF ∪ ΩD

contained in the subgroup, which are characteristic for the
subgroup, i.e., the value distributions of their correspond-
ing attributes differ significantly comparing two popula-
tions: the true positive cases contained in the subgroup and
non-target class cases contained in the total population. In
addition to the principal factors, the supporting factors can
also be used to statistically characterize a discovered sub-
group, as described in[Gamberger and Lavrac, 2002], for
example.

2.3 Integrating Background Knowledge Into the
Subgroup Discovery Process

For the knowledge-intensive process for subgroup discov-
ery, different types of background knowledge can be ap-
plied. Constraints can be used to define the search space,
i.e., the space of attributes and attribute values used in
the search process can be restricted. Furthermore rela-
tions between attributes and attribute values which should
be enforced during the search process can be specified.
Additionally, constraints can specify characteristics of the
search process, i.e., restricting the pattern language to en-
force simplicity constraints, for example.

Besides the conceptually simple class of constraints
we propose general ontological knowledge and abstrac-
tion knowledge as suitable background knowledge for the
knowledge-intensive process. Based upon these types of
background knowledge, we can additionally form new con-
straint knowledge as described below.

Ontological Background Knowledge
For the first class of background knowledge we can utilize
general forms of ontological knowledge which are com-
monly known in the development of knowledge systems,
e.g., in CBR systems. The following elements can initially
be defined by an expert, or can be automatically learned
(e.g.[Baumeisteret al., 2002]).

• weights of attributes, which denote the importance of
attributes,

• similarity information about the relative similarity be-
tween attribute values,

• abnormality information about attribute values

Weights of attributes provide an easily applicable form
of feature subset selection. Attributes can be included

into the subgroup discovery process depending on their
weights, which denote their relative importance. Thus, by
applying knowledge about weights of attributes the large
search space can be reduced.

Likewise, abnormality information about attribute val-
ues can be used to constrain the value range of an at-
tribute used in the subgroup discovery method. Ifab-
normality information about attribute values is available,
then each valuev ∈ dom(a) of an attributea is at-
tached with a label that explains, ifv is describing a nor-
mal or an abnormal state of the attribute. For example,
consider the attribute temperature with the value range
dom(temperature) = {normal, marginal, high, very high}.
The valuesnormal andmarginal denote normal states of
the attribute, while the valueshigh andvery highdescribe
abnormal states. Several categories can be defined accord-
ing to the degree of abnormality. Up to now, we use five
degrees of abnormality, i.e. given by the symbolic val-
ues{A1, A2, A3, A4, A5}. CategoryA1 denotes a normal
value. The remaining categories{A2, A3, A4, A5} denote
abnormal values in ascending order.

Furthermore, abnormality information and similarity in-
formation concerning attribute values can be used to de-
fine additionalabstractedattribute values, i.e., constraints
on special attribute values: if the similarity between two
attribute values is very high, then they can potentially be
analyzed as one value, thus forming a disjunctive selection
expression on the value range of an attribute. Likewise,
abnormality groups can be defined using the abnormality
categories. The user can define groups of abnormality de-
grees which specify, which values should be included into
a disjunctive selection expression. This is especially rele-
vant in medical domains where attributes can have values
such asprobable, possible, andunverifiable. In diagnos-
tics the valueprobablecontributes more evidence to the
concept represented by the attribute than the valuepossi-
ble. Therefore essentially onlyprobableshould be ana-
lyzed. However, often the valuesprobableand possible
can be analyzed together to enable greater support for hy-
pothesis testing.

Depending on the specific analytic question, values can
be excluded from the range of an attribute used in the sub-
group discovery method, by an exclusion constraint. The
criterion for exclusion is given by the abnormality of a
value. For example, eithernormal(non-interesting) values
and/or selected abnormal values can be excluded. Thus, ab-
normality information is used for constraining the range of
values of an attribute in the subgroup search method. This
restricts the set of possible selection expressions which can
be constructed for the attribute.

Applying the class of ontological background knowl-
edge we can add a set of constraints to the constraintsC of
the subgroup discovery problemSP ∈ ΩSP . The set of rel-
evant attributes can be constrained using attribute weights.
Using similarity and abnormality information of attribute
values we can both model and restrict the value ranges of
attributes, as described above.

Abstraction Knowledge
The second type of background knowledge is given by de-
rived attributes, which are constructed especially for sub-
group discovery purposes. These attributes are inferred
from basic attributes or other derived attributes. The de-
rived attributes can be constructed by the expert before per-
forming subgroup discovery, and often correspond to cer-
tain known dependencies between attributes. For exam-



ple, in the medical domain derived attributes can denote
common intermediate concepts, that are not stored in the
case base. Then, a derived attribute concept can be con-
structed quite easily. For example, if we consider the de-
rived attributespleura-effusion - left, andpleura-effusion -
right, then we can infer the general derived attributepleura-
effusion - sonographic, from both.

Additionally, if there are a lot of basic attributes in the
case base, then the huge number of analysis objects may
cause unstructured subgroup discovery results because of
possible multi-correlations between basic attributes. In this
case, data abstraction can be very important. It can increase
the interpretability of the knowledge discovery results sig-
nificantly, because simple concepts can be aggregated to
intermediate concepts to form more potentially meaning-
ful, interesting, and significant selectors.

A nominal derived attributea ∈ ΩA is defined using
abstraction rules, which are utilized to derive the findings
fia

∈ ΩF concerning attributea. A rule of the form

rfa
= cond(rfa

) → fa ,

is used for a findingfa of attributea, where the rule con-
dition cond(rfa

) contains conjunctions and/or disjunctions
of (negated) generalized findingsfi ∈ ΩF ∪ ΩD . Further-
more, derived attributes with a numerical value range can
be defined by algebraic formula expressions.

Improving the Handling of Missing Values
Considering the quality functions abstraction knowledge
contributes to one major point – handling missing val-
ues. Missing values in cases are a significant problem for
knowledge discovery in medical case bases. For a specific
patient only a subset of the possible examinations is usually
performed, which results in many missing attribute values.
The documentation and consultation system SONOCON-
SULT is a knowledge system guiding the data acquisition
process by rules. Only the relevant questions for the diag-
nostic tasks are presented to the user. This results in re-
duced effort for the examiner, however then a specific in-
stance of the data set concerning the basic attributes may
be quite sparse.

There exist several strategies for dealing with missing
values: the standard strategy[Tsumoto, 2002] removes ob-
jects (cases) with missing values from the set of analysed
objects. Other strategies try to fill in the missing values ac-
cording to statistical evaluations, or try to model the distri-
bution [Ragel and Cŕewmilleux, 1999]. The quality func-
tions basically perform a form of statistical hypothesis test-
ing given a subgroup description, the target variable and
the general population. For such a test only the cases of the
population can be considered in which all variables have
defined values. The power of the test is decreased signifi-
cantly if a lot of analysis objects are removed due to miss-
ing values.

In the medical domain we cannot simply apply the
”closed-world assumption”, i.e., that missing values of a
concept indicate the non-existence or negation of the con-
cept. For example, a diagnosis may be missing, because
either all its relevant observations are missing or they are
known but denote the normal, i.e., then non-pathological
state. In effect the diagnosis is not inferred. If we con-
struct a derived attribute to indicate the cases when the rel-
evant observations are missing, then we can use this de-
rived ”helper” attribute as a filter: we remove the cases in
which the relevant observations are missing, and apply the
closed-world assumption for the remaining cases.

Additionally, derived attributes besides the described
”helper” attributes can also be constructed accordingly to
minimize missing values themselves, such that a certain de-
fault value is provided which denotes the normal category.
So, the derived attributes serve three purposes:

• they focus the subgroup discovery method on the rel-
evant analysis objects,

• they decrease multi-correlations between attributes
that are not interesting,

• derived attributes can minimize missing values for a
given concept, since they can be constructed such that
a defined value is more often computed if the respec-
tive concept would have a missing value otherwise.

The derived attributes can either be constructed based on
expert knowledge, or on subgroup discovery results, i.e.,
(sets of) subgroups. Subgroup discovery results in a set
of selectors for a specific target concept that are highly
correlated with the concept. If the selectors can be ab-
stracted into a derived attribute, then this attribute can be
used as potential background knowledge as well. Further-
more, derived attributes can be refined according to the sub-
group discovery results. The attributes can be specialized
by including more selection expressions into their deriva-
tion process. In contrast, they can also be generalized by
removing redundant or irrelevant attributes without a sig-
nificant correlation, which were included erroneously.

2.4 Related Work
There exist several approaches for subgroup discovery. In
general, these can be divided into purely automatic meth-
ods, and methods which integrate user constraints. The
EXPLORAsystem[Kl ösgen, 1996] offers various search-
strategies for general automatic subgroup discovery tasks.
The system is also able to integrate simple constraints, i.e.,
taxonomies of attribute values, which are similar to value
groups.

A special adaptation of how to use a standard rule-
learning algorithm for subgroup discovery is described in
[Lavracet al., 2004]. This approach is also a purely auto-
matic approach without user-interaction.

[Wrobel, 1997] proposes a method for multi-relational
subgroup discovery implemented in theMIDOSalgorithm.
Another system which uses a multi-relational hypothesis
space is theSubgroupMinersystem[Kl ösgen and May,
2002] for spatial subgroup mining. In addition, Subgroup-
Miner also supports causal analysis on the discovered set
of subgroups.

The application of subgroup discovery especially for the
medical domain using the expert’s guidance is described
in [Gamberger and Lavrac, 2002; Gambergeret al., 2003].
This approach stresses the interaction between the expert
and the system to identify interesting subgroups. Also, the
analysis task differs slightly from the approaches described
above, since a new quality function is introduced which is
especially well suited for medical subgroup analysis. How-
ever, in the semi-automatic process only the parameters of
the search process can be adapted.

For our approach multi-relational subgroup discovery is
not necessary, since the case base is given in one relation.
Likewise, causal analysis is not a major priority so far, be-
cause the analysis objects, i.e., the derived attributes are
specifically constructed to the question at hand. In the
construction process multi-correlations between attributes
should be taken into account, as far as possible.



Using background knowledge to constrain the search
space and pruning hypotheses during the search process has
been proposed in ILP approaches.[Weber, 2000] proposes
require-andexclude-constraints for groups of literals, i.e.,
attribute – value pairs, in order to prune the search space.
[Zeleznyet al., 2003] integrate constraints into an ILP ap-
proach as well; the used constraints are mainly concerned
with syntactical restrictions and constraints relating to the
quality of the discovered subgroups.

The main difference between our approach and the exist-
ing approaches is the fact, that we are able to integrate sev-
eral new types of additional background knowledge. This
additional background knowledge can be refined incremen-
tally according to the requirements of the discovery task,
and can additionally be used quite easily to infer new back-
ground knowledge on the fly, e.g., constraints.

As the major point we apply special abstraction knowl-
edge, which can be defined by the expert, or can be con-
structed semi-automatically using the subgroup discovery
results. This type of knowledge can be applied dynamically
in the process and does not rely on static data-preprocessing
and cleaning task, for example. Then, in a semi-automatic
manner the user/expert can inspect the results of the sub-
group discovery process to modify the subgroup discovery
problem, to include additional constraints, or to modify the
available background knowledge.

3 Experimental Evaluation
We evaluated the presented approach with cases taken
from the medical application SONOCONSULT, which is
currently in routine use. The applied SONOCONSULT
case base contains4358 cases. The domain ontology of
SONOCONSULT contains 427 basic attributes with about 5
symbolic values on average, 133 symptom interpretations,
which are rule-based abstractions of the basic attributes,
and 221 diagnoses. This indicates the huge search space
formed of all possible attributes for subgroup discovery.
In the following, we describe experiences conducting our
approach in an experimental evaluation. We used beam
search with a beam size of 10 as the search strategy, and
the standard binomial test quality function defined in Equa-
tion 1. The discovered subgroups were evaluated by a med-
ical expert of the application domain. The expert assessed
which of the subgroups were new, interesting, and thus ap-
propriate for clinical practice.

First, we performed subgroup discovery only using ba-
sic attributes and general background knowledge. We used
attribute weights for feature subset selection. The sub-
group discovery algorithm presented many significant sub-
groups. However, these subgroups mostly indicated depen-
dencies that were already known to the expert, and were al-
ready formalized as diagnostic knowledge contained in the
SONOCONSULT knowledge base. These results supported
the applicability of the subgroup discovery techniques for
the domain, but the results were not really interesting for
the expert concerning the novelty aspect.

Therefore, the expert decided to define new attributes,
i.e., abstracted attributes which described interesting con-
cepts for the analysis. The expert provided 45 derived at-
tributes, which were constructed to minimize missing val-
ues. Parts of the derived attributes are symptom interpre-
tations which directly indicate a diagnosis. The rest of the
derived attributes denote intermediate concepts which are
used in clinical practice, for examplepleura-effusion, or
portal hypertension.

In the next stage, the newly defined abstraction knowl-
edge was applied extending the search space to the expert-
defined attributes. For each attributea in the set of derived
attributes and each valuevi ∈ dom(a), a subgroup dis-
covery problemSPai ∈ ΩSP was generated; the target
variable was given by the binary target variable(a = vi).
Then the subgroup discovery algorithm was applied on the
defined subgroup discovery problems. The impact of the
added background knowledge was proven by a greater ac-
ceptance of the subgroup discovery results by the expert.
The resulting subgroups were often significant at the0.05
level, however many subgroups contained selection expres-
sions which were not interesting for the expert.

This was due to the fact, that too manynormal values
were included in the results, which motivated the appli-
cation of abnormality information to constrain the value
space to the set ofabnormalvalues of the attributes. Ad-
ditionally, the expert suggested to group sets of values into
disjunctive value sets defined by abnormality groups. For
example, we extended the value range of selected attributes
such that the valuesprobableandpossibleare considered
as a new disjunctive value.

After applying this background knowledge the results
were regarded as potentially interesting for clinical prac-
tice. Further investigation showed that missing values play
a central role in the discovery process. Sometimes the de-
fined population significantly decreased, when adding a se-
lection expression to a subgroup description, compared to
the parent subgroup. Thus, the respective derived attributes
were adapted accordingly. After that, the final sets of sub-
groups for the subgroup discovery problems were obtained.

To assess the discovered subgroups concerning interest-
ingness for clinical practice, the expert wanted to obtain a
quick overview of interesting subgroups for a first estima-
tion. Therefore, we applied a rating functionqRG similar to
the binomial test quality function for result analysis. This
functions was applied on the discovered subgroups, i.e., to
post-process these and to present relevant subgroups to the
expert. The functionqRG is defined as follows:

qRG =
p− p0

p0 · (1− p0)
, (3)

wherep is the relative frequency of the target variable in
the subgroup andp0 is the relative frequency of the tar-
get variable in the total population. This interestingness
function measures the relative gain of the probability of the
target variable in the subgroup compared to the total popu-
lation. Then, suitable gain thresholds can be used helping
the expert to identify interesting subgroups. As a general
principle, the expert preferred smaller subgroup descrip-
tions, which is in line with the heuristic of preferring sim-
pler knowledge for actionability.

For the evaluation the expert selected 40 subgroups as
especially interesting from the total number of 605 discov-
ered subgroups. TheqRG values measuring the relative
gain there range from1.1 to 20.8, i.e. from a110% gain
to a2080% gain. The selected subgroups with a high rela-
tive gain are sometimes also quite large subgroups. This is
in contrast to the results considering the set of all discov-
ered subgroups; a maximum gain value of96 was achieved,
however only for a small subgroup. This is not too surpris-
ing, because the binomial test quality function additionally
takes the subgroup size into account. However, for our
analysis the expert chose theqRG measure as an easy to
interpret measure for post-processing and comparing the
discovered individual subgroups.



In the following table we show an example of three sig-
nificant subgroups, where the most special one is special-
ized on the two more general ones. The subgroups were
significant at the0.0005 level. ColumnqRG shows the rel-
ative gain measure. In this example specializing the sub-
group significantly increased the subgroup quality com-
pared to the parent subgroups.

Target Variable qRG Subgroup Description
SI-fatty liver = probable 0.026 SI-liver size = marginally increased
SI-fatty liver = probable 0.111 SI-aorto-sclerosis = not calcified
SI-fatty liver = probable 3.48 SI-liver size = marginally increased AND

SI-aorto-sclerosis = not calcified

4 Summary and Future Work
In this paper we presented a knowledge-intensive approach
for subgroup discovery. For the knowledge-intensive pro-
cess we discussed applicable background knowledge in
more detail. We described how the application of abstrac-
tion knowledge can help to handle the problem of missing
values, which is often experienced in medical case bases.
An experimental evaluation performed by a domain expert
showed that applying background knowledge helped to fo-
cus the discovery algorithm on the interesting subspace of
subgroup hypotheses.

In the future we are planning to consider appropriate
quality measures concerning the simplicity of the discov-
ered subgroups. Primary work for learned rule bases was
presented in[Atzmuelleret al., 2004]. As a related direc-
tion, we will further focus on quality measures which are
especially easy to interpret for the expert, and tuneable to
the analysis goals of the expert. Furthermore, we will in-
vestigate the application of automatic construction methods
for derived attributes in order to support the expert in the
semi-automatic process. Additionally, the impact of causal
analysis in subgroup discovery is an interesting issue to
consider in the future.
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May. Spatial Subgroup Mining Integrated in an Object-
Relational Spatial Database. In T. Elomaa, H. Mannila,
and H. Toivonen, editors,Proc. Principles of Data
Mining and Knowledge Discovery. 6th European
Conference, PKDD 2002, volume 2431 ofLNCS, pages
275–286, Berlin, 2002. Springer Verlag.
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