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Abstract. Comparisons made in two studies of 21 methods for finding
prototypes upon which to base the nearest prototype classifier are discussed.
The criteria used to compare the methods are by whether they: (i)  select or
extract point prototypes; (ii) employ pre- or post-supervision; and (iii) specify
the number of prototypes a priori, or obtain this number “automatically”.
Numerical experiments with 5 data sets suggest that pre-supervised, extraction
methods offer a better chance for success to the casual user than post-
supervised, selection schemes. Our calculations also suggest that methods which
find the "best" number of prototypes "automatically" are not superior to  user
specification of this parameter.
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1   Introduction

The methods discussed begin with a crisply labeled set of training data Xtr={x1,…,xn}

± §p that contains at least one point with class label i, 1 • i • c. Let x ± §p be a vector
that we wish to label as belonging to one of the c classes. The standard nearest
prototype (1-np) classification rule assigns x to the class of the “most similar”
prototyle in a set of labeled prototypes (or reference set), say V={v1,¡,vnp

}. | V | = np
may be less than, equal to, or greater than c [1].

We use two performance measures to compare 1-np designs. 
    
Enp(Xtr ; V)  is the

resubstitution  (or training) error committed by the 1-np rule that uses V when applied
to the training data; 

    
Enp(Xtest; V)  is the generalization (testing) error of the same

classifier when applied to a test set  
  
Xtest ⊂ ℜp .
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Good prototypes for 1-np classification have two desirable properties: minimal
cardinality (minimum n

p
) and maximum classification accuracy (minimum

    
Enp(Xtest; V)). However, these two goals naturally conflict. Increasing n

p
 up to

some experimentally determined upper limit (usually with n
p
 > c) almost always

results in a decreasing trend in 
    
Enp(Xtest; V) , and conversely. One goal of our

research is to study this conflict - how to find the smallest set of prototypes that
provide an acceptable generalization error.

There are four types of class labels - crisp, fuzzy, probabilistic and possibilistic and

three sets of label vectors in   ℜ
c :

    
Npc = y ∈ℜc: yi ∈ [0,  1]  ∀  i, y i > 0  ∃  i{ }= [0,1]c − {0} (possibilistic);   (1)

    
Nfc = y ∈Npc: yi = 1

i=1

c
∑  

 
  
 

 (fuzzy or probabilistic);  (2)

    
Nhc = y ∈ Nfc: y i ∈ {0,1}∀ i{ }= e1, e2,…,e c{ } (crisp).           (3)

For convenience we call all non-crisp labels soft labels. An example of soft labeling
is diagnosing ischemic heart disease, where occlusion of the three main coronary
arteries can be expressed by such a label, each entry being the degree of occlusion of a
particular vessel.

A useful framework for most of the methods we discuss is the generalized nearest
prototype classifier (GNPC). If x and the v

i
’s are represented by feature vectors in

  ℜ
p , prototypical similarity is almost always based on some function of pairwise

distances between x and the v
i
’s. Specifically, let     x ∈ ℜp  be an input vector. The

GNPC is defined by the 5-tuple [2, 3] :
1. A set of prototypes 

    
V = {v1,…, vnp

} ⊂ ℜp ; (GNPC1)

2. A  c × n
p
 prototype label matrix 

      
L(V) = [l (v1),…, l (vnp

)] ∈ℜc × ℜ
n

p ; (GNPC2)

3. A similarity function 
    
S(xk, v i ) = Θ xk − v i( ) valued in [0,1] . ; (GNPC3)

4. A T-norm to fuse 
      
{ ( l i (v j ), S(x, v j )):1 ≤ i ≤ c;1 ≤ j ≤ np } . ; (GNPC4)

5. An aggregation operator A which, for class i,  i = 1 to c, combines

      
{T( l i (v j ),S(x, v j )):1 ≤ j ≤ n p}  as 

      
li (x) = A[ {T(l i (v j ),S(x,v j )):1 ≤ j ≤ n p}] ,

 the i-th element of the overall soft label for x. . (GNPC5)

Figure 1 shows some of the many groups of classifiers that belong to the GNPC
family. Abbreviations in Figure 1: hard c-means (HCM), nearest neighbor (1-nn),
learning vector quantization (LVQ) and radial basis function (RBF). We use  other
abbreviations, each of which is defined in the sequel. Many 1-np and other classifiers
can be realized by different choices of the parameters in (GNPC1-GNPC5). When the
prototypes have soft labels, each prototype may “vote” with varying assurance for all c



Some Notes on Twenty One (21) Nearest Prototype Classifiers         3

classes. For example, if v
i has the soft label [0.2, 0.4, 0.7], it is a fairly typical example

of class 3, but is also related (less strongly) to classes 1 and 2.
Among the many characteristics of prototype extraction methods for 1-np classifier

design that can be discussed, we consider the following three to be most important:
(C1) Selection (

    
Vs ⊆ X ) versus replacement (    Vr

⊄ X ). When talking about

prototypes in general, we use the symbol V. When emphasis is needed, we use
subscripts ( 

    
Vs  for selection of S-prototypes from X,     Vr

 for replacement of X by R-

prototypes). Replacement seeks n
p
 points in   ℜ

p , so the search space is infinite.

Selection is limited to searching in   X ⊂ ℜp , so solutions in this case can be sought by
combinatorial optimization. When the prototypes are selected points from the training
data, a 1-np classifier based on them is called a nearest neighbor (1-nn) rule. When all
of the training data are used as prototypes, it is the 1-nn rule; and when multiple votes
(say k of them) are allowed and aggregated, we have the well known k-nn rule
classifier.

Prototype Generator 
V = {v1,…, vnp

}

Crisp labels for V 
(Crisp 1-np designs)

Soft labels for V 
(Soft 1-np designs) 

Crisp label for x    

v’s are softly labeled 
in one class  

e.g., [0, 0.6, 0]

v’s are softly labeled in 
several classes 

e.g., [0.2, 0.1, 0.8]

Parzen 
Sparse RBF 
Fuzzy IF-THEN

RBF 
Clustering +  
  soft relabeling

Hardening

✦
✦

✦
✦
✦

  1-nn 
  Edited 1-nn 
  Nearest mean 
  LVQ 
  c-means + crisp relabeling  

v’s are crisply labeled in 
one  class   

e.g.,  [1, 0, 0]

✦

✦
✦
✦
✦

Fig. 1. A few models that are generalized nearest prototype classifiers

(C2) Pre-supervised versus post-supervised designs [4]. Pre-supervised methods
use the data and the class labels to locate the prototypes. Post-supervised methods first
find prototypes without regard to the training data labels, and then assign a class label
to (relabel) each prototype. Selection methods are naturally pre-supervised, because
each prototype is a data point and already has its (presumably true) label.

 (C3) User-defined n
p
 versus algorithmically defined n

p
. Most prototype generators

require  advance specification of n
p
  (e.g., classical clustering and competitive learning

methods). Some models have "adaptive" variants where an initially specified n
p
 can
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increase or decrease, i.e., prototypes are added or deleted during training under the
guidance of a mathematical criterion of prototype "quality". A third group of methods
do not specify n

p
 at all, instead obtaining it as an output at the termination of training.

For example, condensation methods which search for a minimal possible consistent set
belong to this category. Genetic algorithms and tabu search methods have a trade-off
parameter which pits the weight of a misclassification against an increase in the
cardinality of V by 1. Thus, methods based on these types of search deliver the
number of prototypes at termination of training. A method that finds or alters n

p 
during

training will be called an auto-n
p 

method; otherwise, the method is user-n
p 

.

Table 1 lists 21 methods for prototype generation reviewed here. Eleven of the
methods are discussed in [5] ; 16 of the methods are discussed in [6]; and six methods
are discussed in both [5, 6]. A pertinent reference for each method is given, along with
its classification by the criteria C1, C2 and C3 : selection = (S), replacement = (R),
pre-supervised = [PRE], post-supervised = (post), auto-n

p
 = (A) and user-n

p
 = (U).

The notation (A) ½ means that the algorithm can only decrease  n
p
.

Table 1. Twenty one (among zillions of!) methods for finding prototypes

Ref Acronym See
C1

S or R
C2

Pre/Pos
t

 C3
n

p

[5] W+H [5] (S) [PRE] (A)
[9] Tabu [5] (S) [PRE] (A)

[21] LVQ1 [5] (R) [PRE] (U)
[22] DSM [5] (R) [PRE] (U)
[23] LVQTC [5] (R) [PRE] (A) ½
[3] GA [5, 6] (S) [PRE] (A)

[14] RND = RS [5, 6] (S) [PRE] (U)
[20] BTS(3) = BS [5, 6] (R) [PRE] (U)
[25] VQ [5, 6] (R) (post) (U)
[26] GLVQ-F [5, 6] (R) (post) (U)
[30] HCM [5, 6] (R) (post) (A) ½
[18] Chang [6] (R) [PRE] (A) ½
[19] MCA [6] (R) [PRE] (A) ½
[10] MCS [6] (S) [PRE] (A)
na Sample Means [6] (R) [PRE] (A)

[27] DR [6] (R) (post) (U)
[31] MFCM(3) [6] (R) (post) (U)
[29] FLVQ [6] (R) (post) (U)
[28] SCS [6] (R) (post) (U)
[21] SOM [6] (R) (post) (U)
[1] FCM [6] (R) (post) (U)

Figure 2 depicts the 21 methods in Table 1 schematically. The Wilson/Hart (W+H)
method is Wilson’s method followed by Hart’s condensed nearest-neighbor (C-nn), so
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it does not fit nicely into the tree in Figure 2. The three methods bracketed by < > are
not used in our numerical experiments, but are included here for completeness.

Pre-supervised Post-supervisedRetain misclassified 
objects (Condensing)

Discard misclassified 
objects (Editing)

Strategy-free

<Hart -  C-nn> 
Dasarathy - MCS 

Random search 
Tabu search 
GA search

<Wilson> 
<Multi-edit>

Bootstrap 
Chang 
DSM 
LVQ1    
LVQTC 
MCA 
Sample Means

DR 
FLVQ 
HCM 
GLVQ-F 
MFCM(3) 
VQ 
SCS 
SOM

Prototype Generator 
V = {v

1
,…, v

np
}

 = Selection   

(Pre-supervised)

V
s = ReplacementV

r

Fig. 2.  Methods for finding prototypes

2   The 21 Methods

We cannot give useful descriptions of the 21 models and algorithms shown in Table 1
and Figure 2 here, so we briefly characterize the methods, and refer readers to [5, 6]
and/or the original papers for more details. For convenience we drop the subscript of
X

tr
, and refer to the training data simply as X unless otherwise indicated.
Selection by condensation. Condensation seeks a consistent reference set 

    
Vs  ¨

X such that 
    
Enp(Xtr ; Vs ) = 0 . All condensation methods enforce the zero

resubstitution error requirement, so trade-off between test error rate and the cardinality
of 

    
Vs  is impossible. The original condensation method is Hart’s C-nn [7]. Many

modifications of and algorithms similar to C-nn are known [8]. The output of C-nn
depends on the order of presentation of the elements in X.  Cerveron and Ferri [9]
suggest running C-nn multiple times, beginning with different permutations of X, and
terminating the current run as soon as it produces a set with the same cardinality as the
smallest 

    
Vs  found so far. This speeds the algorithm towards its destination and seems

to produce good sets of consistent prototypes. A minimal consistent set algorithm
(MCS) for condensation was proposed by Dasarathy [10]. Dasarathy’s MCS decides
which elements to retain after a pass through all of X, so unlike C-nn, MCS does not
depend on the order in which the elements of X are processed. MCS, however, does
not necessarily find 

    
Vs  with the true minimal cardinality [3].
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Selection by editing. Error-editing assumes that points from different classes that
are close to decision boundaries should be discarded. Error-editing methods have no
explicit connection to either the resubstitution or generalization error rate performance
of the 1-np classifier based on the resultant 

    
Vs . This group of methods include

Wilson’s method [11] and Multiedit [12]. Both schemes are based on deleting
misclassified objects. In Wilson’s method, the 3-nn algorithm is run once on X, and all
misclassified objects are deleted from X after the run, leaving prototype set 

    
Vs .

Multiedit is asymptotically Bayes optimal,  but is not suitable for small data sets with
overlapping clusters, whereas Wilson’s method works well in these cases. We have
found  that the methods of Hart, Wilson, and Randomized Hart are not very effective
in terms of either accuracy or data set reduction. The W+H (Wilson + Hart) method
introduced in [5] is just Wilson's method followed by Hart's C-nn .

Editing techniques are often followed by condensation. Editing “cleans up” the
input data, yielding a 

    
Vs,initial  that supposedly contains only “easy” points in it. Then

a condensation method reduces 
    
Vs,initial  to a possibly smaller number of relevant

final prototypes, say 
    
Vs,final . Ferri [13]  proposes a third step : Multiedit is used for

phase 1 “clean up” ; Hart's C-nn for phase 2 condensation; 
    
Vs,final  is then used to

reclassify all the original points in X, and the newly labeled data set, say X', is used
with the decision surface method (DSM) to further refine the classification boundary.

Selection by search.  A third group of methods for prototype selection attempt to
find the smallest possible 

    
Vs  with the highest possible 1-np accuracy through

criterion-driven combinatorial optimization. These methods are strategy free in the
sense that the decision to retain prototypes is based entirely on optimizing the criterion
function. The basic combinatorial optimization problem to be solved is:

      

max
V

s
∈P(X )

1 2 3 J(Vs ){ }= max
V

s
∈P(X )

1 2 3 1− Enp(X tr; Vs )( )− α
V

s

X
tr

 
 
 

  

 
 
 

  
 ,    (4)

where P(X) is the power set of X and a is a positive constant which determines the
trade-off between accuracy and cardinality  [3, 9] .  We use three methods from this
third group that all make use of (4) to evaluate potential solutions to the selection
problem: random selection, GA-based search, and Tabu search.

For random selection (RS), the desired cardinality n
p
 of 

    
Vs  and the number of

trials T are specified in advance. Then T random subsets of X of cardinality n
p
 are

generated, and the one with the smallest error rate is retained as 
    
Vs . Skalak calls this

method a Monte Carlo simulation [14]. Random search works unexpectedly well  for
moderate sized data sets [3], [14] .

Editing training data with GAs has been discussed by Chang and Lippmann [15];
Kuncheva, [16, 17]; and Kuncheva and Bezdek [3]. Our GA model is close to random
selection, and our computational experience is that a few runs of this simple scheme
can lead to a reasonably good solution. An even simpler evolutionary algorithm for
data editing called “random mutation hill climbing” was proposed by Skalak [14].
Instead of evolving a population of chromosomes simultaneously, only one
chromosome evolves (should we call it survival of the only ?), and only mutation is
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performed on it. The best set in T mutations is returned as 
    
Vs . The evolutionary

schemes in [3] and [14] are both heuristic. GA conducts a larger search by keeping
different subsets of candidates in its early stages. On the other hand, the random
mutation method is really simple, and, like the GA in [3], outperforms RS.

Tabu search is an interesting alternative to randomized methods [9]. In this scheme
the number of iterations T is fixed but the cardinality n

p
 is not. Similar to random

mutation hill climbing, TS operates on only the current solution S. A tabu vector of
length    X  is set up with all entries initially zero. An entry of 0 in the k-th place in the
Tabu vector indicates that x

k
 can be added or deleted from S, while an entry  greater

than 0 prohibits a change in the status of x
k
 . A parameter T

t  
called tabu tenure

specifies the number of iterations before a change of any previously altered bit is
allowed. An initial subset is picked as S, stored as the initial approximation of 

    
Vs ,

and evaluated by J(
    
Vs ). All neighboring subsets to S are evaluated by J. The neighbor

subset   ̂  S  that yields the highest value of J is called the winning neighbor. If

    
J(Vˆ s ) > J(Vs ) ,   ̂  S  replaces S, regardless of the tabu vector, and 

    
Vs  and J(

    
Vs ) are

updated. If 
    
J(Vˆ s ) ≤ J(Vs ) , the tabu vector is checked. If the move from S to   ̂  S  is

allowed,  it is made anyway, and the corresponding slot of the tabu vector is set to T
t
 .

Thus, tabu search does not necessarily have the ascent property. All other non-zero
values in the tabu vector are then decreased by one. Different criteria can be applied
for terminating the algorithm. Cerveron and Ferri’s constructive initialization was used
in [5], but we did not wait until a consistent set was obtained. Instead, the initial
incremental phase was terminated at a prespecified number of iterations.

Pre-supervised replacement.  The oldest method in this group (maybe 200 years
old) replaces crisp subset   Xi  in X with its sample mean 

    
v i = x

x∈X
i

∑ / n i , where

  
n i = X i , i = 1,…,c.  Chang [18] gave one of the earliest pre-supervised algorithms

for extracting R-prototypes. Chang's algorithm features sequential updating based on a
criterion that has a graph-theoretic flavor. Bezdek et al. [19] proposed a modification
of Chang's algorithm that they called the modified Chang algorithm (MCA).
Hamamoto et al. [20] gave a number of bootstrap methods for the generation of R-
prototypes.  The Hamamoto method we used (called BTS(3)), requires choosing three
parameters: the number of nearest neighbors k, the desired number of prototypes n

p

and the number of random trials T. A random sample of size n
p
 is drawn from X. Each

data point is replaced by the mean of its k-nearest neighbors with the same class label.
The 1-np classifier is run on X using the new labeled prototypes. The best set from T
runs is returned as the final V

r
. In our experience, Hamamoto et al.'s method gives

nice results. BTS(3) is a simple, fast, and unashamedly random way to get pre-
supervised R-prototypes that often yield  low 1-np error rates.

Another basic design that can be used for prototype generation is the LVQ1
algorithm [21]. An initial set of n

p
 • c labeled prototypes are randomly selected from X
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as initial prototypes so that each class is represented by at least one prototype. LVQ1
has three additional user-specified parameters: the learning rate   αk

 å (0,1), a

constant h å (0,1) and the terminal number of iterations T. The standard competitive
learning update equation is then used to alter the prototype set. Geva and Sitte’s DSM
[22] is a variant of LVQ1 which they assert better approximates classification
boundaries of the training data than LVQ1 does. These authors say the price for better
classification rates is that DSM is somewhat less stable than standard LVQ’s. In
LVQ1 the winning prototype is either punished or rewarded, depending on the
outcome of the 1-np label match to the input. In DSM, when the 1-np rule produces
the correct label, no update is made, but when misclassification occurs, the winner
(from the wrong class) is punished, and the nearest prototype from the same class as
the current input is identified and rewarded.

Both LVQ1 and DSM operate with a fixed number of prototypes chosen by the
user, so are user-n

p
 methods. An auto-n

p
 modification of LVQ that can prune and

relabel prototypes was proposed by Odorico [23], who called it LVQTC.  In LVQTC
the winning prototype is updated depending on the distance to input x

k
 and the history

of the prototype. A prototype's historical importance is determined by the number of
times it has been the winner, and the learning rate used for this prototype decreases as
its hit rate increases.  The rationale for this treatment of the learning rate is that
prototypes which have been modified many times have already found a good place in
the feature space and should be less affected by subsequent inputs. This strategy is
very similar to one of the earliest competitive learning models, viz., sequential hard c-
means [24]. Odorico may or may not have recognized this, but in any case adds some
novel heuristics to the original algorithm which seem both justifiable and useful.

Post-supervised replacement. Methods in this category disregard class labels
during training, and use X without its labels to find a set V

r
 of algorithmically labeled

prototypes. The prototypes are then relabeled using the training data labels.  To assign
physical labels to the prototypes, the 1-np rule is applied to X using the extracted
prototypes. The number of winners for each prototype from all c classes are counted.
Finally, the most represented class label is assigned to each prototype. This relabeling
strategy guarantees the smallest number of misclassifications of the resultant 1-np
classifier on X, and is used in all of our post-supervised designs.

Vector quantization (VQ) is one of the standard sequential models that has been
used for many years [25].  We adhered to the basic algorithm and applied it to each
data set in the post-supervised mode. VQ starts with the user randomly selecting an
initial set of n

p
 unlabeled prototypes from X. The closest prototype is always rewarded

according to the update equation 
    
vi,new = v i,old + αt (xk − v i,old ) .  The learning rate

is indexed on t, the iteration counter (one iteration is one pass through X). We also
used the closely related self-organizing map (SOM), which reduces to unsupervised
VQ under circumstances laid out in [21]. Our runs with the SOM are discussed in
more detail in [6], and some results using the SOM are traced out on Figure 5.
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Generalized Learning Vector Quantization - Fuzzy (GLVQ-F) is an unsupervised
sequential learning method for finding prototypes in which all  c prototypes are
updated after each input is processed. The update formula for the special case of
weighting exponent m = 2  is [26]

    
vi,new = v i,old + uiαt (xk − v i,old )  , with 

    

ui =
x − v i

2

x − v j

2

 

 

 
 
 

 

 

 
 
 j=1

c
∑ , 1 �• i �• c.       (5)

The rest of the GLVQ-F algorithm is the same as  VQ. Limit analysis in [26] shows
that GLVQ-F reduces to VQ under certain conditions.   Yet another sequential
competitive learning model used in [6] is the deterministic "dog-rabbit"  (DR)
algorithm [27].  Like GLVQ-F, the DR algorithm may update all c prototypes for each
input. Unlike GLVQ-F, the DR algorithm is not based on an optimization problem.
Rather, its authors use intuitive arguments to establish  the learning rate distribution
that is used by the DR model.

The soft competition scheme (SCS)  is a probabilistic sequential learning model that
bears much similarity to algorithms for the estimation of the components of certain
mixtures of normal distributions. Updates in SCS are made to all c prototypes, instead
of just the winner [28]. The fuzzy learning vector quantization (FLVQ) model shares
many of the same characteristics as SCS, and these two models are compared in [29].

Three unsupervised batch learning models were also used in [6]. If we disregard the
labels of X, we can cluster it with any clustering algorithm that generates point
prototypes, relabel the prototypes, and take them as V

r
.  Good candidates include the

various the c-means methods [1].   Our experiments in [5] used only classical hard c-
means [30], and we plot a point on Figure 5 that came from the modified fuzzy c-
means (MFCM-3) algorithm of Yen and Chang [31].

3   The Data Sets and Numerical Experiments in [5]

This sections summarizes the main points about 11 of the 21 methods (see Table 1),
which used the four data sets shown in Table 2; see [5] for better descriptions of the
methods, data and computational protocols.

Four figures in [5] plot 
    
Enp Ý = Enp(X test; V)  versus 

    
V = np  for the eleven

methods and four data sets in Table 2. The closer a point 
  
n

p
,E

np( ) is to the origin,

the better the 1-np classifier, because such a classifier will have a smaller number of
prototypes and also a smaller test error rate than classifiers that plot further from the
origin. For example, Figure 3 (Figure 5 in [5]) has coordinates for 10 of the 11
methods. The GA approach resulted in 77 prototypes for the cone-torus data, so we
decided not to plot this point, to keep the scale so that the other 10 methods could be
seen clearly. The same thing occurred with the other three data sets; the number of
prototypes chosen by GA was much larger than those found by the other 10 methods,
and this also occurred for the (W+H) classifier with two of the four data sets.
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Table 2. Characteristics of the four data sets used in [5]

Name p
# of

features

c
# of

classes
  
Xtr   

Xtest
Electronic Access

Cone-Torus 2 3 400 400 http://www.bangor.ac.uk/~mas00
a/Z.txt

Normal
Mixture

2 2 250 1000 http://www.stats.ox.ac.uk/~ripley/
PRNN/

Phoneme 5 2 500 4904 ftp.dice.ucl.ac.be, directory
pub/neural-nets/ELENA/

Satimage 36
(4 used)

6 500 5935 ftp.dice.ucl.ac.be, directory
pub/neural-nets/ELENA/

LVQTC and BTS(3) are the Pareto optimal [PO, 32] designs in Figure 3, i.e., the
ones that are better than all methods in some dimension, and not dominated by any
other method in other dimensions. The tradeoff between minimal representation and
maximal classification accuracy is evident from the fact that none of the classifiers
studied in [5] had  smallest coordinates in both dimensions.

10 15 20 25 30 35
10

12

14

16

18

20

DSM   

LVQTC 

RND & LVQ1  

W+H   

BTS(3)

HCM   
VQ    

GLVQ-F

Tabu  

    
n p = V

    
Enp(Xtest; V)

GA @ (77, 14.5)   

Fig. 3.     
n p = V  versus     

Enp(Xtest; V)  for the Cone-Torus data [5]
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Figure 4 addresses the relevance of (C1)-(C3) to 1-np classifier design by
associating each of the 11 classifiers reviewed in [5] with one of the eight possible
coordinate triples that are possible in (C1, C2, C3) space. The horizontal axis is the
average ratio  of n

p
, the number of prototypes found or used, to the cardinality of the

training set X
tr
, 

    
n p =

1
4

Vi Xtr,i( )
i=1

4
∑ . The vertical axis is the average training

error, 
    
E np = Enp(Xtr, i ;Vi ) 4

i=1

4
∑ . The "best" designs are again closest to the origin,

and the four Pareto-optimal designs for averages over the four data sets are captured
by the shaded region in Figure 4. The coordinates of these four designs (LVQTC,
Tabu, LVQ1, BTS(3)) show ratios of: 3:1 for replacement vs. selection, 4:0 for pre-
supervised designs vs. post-supervised designs, and 2:2 for auto-n

p
 vs. user-n

p

selection of the number of prototypes.. Thus, averaging over the four sets of data
changes only one ratio: the 3:1 best case ratio changes to 4:0 in the comparison of pre-
to post-supervised designs.

(S.P.A)  
(R.p.A)  

(R.p.U)  
(R.p.U)  

(R.P.U)  

0.05  0.06  0.07  0.08  
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DSM     
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RND     

W+H     

HCM     

VQ      
GLVQ-F  

  
n p

  
E 

np

(R.P.A)  

(S.P.U)  

(R.P.U)  (R.P.U)  
(S.P.A)  

Tabu    
BTS(3)  

(S.P.A)  
GA     

k   

Fig. 4. (C1, C2, C3) triples : averages over four data sets [5]
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4   The Data and Numerical Experiments in [6]

Resubstitution errors 
    
Enp(Xtr ; V)  computed with 1-np classifiers built from runs

using all 150 points in the Iris data [33] as X
tr
 are used to compare the subset of sixteen

classifiers shown in Table 1 referenced  as [6].  Using training error as the standard of
comparison enables us to compare different consistent classifiers.

Figure 5 is typical of the results in [6]. We see from Figure 5  that four classifiers
are consistent: MCA with 11 R- prototypes; GA with 12 S-prototypes; Chang with 14
R-prototypes; and MCS with 15 S-prototypes. There are two selection (GA, RS) and
two replacement  (MCA, BS) designs among the four consistent  classifiers in Figure
5. There are three Pareto optimal points from four designs in Figure  5 : RS and GA (2
errors with 3 prototypes),  BS (1 error with 5 prototypes), and MCA  (no errors with
11 prototypes). We itemize the characteristics of  the  Pareto optimal designs in Table
3, along with their counterparts for the four data sets used in [5].

5   Conclusions

What can we conclude about the three characteristics of 1-np designs ?

(C1) Selection (S)versus replacement  (R);

(C2) Pre-supervised [PRE] versus post-supervised  (post); and

(C3) User-n
p 

  (U) versus auto-n
p  

(A).

Column 1 of Table 3 shows the winning 1-np classifier designs from four figures in
[5] and one figure in [6] for the five data sets used in these two studies. Each row has
a set of 3 check (�) marks corresponding to the three characteristics. Since there are
four Pareto optimal designs for the Iris data, each pair of columns in Table 3 has a
total of 12 checks. The bottom row sums the checks in each column, and each pair
gives us a rough measure of the relative efficacy of 1-np designs for each of the pairs
of characteristics comprising C1, C2 and C3.

So, the ratio for selection vs. replacement is 1:2; for pre- vs. post supervision is 5:
1; and for user vs. auto n

p
, 1:1. This indicates that - at least for these data sets and

trials - pre-supervised, replacement prototypes are the more desirable combination of
(C1) and (C2), while finding the best number of prototypes is done equally well by
user specification or "automatically".  We conclude that:

1.  Replacement prototypes seem to produce better 1-np designs than points
selected from the training data.

2. Pre-supervision seems - overwhelmingly - to find more useful prototypes for 1-
np classifiers  than post-supervision does.
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Fig. 5.  Best case R- and S-Prototype classifiers for 16 methods on Iris [6]

3. Methods that "automatically" determine the best number of prototypes and
methods that are largely based on user specification and trials-and-error are
equally likely to yield good 1-np classifiers.

4. There is a clear tradeoff between minimal n
p
 and minimal error rate, and this is

a data dependent issue.
5. 1-np classifiers that use n

p
 > c,  with c the indicated number classes in the

training data,  will almost always produce lower error rates than 1-np
designs that use one prototype per class.



14         J.C. Bezdek and L.I. Kuncheva

Table 3. A summary of the Pareto optimal (PO) designs for the five data sets

Method
    
Enp(X∗;V) PO in [5] (S) (R) [PRE] (post) (U) (A)

LVQTC X
test

Fig. 5 � � �

BTS(3) X
test

Fig. 5 � � �

LVQ1 X
test

Fig. 6 � � �

RS X
test

Fig. 6 � � �

Tabu X
test

Fig. 7 � � �

LVQTC X
test

Fig. 7 � � �

HCM X
test

Fig. 8 � � �

VQ X
test

Fig. 8 � � �

PO in [6]
RS X

train
Fig. 6 � � �

GA X
train

Fig. 6 � � �

BTS(3) X
train

Fig. 6 � � �

MCA X
train

Fig. 6 � � �

S(�) 4 8 10 2 6 6
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