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Abstract
In this paper, we propose an automated clustering method
based on multi-objective genetic algorithms (GA); the aim of
this method is to automatically cluster values of a given
quantitative attribute to obtain large number of large
itemsets in low duration (time). We compare the proposed
multi-objective GA-based approach with CURE-based
approach. In addition to the autonomous specification of
fuzzy sets, experimental results showed that the proposed
automated clustering exhibits good performance over
CURE-based approach in terms of runtime as well as the
number of large itemsets and interesting association rules.

1. Introduction

An association rule is an implication X � Y, where both X
and Y are sets of attributes or items; it is interpreted as: “for a
specified fraction of the existing transactions, a particular
value of X determines the value of Y as another particular
value under a certain confidence”. Support and confidence
are the major factors in measuring the significance of an
association rule. Simply, support is the percentage of
transactions that contain both X and Y, while confidence is
the ratio of the support of YX � to the support of X. So, the
problem can be stated as: find interesting association rules
that satisfy user-specified minimum support and confidence.

Quantitative association rules mining is essential because
numerical attributes typically take many distinct values. The
support for any particular value is likely low, while the
support for intervals is much higher, e.g., [5, 6, 8]. However,
existing quantitative mining algorithms either ignore or over-
emphasize elements near the boundary of an interval. The
use of sharp boundary intervals is also not intuitive with
respect to human perception.

Some work has recently been done on the use of fuzzy
sets in discovering association rules for quantitative
attributes, e.g., [1, 4, 9, 10, 12]. However, in existing
approaches fuzzy sets are either supplied by an expert or
determined by applying an existing clustering algorithm. The
former is not realistic, in general, because it is extremely
hard for an expert to specify fuzzy sets. The latter
approaches have not produced satisfactory results. They have
not considered the optimization of membership functions; a
user specifies the number of fuzzy sets and membership
functions are tuned accordingly.

Motivated by this, we propose a clustering method that
employs multi-objective GA for the automatic discovery of
membership functions used in determining fuzzy quantitative
association rules. Our approach optimizes the number of
fuzzy sets and their ranges according to multi-objective
criteria in a way to maximize the number of large itemsets
with respect to a given minimum support value. So, we
defined two objective parameters in terms of large itemsets
and the time required to determine fuzzy sets. Actually, these
two parameters are in conflict with each other. So, we use a
GA with multiple objective optimization capabilities known
as Pareto GA [11].

Experimental results on 100K transactions extracted from
the adult data of United States census in year 2000 show the
efficiency and effectiveness of the proposed approach. Also,
we have demonstrated the superiority of the proposed
approach, in terms of the number of produced large itemsets
and interesting association rules, over semi-automated
CURE clustering based approach [2].

The rest of this paper is organized as follows. Fuzzy
quantitative association rule is defined in Section 2. Our
approach of utilizing GA to determine membership functions
is described in Section 3. Determining membership functions
for CURE clustering is discussed in Section 4. The fuzzy
association rules mining process is presented in Section 5.
Experimental results are given in Section 6. Section 7
includes a summary and the conclusions.

2. Fuzzy Association Rules

Consider a database of transactions T={t1, t2,…,tn}, where
each transaction tj represents the j-th tuple in T. We use I={i1,
i2,…,im} to represent all attributes that appear in T; each
quantitative attribute ik is associated with at least two fuzzy
sets. The degree of membership of each value of attribute ik

in any of the fuzzy sets specified for ik is directly based on
the evaluation of the membership function of the particular
fuzzy set with the value of ik as input. The obtained value
falls in the interval [0, 1], with the lower bound 0 strictly
indicates “not a member”, while the upper bound 1 indicates
“total membership”; all other values between 0 and 1,
exclusive, specify a “partial membership” degree. Finally,
we use the following form for fuzzy association rules.

If Q={u1, u2, …, up} is F1={
p

fff 111 ,,,
21 � } then

R={v1, v2, …, vq} is F2={
q

fff 222 ,,,
21 � },
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where IQ ⊂ and IR ⊂ are itemsets with φ=RQ
�

, F1 and
F2, respectively, contain the fuzzy sets associated with
corresponding attributes in Q and R, i.e.,

if1
is a fuzzy set

related to attribute ui and
jf2

is related to attribute vj.

Finally, for a rule to be interesting, it should have enough
support and high confidence value. The basic step in the
whole process is specifying corresponding fuzzy sets for
each quantitative attribute. Our approach to automate this
process is described next in Section 3.
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Figure 1 Membership functions and base
variables of attribute ik

3. Multi-Objective GA for Automated Clustering

In general a multi-objective optimization problem
includes a set of a parameters (called decision variables), a
set of b objective functions, and a set of c constraints;
objective functions and constraints are functions of the
decision variables. The optimization goal is expressed as:
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where, x is the decision vector, y is the objective vector, X is
the decision space, and Y is the objective space; the
constraints 0)( ≤xe determine the set of feasible solutions.

In this paper, we considered the number of large itemsets
and the gain of time, inverse of the time required to find all
large itemsets in a given database as objective functions. It is
assumed that each of the n components of the objective
vector is to be maximized. A solution defined by
corresponding decision vector can be better than, worse, or
equal to; but also indifferent from another solution with
respect to the objective values. Here, better means a solution
is at least better in one objective and not worse in any
objective than another solution. Using this concept, an
optimal solution can be defined as: a solution not dominated
by any other solution in the search space. Such a solution is
called Pareto optimal, and the entire set of optimal trade-offs
is called Pareto-optimal set [11].

In our approach, each individual represents the base
values of membership functions for a quantitative attribute
from the given database. In our experiments, we used
membership functions in triangular shape.

To illustrate the encoding scheme utilized in this study,
consider a quantitative attribute, say ik, having 3 fuzzy sets,
the corresponding membership functions and their base
variables are shown in Figure 1. Each base variable takes
finite values. For instance, the search space of the base value

1
ki

b lies between the minimum and maximum values of
attribute ik, denoted )min(

ki
D and )max(

ki
D , respectively.

Enumerated next to Figure 1 are the search intervals of all
the base values and the intersection point

ki
R of attribute ik.

We used 8 quantitative attributes in the experiments of
this study and assumed that each attribute can have at most 7
fuzzy sets. So, a chromosome consisting of the base lengths
and the intersecting points is represented in the form:

1110512111105984763542321121

888888111111111111121111 iiiiiiiiiiiiiiiiiiiiiiii bbRbbwbbRbbRbbRbbRbbRbbw ��

where gene
jiw denotes the number of fuzzy sets for

attributes ji . If the number of fuzzy set is 2, then while
decoding the individual, the first two base variables are
considered and the others are omitted. However, if

jiw is 3,
then the next three variables are also taken into account. So,
as long as the number of fuzzy set increases, the number of
variables to be taken into account is enhanced too.

According to this encoding method, the number of
variables needed to be found for each attribute can be
generalized as 223 +− )(w , where w be the number of fuzzy
sets for a given attribute. For instance, two variables need to
be tuned for a quantitative attribute with w=2 fuzzy sets; and
for the case of w=3 fuzzy sets, the number of variables to be
tuned increases to 5, as illustrated by the above example.

In this study, we used real-valued coding, where
chromosomes are represented as floating point numbers and
their genes are the real parameters. While the value of a gene
is reflected under its own search interval, the following
formula is employed:

))min()(max()min(
max

k
i

k
i

k
i

k
i jjjj

bb
g

g
bb −+=

where g is the value of the gene in search, maxg is the

maximum value that gene g may take, )min( k
i j

b and )max( k
i j

b

are the minimum and the maximum values of the reflected
area, respectively. Also, we used Pareto-based ranking
procedure, where the rank of an individual is the number of
solutions encoded in the population by which its
corresponding decision vector is dominated, as illustrated in
Figure 2. Note that Pareto-based techniques seem to be most
popular and effective in the field of evolutionary multi-
objective optimization.

Figure 2 Fitness assignment in Pareto-based ranking

Individuals who are strong according to parent selection
policy are candidates to form a new population. Many
selection procedures are currently in use. However, we
adapted the elitism policy in our experiments. Finally, after
selecting chromosomes with respect to the evaluation
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function, genetic operators such as, crossover and mutation,
are applied to these individuals.

Crossover takes as input 2 individuals, selects a random
point, and exchanges the subindividuals behind the selected
point to form new individuals. Since the length of the
chromosomes is considerably large in our approach, we used
the multi-point crossover strategy with the crossover points
determined randomly. On the other hand, mutation means a
random change in the information of an individual. It is
traditionally performed in order to increase the diversity of
the genetic information. A probability test depends on the
following condition to determine whether a mutation will be
carried out or not.

4. Specifying Membership Functions for CURE

The process of CURE can be summarized as follows.
Starting with individual values as individual clusters, at each
step the closest pair of clusters are merged to form a new
cluster. This is repeated until only k clusters are left. As a
result, the values of each attribute in the database are
distributed into k clusters. The centroids of the k clusters are
the set of midpoints of the fuzzy sets for the corresponding
attribute. Here, note that in the process to obtain the
membership functions by CURE clustering algorithm, the
number of clusters, i.e., number of fuzzy sets should be given
by the user beforehand. To overcome this restriction, we
integrated a GA with CURE clustering approach.

A GA finds the most appropriate number of clusters
according to a predefined fitness function. In the GA process
used in this study, each variable holds the number of fuzzy
sets only. This is because CURE clustering algorithm itself
adjusts the base value of the membership functions.

5. Mining Fuzzy Association Rules

To generate fuzzy association rules, all sets of items that
have a support above a user specified threshold should be
determined first. Itemsets with at least a minimum support
are called frequent or large itemsets. The process alternates
between the generation of candidate and frequent itemsets
until all large itemsets are identified. The following formula
is used to calculate the fuzzy support value of itemset Z and
its corresponding set of fuzzy sets F, denoted S<Z,F>:

||

)][,(

, T

ztFf
S

Tt jijZz z

FZ
i j j

�
∏∈ ∈

><

∈
=

µ
, where T denotes the

number of transactions in database T.
This way, the problem of mining all fuzzy association

rules converts to generating each rule whose confidence is
larger than the user specified minimum confidence.
Explicitly, each large itemset, say L, is used in deriving all
association rules (L−S) � S, for each .LS ⊂ The strong
association rules discovered are chosen from among all the
generated possible association rules by considering only
rules with confidence over a pre-specified minimum
confidence. However, not all of these rules are interesting
enough to be presented to the user. Whether a rule is
interesting or not can be judged either subjectively or

objectively. Ultimately, only the user can judge if a given
rule is interesting or not, and this judgment, being subjective,
may differ from one user to another. However, objective
interestingness criterion based on the statistics behind the
data can be used as one step towards the goal of weeding out
presenting uninteresting rules to the user. To help filtering
out misleading strong association rules and to give each rule
a more precise characterization, the interestingness of a rule

Q � R, denoted I(Q � R), is defined as:
)().(

),(
)(

RSQS

RQS
RQI =�

A rule is filtered out if its interestingness is less than 1,
since the nominator is the actual likelihood of both Q and R
being present together and the denominator is the likelihood
of having the two attributes being independent. This process
will help in returning only rules having positive
interestingness, and hence the size of the result is reduced.

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100
Number of Transactions (K)

R
un

tim
e

(s
ec

on
ds

)

GA

CURE

Figure 3 The runtime required to find all large itemsets

6. Experimental Results

We conducted some experiments to demonstrate the
effectiveness of the proposed multi-objective GA-based
clustering method. Further, the superiority of the new
approach has been demonstrated by a comparison with
CURE clustering based approach. All of the experiments
have been conducted on a Pentium III, 1.4 GHz CPU with
512 MB of memory and running Windows 2000. As
experiment data, we used 100K transactions from the adult
data of United States census in 2000; we concentrated our
analysis on 8 quantitative attributes. Further, in all the
experiments, the GA process started with a population of 80
individuals for the GA-based approach and 30 individuals for
the CURE-based approach. The maximum number of
generations has been fixed at 500 as the termination criteria
for the developed GA programs. Finally, in all the
experiments in which GA have been used, the minimum
support is set to 10%, unless otherwise specified, and the
maximum number of fuzzy sets has been specified as 7.

The first experiment compares the runtime of the two
clustering approaches to find large itemsets for different
numbers of transactions, varying from 10K to 100K. The
runtime here represents the duration, i.e., the time required to
find all large itemsets after the number and ranges for the
fuzzy sets have been determined by employing the
corresponding method. The results are reported in Figure 3,
where the two approaches are labeled as GA and CURE, to
represent the proposed multi-objective GA-based clustering
approach and CURE clustering based approach, respectively.
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The former approach employs multi-objective GA to decide
on the number of fuzzy sets as well as to optimize the ranges
of membership functions, while the latter uses GA only to
find the number of fuzzy sets. As a result of this experiment,
it has been observed that the GA-based solution outperforms
the CURE-based solution for all numbers of transactions,
and both methods are scalable on the number of transactions.

The second experiment compares the total runtime
required for both methods to find optimum fuzzy sets for
different numbers of transactions. The results are reported in
Figure 4, which demonstrates that both approaches scale well
on the number of transactions. Extra runtime in the proposed
method is spent on optimizing membership functions.

The third experiment utilized all the 100K transactions to
compare the change in the number of large itemsets for
different values of minimum support. The results are
reported by the curves plotted in Figure 5, where it can be
easily observed that the GA-based approach finds larger
number of large itemsets than CURE based approach; this is
quite consistent with our intuition, simply because the GA-
based approach puts more effort on the optimization process
and this has been reflected into finding better results than
classical clustering approaches, like CURE.

The last experiment investigates the correlation between
minimum confidence and the number of interesting
association rules discovered. The results are plotted in Figure
6; the same interpretation stated for the curves of the large
itemsets experiments is valid and can be repeated here.
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Figure 4 Total runtime required to find optimum fuzzy sets

7. Summary and Conclusions

In this paper, we proposed a multi-objective GA based
clustering method, which automatically adjusts the fuzzy sets
to provide large number of large itemsets in low duration.
This is achieved by tuning together, for each quantitative
attribute, the number of fuzzy sets and the base values of the
membership functions. In addition, we demonstrated through
experiments that using multi-objective GA has 3 important
advantages over CURE. First, the number of clusters for
each quantitative attribute is determined automatically. Thus,
we implemented an autonomous structure for mining fuzzy
association rules. Second, the GA-based approach optimizes
membership functions of quantitative attributes for a given
minimum support value. So, it is possible to obtain more
appropriate solutions by changing the minimum support
value in the desired direction. Finally, the number of large
itemsets and interesting association rules obtained using the

GA-based approach are larger than those obtained by
applying CURE. As a result, all these advantages show that
multi-objective GA is more appropriate and can be used
more effectively to achieve optimal solutions than the
classical clustering algorithms described in the literature.
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