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Abstract 
This paper describes the design of a F’uzzy Logic 
Scheduled Controllers used for side-slip velocity 
control of a missile autopilot design. A multiob- 
jective evolutionary algorithm is used to determine 
the membership function distribution of the fuzzy 
trajectory controller within an outer loop control 
system. Scaling factors of the FLC inputs and out- 
puts for each required demand are obtained by us- 
ing a polynomial fit for a large range of multiple ve- 
locity demands (lg,5g, lOg,lSg-lateral acceleration 
equivalent). The design meets mulitple objectives 
related to closed loop performance such as: steady 
state error, overshoot, settling and rise time. Mul- 
tiple solutions are obtained simultaneously by using 
nondominated sorting for forming the Pareto front, 
combined with a reference point approach to incor- 
porate preference information into the GA to direct 
the search towards feasible desirable areas which 
satisfy specific values of the objectivesSimulationn 
results are presented showing the fuzzy gain surface 
and extreme models in the multip[le model popula- 
tion. 

1 Introduction 

Many problems involve simultaneous optimization 
of multiple objectives and the design of a missile 
autopilot is one such application area. One of the 
main requirements for an autopilot design is to yield 
a fast response with the minimum of overshoot with 
good accuracy. Fast rise time or settling time can 
measure the speed of response, and overshoot and 
steady state level can then complete the measure- 
ment of the time response. These measurements 
or objective functions will produce conflicting re- 
quirements as fast responses tend to produce over- 
shoot and damped responses slow down the speed 
of response. Good steady state error performance 
usually demands high gains or the inclusion of in- 
tegrat0rs.n Both of these will produce less stable 

solutions that have significant overshoot. Hence 
there is a need to determine the trade-off mecha- 
nism for such conflicting requirements and to pro- 
vide a method for designing such systems. This 
implies that any method of tuning the trajectory 
control parameters should consider the four objec- 
tives simultaneously: the usual single-objective op- 
timization problem has become multi-objective op- 
timization. This will produce multiple solutions 
rather than a single solution associated with a single 
objective. There is also considerable uncertainty in 
the dyanmics associated with the missile airframe 
which has to be taken into account in the design 
process. In previous research 111 a combination of 
an input/output linearisation technique (nonlinear 
control law) and a fuzzy logic trajectory controller 
has been considered solving the scalar optimization 
problem. This format is retained but the fuzzy logic 
trajectory controller is now designed using the mul- 
tiple objective approach. 

The paper will look at designing an autopilot for 
a highly nonlinear missile over large ranges of inci- 
dence. The technique will obtain multiple solutions 
for sideslip velocity control of the missile for a large 
range of multiple demands, thus exercising the non- 
linear model over its entire range. Sideslip veloc- 
ity demands are considered for both pitch and yaw 
planes, using the missile rudder and elevator as con- 
trol surfaces hence yielding a system with 2 inputs 
and 2 controlled outputs. The autopilot design uses 
an evolutionary algorithm optimisation approach to 
a multiple model description of the airframe aero- 
dynamics. This is used to determine the member- 
ship function distribution within the outer fuzzy 
loop control system by using a multi-objective e v e  
lutionary algorithm that meets objectives related 
to closed loop performance such as: rising and set- 
tling time, steady state error, and overshoot. Fuzzy 
scheduled controllers having scaling factors on both 
inputs and outputs by using polynomial fit to allow 
for a large range of required demands. 
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Figure 1. Tmjectory control design 

2 f i z z y  Autopilot Design 

The autopilot design process is shown in figure 1. 
The autopilot consists of an inner linearisation loop, 
together with an out fuzzy controller to improve the 
robustness of the design. The missile dynamics are 
given by: 

= f ( 4  + A f ( 4  + (dz) + A g ( 4 b  (1) 
Y = h(4 

which are non-linear and have significant uncer- 
tainty Af(z) and Ag(z). The description of the 
model is obtained from data supplied by Matra- 
BAE and detailed in the Horton report [2]. 

The angular and translational equations of motion 
of the missile airframe are given by: 

1 1 
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where the body angular velocties are (T,  q )  (rad/sec) 
and the lateral translational velocities are (U, eo) 
(m/sec) . 
Lateral control of the missile is usually accom- 
plished by controlling either the lateral acceleration 
or the lateral velocity. For this paper, the control 
of the lateral velocity will be considered as it does 
not have the same deficiency in relative degree that 
control of the lateral acceleration exhibits [2]. The 
lateral velocity in equation (3) can be expanded us- 
ing the parametric relationships detailed in [2], to 
give: 

v = V0(C,,v + VoCyc() - U r  

where the aerodynamic coefficients C,, and Cyc 
are functions of Mach number M and incidence 
u. A state feedback controller has been devel- 
oped which results in linear, decoupled closed loop 
input/output behavior, and is given by the non- 
linear control law U = y, derived using the feed- 
back linearisation technique [3]. A specified track- 
ing performance for lateral velocity control is thus 
cheiveded but the design assumes a nominal model 
obtained from wind tunnel tests with exact knowl- 
edge of aerodynamic coefficients. In practice how- 
ever, this assumption is not valid as each missile will 
be close to, but not the same as, the wind tunnel 
model. The aerodynamical functions will be differ- 
ent from their nominal values by the uncertainties 
Af(z) and Ag(x). The feedback linearisation con- 
troller will no longer meet the desired performance 
specifications and hence will not be robust to these 
uncertainties. The size of the uncertainties Af(s) 
and Ag(z) can be assessed by scoping the size of 
the uncertainties in the aerodynamic coefficient C,, 
and Cy(, together with the static margin X,,. Un- 
certainty ranges of f 2 5 %  change for C,,, f15% for 
Cy,, and the most sensitive coefficient, X,,, has an 
uncertainty range offl.5% have been used in this 
paper as representive uncertainties in the respecive 
coefficients. 

In order to achieve robust performance against un- 
certainties, a fuzzy logic outer loop controller (tra- 
jectory outer loop) suppliments the feedback lin- 
earisation controller. Two fuzzy logic trajectory 
controllers are used in the outer loop for the hor- 
izontal U, and vertical w channels respectively. In 
order to capture the uncertainty structure a poly- 
tope of models is calculated that represent the ver- 
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tex models for the parametric uncertainites in the 
aerodynamic coefficients. This family is used within 
a GA optimisation procedure to tune the member- 
ship functions and the rules of the fuzzy logic con- 
troller. 

The feedback linearisation controller designed using 
the nominal model [3] produces a natural fiequency 
of w,, = 50(rad/sec) and a damping factor C = 0.7 
for the closed loop system and a fast 250[rads/sec] 
second order linear actuator is also included. The 
closed loop performance is twice as fast as the open 
loop airframe, hence will produce a challenging ro- 
bustness problem. 

The fuzzy logic trajectory controller has been de- 
signed based on a fuzzy inference engine, as a two 
input - one output system with five membership 
functions for each variable. The membership func- 
tions’ positions and the rule parameters are gener- 
ated using an evolutionary algorithm. 

3 Multi-objective Optimiza- 
t ion 

The proposed framework maintains a population of 
fuzzy rule sets with their membership functions and 
uses the evolutionary algorithm to automatically 
derive the resulting fuzzy knowledge base. A hy- 
brid real valued/binary chromosome has been used 
to define each individual fuzzy system. The evo- 
lutionary algorithm [4] follows the usual format of 
ranking, selection, crossover, mutation and evalua- 
tion but the real and binary parts of the chromo- 
somes are processed separately. A multi-objective 
approach was used to identify good solutions. A 
population of 100 individuals was maintained by 
the algorithm and at each generation, 20 individu- 
als were selected for breeding. Crossover was per- 
formed at a rate of 0.9, with intermediate crossover 
being used for the real values and uniform multi- 
point crossover for the binary part. A mutation 
rate of 2/137 was used. Selective pressure (SP) of 
1.7 is used. The high crossover and low selective 
pressure is designed to slow convergence in order to 
prevent local optimum being selected. The twenty 
new individuals were evaluated and then concate- 
nated to the old population, forming a set of 120 
individuals. Non-dominated ranking was then ap- 
plied to this set and the best 100 were taken for the 
next generation. 

The non-dominated ranking method was used in 
the evolutionary algorithm to allow the multi- 
objective problem to be handled easily. A detailed 
description of the non-dominated ranking process 

may be found in [5], and is based on several layers 
of classifications of the individuals. To classify the 
individuals, the population is ranked on the basis 
of non-domination: all non dominated individuals 
are classified into one category (with a dummy fit- 
ness value, which is proportional to the population 
size, to provide an equal reproductive potential for 
these individuals). To maintain the diversity of the 
population, these classified individuals are shared 
using their dummy fitness values. Each category 
of non dominated individuals is considered in turn 
and the process continues until all individuals in 
the population are classified. 

The evolutionary algorithm behavior in terms of 
convergence and searching through feasible regions 
for acceptable solutions will depend on how the 
multiple objectives are used . In a previous pa- 
per [l] we have used the surrogate additive function 
which transforms the vectorised multi-ob jective 
problem into a scalar optimisation problem. In this 
paper we have defined the closed loop performance 
criteria as four competing objectives by using the 
reference point approach [SI. Other researchers [7] 
have applied similar ideas to a gas turbine engine 
model. 

Competing objectives force a trade-off solution to 
be sought. The tradeoff information generated by 
the evolutionary algorithm can contribute to a bet- 
ter understanding of the complexity of the problem. 
Generally, the objective criteria are not directly 
comparable and their numerical values may differ 
considerably. This can make the tradeoff strategies 
difficult to define. A procedure for normalisation 
has been used to convert the criteria yj(X) into a 
dimensionless function ~ ( x )  E [0,1] has been used 
to make the trade-off problem easier. One such nor- 
malisa5tion procedure is the optimistic reference 
point approach [SI which redefines the objectives 
relative to an ideal values 9;: 

If the ideal value g; is small or 
tive form can be used: 

+ 0, an alterna- 

where gjmaZ and gj,,,in are respectively the max- 
imum and minimum values of the criterion yj(x) 
in x. The optimistic reference point method is ap- 
plied to all four closed loop performance criteria: 
rise time, steady state error, overshoot and settling 
time, defined as follows: 
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0 Side-slip velocity steady state error: 

ET; - Erj(x)  
, j  E [ l , . .  . ,m]. %(‘) = Er,,,, - Et-jmin 

(7) 

Overshoot: 

os; - os j  ( x )  
, j  E [l,. . . ,m]. 

vj(2) = osjmoz - osj,in 

0 Rise time: 

Settling time: 

T s ~  - T s ~ ( x )  
, j  E [ l , .  . . ,m] .  

q j ( x )  = Tsjmaz - Tsjmin 

Table 1 defines the reference point parameters. 

4 Fuzzy gain scheduled con- 
trollers for multiple de- 
mands 

The fuzzy controllers for the horizontal and verti- 
cal channels are shown in figure 1. The inputs to 
the controller consist of the sideslip velicity error 
and its derivative, and the output is the input to 
the feedback linearisation control loops. Each input 
variable is covered using 5 membership functions. 

The problem of finding a single set of rules for the 
polytope of models is compounded by the fact that 
the nonlinear aerodynamics produce a large range 
in model characteristics. It is not possible for a 
single controller to satifactorily control all models 
to the required specification. In order to solve this 
problem, a scaling factor that is a function of the 
parametric variables is considered. The greatest 
variation is seen in the change of incidence cr. For 
a contstant forward speed V, this translates into 
a side-slip velocity dependency. ‘ihs fuzzy logic 
controller inputs and outputs are thus scaled by a 
scaling factor, and the rule parameters are treated 
as constants to be determined by the evolutionary 
algorithm. This concept has been used by other 
workers [SI to improve the performance and stabil- 
ity of fuzzy controllers. In Bonissone’s chapterQ[S], 
scaling factors of an FLC have been tuned by GA’s. 
Some time scaling factors are used to fine tune the 
performance of the system in a similar way to the 

tuning of a PID controller. In [9J the firing of the 
rules in a fuzzy controller is described with different 
values for the scaling factors. This demonstrates 
the fact that the adjustment of the factors is equiva- 
lent to the reconstruction of the membership func- 
tions in the rule-base. 

The three scaling factors (error,derivative of error 
and output) for each required lateral acceleration 
demand lg, 29, . . . ,159 have been determined via 
steady state analysis of the model polytope using 
the fixed gain trajectory controller around the nom- 
inal model. Then a polynomial fitting has then been 
evaluated to interpolate between the specific veloc- 
ity demands. The scaling factor for the velocity 
error is lSt order: 

and the polynomial curve for the velocity error scal- 
ing factor is shown in figure 2. The scaling factor for 

the derivative of error is of a 3rd order polynomial: 

SCv-erd = f ( v d )  = + P2.i + plvd + PO (12) 

and the output scaling factor is of ldt order poly- 
nomial. 

scout = f ( v d )  = q l v d  + @J (13) 
where p o , .  . . ,p4 and qo, q1 are the polynomial fit 
coefficients for each scaling factors respectively. 

5 Results 

The optimization procedure produces multiple so- 
lutions and has been able to tune the membership 
function parameters simultaneously for multiple de- 
mands. In a typical run, about 90% of the solutions 
in the final population are non-dominated. Fig- 
ure ?? shows a detailed trade-off for the nondomi- 
nated solutions at the last generation. Two alter- 
native solutions have been presented in figure 6 to 
show the effect of the interpolative mechanism of 
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Reference points I Stkady State Error I Settling time 
Ideal point 

Rising time I Overshoot 
I Er: = 0.0 (%) I Ts: = 0.15 (sec) I Trl = 0.08 (sec) I 0s: = 4.5 (%) 

Table I .  Closed loop performance criteria 

the fuzzy scheduled controllers when multiple de- 
mands are used. Solution (b) has very little over- 
shoot, almost no steady state error and good set- 
tling time. Solution (c) has a very slow rise time, 
very little overshoot, a long settling settling time 

been exercised for a large range of velocity demands 
(lg,5g,lOg,l5g-lateral acceleration equivalent). 

References 
but a good steady state error. Solution (b) is cho- 
sen as the final controller. On the left side of fig- 
ure 6(a) is the nonlinear control surface found by 
the GA’s of the FLC. 
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Conclusions 

Evolutionary algorithms have been successfully ap- 
plied to a multimodal search space in the context of 
determining the control parameters for the missile 
autopilot. The optimization has used multiple ob- 
jectives related to closed loop performance: steady 
state error, overshoot, settling and rise time. Mul- 
tiple solutions have been obtained using a Pareto 
based approach combined with a reference point ap- 
proach to incorporate preference information into 
the GA to direct the search towards feasible de- 
sired area from which the designer can choose solu- 
tions that satrisfy the performance specifications in 
the face os parametric uncertainty. The design has 

E. H. A. Blumel, B. A. White, “Designof robust 
fuzzy controllers for aerospace applications,” 
in Proceedings of the 18 NAFIPS Conference, 
vol. 1, pp. 438-442, 1998. 

B. A. White, “Non-linear autopilot of the hor- 
ton and generic missile,” tech. rep., Dept. 
of Aerospace, Power and Sensors, Cranfield 
University-RMCS, Shrivenham, Wilts, SN6 
BLA, October 15 1998. 

A. L. B. A. Tsourdos and B. A. White, “’Ikajec- 
tory control of a nonlinear homing missile,” in 
Proc. of the 14th IFAC Symp. on Aut. Control 
in Aerospace, 1998. Korea. 

A. Zalzalaand P. J. Fleming, eds., Genetic algo- 
r i thm in engineering systems. The Institution 
of Electrical Engineers, 1997. 

N. Srinivas and K. Deb, “Multiobjective opti- 
mization using nondominated sorting in genetic 
algorithms,” Evolutionary Computation, vol. 2, 
no. 3, pp. 221-248,1995. 

H. Weistroffer, “A combined over and under- 
achievement programming approach to multiple 
objectives decision making,” Journal of Large 
Scale Systems, vol. 7, pp. 47-58, May 1984. 

C. M. Fonseca and P. Fleming, “Multiobjective 
optimization and multiple constraint handling 
with evolutionary algorithms - part 2: Appli- 
cation example,” IEEE Zhnsactions on Sys- 
tems,Man and Cybernetics, vol. 28, pp. 38-47, 
January 1998. 

C. C. Bonivento and R.Rovatti, eds., Fuzzy 
Logic Control Advances in Methodology. World 
Scientific Publishing CO, 1998. 

Y.-Y. Chen and C. Pemg, “Input scaling fac- 
tors in fuzzy control systems,” in Pmc. IEEE, 
pp. 166&1670,1994. 

0-7803-7@78-3/0U$l0.00 (C)U#)l IEEE. Page: 1762 



4 ...................... -.... ......................................................... 

. , .  
7 
,Y -im - 

........ 

+- 7.-.7.- - 7 7  ............... "" ......_. .......... '" ........ 

a) h z z y  control surface for 15g [150m/sec"] Side-slip velocity and lateral acceleration for 15g 

b) Best Solution for steady state error Phase portrait for steady state solution 

c) Slow rise time solution 

Figure 4 .  Multiple solutions for multiple de- 
man& 
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