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Abstract. Background knowledge is a natural resource for knowledge-intensive
methods: Its exploitation can often improve the quality of their results signifi-
cantly. In this paper we present a methodological view on knowledge-intensive
subgroup discovery: We introduce different classes and specific types of useful
background knowledge, discuss their benefit and costs, and describe their appli-
cation in the subgroup discovery setting.

1 Introduction

Knowledge-intensive learning methods (e.g., [1]) use background knowledge for a sim-
ple reason: Utilizing background knowledge can often significantly improve both the
quality of their results and the efficiency of the search process. In this paper, we de-
scribe how to exploit background knowledge for subgroup discovery, a method that has
first been formalized by Klösgen [2] and Wrobel [3]: Subgroup discovery is a powerful
and broadly applicable technique aiming at discovering interesting subgroups concern-
ing a certain target property of interest, e.g., in the subgroup of smokers with a positive
family history the risk of coronary heart disease (target property) is significantly higher
than in the general population.

Background knowledge can help to improve subgroup discovery in several ways,
e.g., it can increase the representational expressiveness and also focus the subgroup
discovery algorithm on the relevant patterns. Then, similar to a constrained query to a
web search engine, the user is not flooded with too many (uninteresting) results. Fur-
thermore, for increasing the efficiency of the search method the search space can often
be constrained. However, knowledge acquisition is often challenging and costly, known
as the ’knowledge acquisition bottleneck’: Then, an important idea is to ease know-
ledge acquisition by reusing existing domain knowledge, i.e., knowledge that is already
known to the user, or that is contained in existing ontologies or knowledge bases. There-
fore, we propose to apply as much background knowledge as possible, with potentially
reduced costs by knowledge reuse.

The rest of the paper is organized as follows: We first briefly introduce subgroup
discovery in Section 2. After that, we propose several types of background knowledge
in Section 3, discuss their benefit and costs, and describe how they can be applied for
subgroup discovery in Section 4. Finally, we conclude the paper with a discussion and
summary in Section 5, and point out interesting directions for future work.



2 Subgroup Discovery

The main application areas of subgroup discovery [2, 3] are exploration and descriptive
induction, to obtain an overview of the relations between a target variable and a set of
explaining variables. A subgroup discovery setting includes a target variable (concept
of interest), a subgroup description language, a specific quality function, and a search
strategy for which, e.g., a beam search technique [3] is often applied:

Let ΩA be the set of all attributes. For each attribute a ∈ ΩA a range dom(a) of
values is defined; we assume VA to be the (universal) set of attribute values of the form
(a = v), a ∈ ΩA, v ∈ dom(a). A single-relational propositional subgroup description
sd = {e1, e2, . . . , en} is defined by the conjunction of a set of selection expressions (se-
lectors) ei = (ai, Vi), i.e., selections on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai).
We define Ωsd as the set of all possible subgroup descriptions. The interestingness of a
subgroup can be flexibly formalized by a (user-defined) quality function q : Ωsd → R
(e.g., [2]) that is used in order to evaluate a subgroup description sd ∈ Ωsd. Typical
quality criteria include the difference in the distribution of the target variable concern-
ing the subgroup and the general population, and the subgroup size. Usually the (post-
processed) k best subgroups and/or the subgroups with a quality above a minimum
threshold are presented to the user as the result of the subgroup discovery method.

3 Types and Classes of Background Knowledge

The proposed classes of background knowledge include constraints, ontological know-
ledge and abstraction knowledge which we describe below: Constraints specify con-
ditions that the mined patterns need to satisfy, e.g., quality and language constraints.
Ontological knowledge describes general properties of the objects contained in the do-
main ontology and can be used to infer additional constraints. Abstraction knowledge is
given by ’virtual’ rule-based attributes. Figure 1 shows the knowledge hierarchy, from
the three knowledge classes to the specific types, and the objects they apply to.

Constraint knowledge can be applied, e.g., for filtering patterns by their quality, and
for restricting the search space. We distinguish the following types:

– Language constraints can, e.g., restrict the maximal number of conjuncts of a
subgroup description. The description language itself can range from purely con-
junctive languages to languages allowing internal disjunctions and negation.

– Quality constraints relate, e.g., to a minimum quality value, a minimum support,
or a statistical significance threshold, that the subgroup patterns need to satisfy.

– Value exclusion constraints and attribute exclusion constraints are applied for
filtering the domains of attributes and the attribute space, respectively.

– Value aggregation constraints can be specified in order to form abstracted dis-
junctions of attribute values, e.g., intervals for ordinal values. For example, con-
sider the attribute age with the values ’< 40’, ’40 − 50’, ’50 − 70’, ’> 70’: Then,
we can derive the aggregated values ’≤ 50’ and ’> 50’. In general, aggregated
values are not restricted to intervals, but can cover any combination of values.

– Attribute combination constraints are applied for filtering/excluding certain com-
binations of attributes, e.g., if these are already known to the domain specialist.
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Fig. 1. Hierarchy of (abstract) knowledge classes and specific types

– Priority groups are partially disjunctive sets of attributes with an assigned priority.
The subgroup discovery method starts with the attribute set with the highest prior-
ity. If the currently considered subgroups cannot be improved any further, then it
iteratively takes the next (prioritized) set of attributes into account.

– Subgroup pattern constraints given by selected subgroup patterns can be used,
e.g., to avoid the rediscovery of already known subgroups, for comparison to a
(new) set of subgroups, and for deriving new attributes as discussed in Section 4.

Ontological knowledge is commonly used for the development of knowledge systems.
The knowledge can either be defined by the user, or can partially be learned semi-
automatically (e.g., [4]). It consists of the following types:

– Attribute weights denote the relative importance of attributes, and are a common
extension for knowledge-based systems, e.g., for case-based reasoning systems [4].

– Abnormality/Normality information is usually easy to obtain for diagnostic do-
mains, e.g., in the medical domain the set of ’normal’ attribute values contains the
expected values, and the set of ’abnormal’ values contains the unexpected/patho-
logical ones; often the unexpected values are more interesting for analysis. Each at-
tribute value is attached with a label specifying a normal or an abnormal state. Nor-
mality information only requires a binary label. Abnormality information defines
several categories, e.g., consider the value range {normal, marginal, high, very high}
of the attribute temperature. The values normal and marginal denote normal states
of the attribute while the values high and very high describe abnormal states.

– Similarity information between attributes values is often applied in case-based
reasoning: It specifies the relative similarity between the individual attribute values.
For example, for a nominal attribute color with the value range white, gray, black
we can state that the value white is more similar to gray than it is to black.

– Ordinality information specifies if the value domain of a nominal attribute can be
ordered, e.g., the qualitative ones age and liver size are ordinal while color is not.

– Partition class information provides semantically distinct groups of attributes.
These partially disjoint subsets usually correspond to certain problem areas of the
application domain, e.g., in the medical domain of sonography such partitions are
representing different organ systems like liver, pancreas, stomach, and kidney.
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Fig. 2. Deriving constraints using ontological knowledge

Figure 2 shows how
ontological knowledge
can be used in order
to derive further ’basic’
constraints. Below, we
summarize how new
constraints can be in-
ferred using ontologi-
cal knowledge.

– We can construct attribute exclusion constraints using attribute weights to filter the
set of relevant attributes by a weight threshold or by subsets of the weight space.

– Using abnormality/normality knowledge we can specify global value exclusion
constraints for a set of abnormal values, or for the normal values.

– Using similarity or abnormality/normality information we can filter and model the
value ranges of attributes: If the similarity between two attribute values is very
high, then they can potentially be analyzed as an aggregated value. Similarly, global
abnormality groups can be defined by sets of abnormality degrees specifying which
values to combine. For example, in the medical domain attribute values such as
probable and possible (with different abnormality degrees) can often be aggregated.

– Ordinality information can be easily used to construct aggregated values, which
are often more meaningful for the domain specialist: We can consider all adjacent
combinations of attribute values, or all ascending/descending combinations starting
with the minimum or maximum value, respectively. Whenever abnormality infor-
mation is available, we can partition the value range by the given normal value and
only start with the most extreme value. An example is discussed in Section 4.1.

– Partition class information can be used to infer attribute combination constraints
in order to prevent the combination of individual attributes that are contained in
separate partition classes. Alternatively, inverse constraints can also be derived,
e.g., to specifically investigate inter-organ relations in the medical domain.

Abstraction knowledge is given by derived (rule-based) attributes. These abstractions
often correspond to certain known dependencies between attributes, e.g., in the medical
domain, we can infer the body mass index, given the attributes height and weight. For
deriving a value va of a nominal attribute a, a rule of the form rva = cond(rva) → va

is used, where the rule condition cond(rva
) contains conjunctions and/or disjunctions

of (negated) attribute values vi ∈ VA. The derived attributes serve three main purposes:
– They focus the subgroup discovery method on the relevant analysis objects.
– They decrease multi-correlations between attributes that are not interesting.
– Derived attributes can reduce missing values for a given concept, since they can

be constructed such that a defined value is more often computed if the respective
concept would have a missing value otherwise.

Due to the limited space we refer to [5] for a detailed discussion. Abstraction knowledge
is probably the most costly class of background knowledge: If the abstractions are not
based on discovery results, then they have to be formalized manually by the expert.



4 Background Knowledge: Applicability, Benefit and Cost

In the table below we summarize the characteristics of the proposed classes and types
of background knowledge (CK = constraint knowledge, OK = ontological knowledge,
AK = abstraction knowledge) in terms of the ’derivable knowledge’ (if applicable), their
syntactical and cognitive costs, and their potential contribution to restricting the search
space and/or focusing the search process. Considering the costs and the impact of the
knowledge types on the search space, the label - indicates no cost/impact; the labels
+, ++, and +++ indicate increasing costs and impact. A +(+) signifies, that the respec-
tive element has low costs if it can be derived/learned, and moderate costs otherwise.
Similarly ++(+) indicates this for moderate and high costs.

Knowledge Derivable Costs Search
Class Type Knowledge Syn. Cog. Restr. Foc.
CK Language C. – – + ++ +
CK Quality Constr. – – ++ ++ ++
CK Value Exclusion Constr. – (+) + + +
CK Val. Aggregation Constr. – (+) +(+) ++ +
CK Attr. Exclusion Constr. – (+) +(+) ++ ++
CK Attr. Combination Constr. – (+) +(+) ++ ++
CK Priority Group Constr. – + ++ – +
CK Subgroup Pattern Constr. Deriv. Attr. +(+) +(+) – ++
OK Normality Information Val. Excl. + + ++ ++
OK Abnormality Information Val. Excl. ++ ++ ++ ++

Val. Aggr. + ++
OK Similarity Information Val. Aggr. +(+) +(+) ++ ++
OK Ordinality Information Val. Aggr. + + +++ ++
OK Attribute Weights Attr. Excl. (+) +(+) ++ ++
OK Partition Class Inform. Attr. Comb. + + ++ ++
AK Derived Attributes Deriv. Attr. +++ +++ – +++

In our experience, the most im-
portant types of knowledge with
an especially good cost/benefit ra-
tio are quality constraints, attribute
exclusion constraints, normality in-
formation, ordinality information,
and especially derived attributs (in-
dicated in bold type). In the next
section, we provide examples for
applying most of these knowledge
types. After that, we summarize
how we can exploit background
knowledge for subgroup discovery.

4.1 Background Knowledge – Examples

Let A be a nominal attribute with the range dom(A) = {a1, a2, a3, an, a5, a6, a7} of
attribute values, e.g., A could correspond to the (discretized) attribute body weight with
values like massive underweight, strong underweight, underweight, normal weight,
overweight, strong overweight, and massive overweight. Ordinality information can be
easily applied in order to derive a restricted set of aggregated values denoting different
weight groups. If we want to exclude all combinations not being neighbors (excluding
irrelevant combinations like (a1, a3)), we obtain only 77 combinations of all adjacent
attribute values, in contrast to considering all possible 127 attribute value combinations:

(a1, a2), (a1, a2, a3), . . . , (a1, . . . , a7), (a2, a3), (a2, . . . , a7), . . . (a6, a7) .

In the medical domain we often know that a certain attribute value denotes the
normal value (in our example ’normal weight’ = a4). This value is often not interesting
for the analyst who might focus on the ’abnormal’ value combinations. Combining
normality and ordinality information, we then only need to consider 10 combinations:

(a1), (a1, a2), (a1, a2, a3), (a2, a3), (a3), (a7), (a7, a6), (a7, a6, a5), (a6, a5), (a5) .

If we are interested only in combinations including the most extreme value (typical in
medicine), we can further reduce the number of ’meaningful’ combinations to 6:

(a1), (a1, a2), (a1, a2, a3), (a7), (a7, a6), (a7, a6, a5) .



The savings of such a reduction of value combinations, which can be derived using
ordinality, normality information and interestingness assumptions, are huge: If there are
10 attributes like A with seven values each, then the size of the search space considering
all possible selector combinations is reduced from 12810 = 1021 to 710 = 3 · 108.

a1 a2 a3 a4 a5 a6 a7
b1 0 0 1 2 3 4 4
b2 0 0 1 2 3 4
b3 0 0 1 2 3
b4 0 0 1 2
b5 0 0 1
b6 0 0
b7 0

Concerning abstraction knowledge, let us consider an ad-
ditional attribute B denoting the body height with the (ordi-
nal) value range dom(B) = {b1, b2, b3, bn, b5, b6, b7}.
In the following, we assume that both A and B are quantita-
tive nominal attributes. Then, we can derive the attribute body
mass index (BMI) given the body weight (attribute A) and the
body height (attribute B). The matrix shows the combinations
of the respective attribute values: The derived attribute values
corresponding to a high body mass index are given by the entries 1, 2, 3, 4 in ascending
order, while a ’0’ denotes the ’normal’ case.

It is easy to see that in this example the ’meaningful’ combinations of the respective
attribute values are always on the diagonal, or form triangular matrices, e.g., considering
the entries ’3’ and ’4’ of the matrix. In our example, these combinations correspond to
relatively small people with a large body weight: In principle, the distribution of the in-
dividual values can be arbitrary. Then, the distributions of the combined attribute values
can also be of arbitrary shape. By constructing selection expressions containing inter-
nal disjunctions we can only select quadrangular sub-matrices and would thus include
larger groups that can ’confound’ the ’new values’, i.e., the original value combinations,
since the quadrangular sub-matrices might contain at least one potentially misleading
value combination. In contrast, using derived attributes we can carve out arbitrary parts
of the matrix, e.g., the triangular sub-matrices shown in the example. Then, a derived
attribute capturing the specific value combinations is more expressive and meaningful
for the user, and can focus the analysis significantly.

4.2 Applying Background Knowledge for Subgroup Discovery

In the following, we describe knowledge elements considering their effect(s) for the
subgroup discovery task, i.e., restricting the search space, focusing the search process,
post-processing the results, and increasing the representational expressiveness.

Restricting the Search Space and Focusing Search Most of the knowledge classes
described in Section 3 can be directly integrated in the subgroup discovery step:

– Language constraints and quality constraints are applied as filters in order to re-
strict the search space and to focus the search process, e.g., by providing con-
cise/simple description languages and by pruning uninteresting hypotheses below
minimal quality and interestingness thresholds.

– Constraint knowledge (and ontological knowledge that is used to derive constraint
knowledge) such as value exclusion constraints, value aggregation constraints and
attribute exclusion constraints helps to focus the search process. While attribute
exclusion and value exclusion constraints restrict the search space just by construc-
tion, value aggregation constraints do not necessarily restrict the search process



since new values are introduced. However, value aggregation constraints can pro-
vide significant quality improvements with low costs, if the aggregated values are
more meaningful for the user. Additionally, if only the generated new values are
taken into account, e.g., for ordinal value groups, then the search space remains the
same or is even restricted. Furthermore, attribute combination constraints that in-
hibit the examination of specified sets of attributes can prune large (uninteresting)
areas of the search space. Priority groups are utilized to focus the search process by
construction: The attributes of the different priority groups are taken into the search
space subsequently according to the requirements of the user.

– Subgroup pattern constraints contained in the background knowledge can be in-
cluded into the process by considering them as starting points for the search pro-
cess. Furthermore, derived attributes can be incrementally defined using (discov-
ered) subgroup patterns during the discovery step. Additionally, by comparison to
already known subgroup patterns we can inhibit the rediscovery of subgroups.

– Abstraction knowledge can be applied for increasing the representational expres-
siveness as discussed below, and for focusing the search process on the relevant
objects. If only these are considered, then the search space can also be restricted.

Post-Processing the Discovered Subgroups The most important type of background
knowledge for post-processing is given by specific known subgroup patterns itself: For
example, in the medical domain often a lot of the existing relations are already known
and can be formalized as subgroup patterns. By comparison with the discovered know-
ledge, (unexpected) patterns that conform to, deviate, or contradict the given domain
knowledge can be identified. In addition to specific subgroup patterns we can also ap-
ply partition class information in order to mark subgroups that conform to the partition
classes, or to identify subgroups that contain attributes included in different partition
classes. This depends on the requirements of the user, e.g., in the medical domain dif-
ferent organ systems can be considered.

Increasing the Expressiveness of Subgroup Patterns For increasing the representa-
tional expressiveness, (derived) attributes and subsets of the value range of an attribute
can be utilized to infer new attributes and values, respectively, that are more meaningful
for the user: The power of derived attributes lies in their ability of abstracting (known)
associations of attributes into new attributes. These correspond to new concepts that
are usually more meaningful, reasonable, and ultimately more important for the user.
Thus, the search process can be focused significantly. Furthermore, the power of the
statistical evaluations is increased significantly if missing values are minimized: Since
abstraction knowledge can be used to infer missing values in their respective context,
derived attributes can help to improve the missing value problem significantly.

Furthermore, aggregated values forming a disjunctive selection expression can be
more meaningful and reasonable for the user, e.g., considering different aggregated age
groups in the medical domain. We can apply abnormality or similarity information in
order to derive value aggregation constraints. Then, these new values can be directly
utilized in the search process. Additionally, the description language itself plays an im-
portant role, since it is used to define the subgroups. As a simple and concise description
language often conjunctive languages without internal disjunctions are applied.



5 Conclusion

In this paper we presented a methodological view on exploiting background knowledge
for subgroup discovery. We described several classes of background knowledge, and
discussed the benefit, cost, and application of the particular types of knowledge.

In contrast to existing approaches utilizing background knowledge, including In-
ductive Logic Programming (ILP) (e.g., [6]), constraint-based data mining (e.g., [7]),
and association rule learning techniques (e.g., [8]), we propose to integrate several new
types of additional background knowledge: It can be used to easily infer new back-
ground knowledge on the fly, e.g., constraints, and can be refined incrementally accord-
ing to the requirements of the discovery task. Furthermore, we propose special abstrac-
tion knowledge that can be applied dynamically. Compared to common preprocessing
methods, the background knowledge concerning aggregations of attributes or attribute
values is applied dynamically on the data. The original data set is not changed by the
knowledge-intensive approach; instead, either the discovery method is ’configured’ ap-
plying the knowledge, or ’virtual’ attributes/attribute values are introduced.

We already successfully applied parts of the presented approach in different case
studies in the medical domain [5, 9]: For these, the application of background know-
ledge was essential, since a naive approach resulted in (too) many subgroups that were
not regarded as interesting or were already known to the domain specialists.

In the future, we want to examine methods that enable the automatic construction
of abstraction knowledge. An ’intelligent’ adaptation and fine-tuning of aggregations of
attribute values is another interesting issue to consider.
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