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Abstract. Combining a set of classifiers has often been exploited to improve 
the classification performance. Accurate as well as diverse base classifiers are 
prerequisite to construct a good ensemble classifier. Therefore, estimating di-
versity among classifiers has been widely investigated. This paper presents an 
ensemble approach that combines a set of diverse rules obtained by genetic 
programming. Genetic programming generates interpretable classification 
rules, and diversity among them is directly estimated. Finally, several diverse 
rules are combined by a fusion method to generate a final decision. The pro-
posed method has been applied to cancer classification using gene expression 
profiles, which is one of the important issues in bioinformatics. Experiments on 
several popular cancer datasets have demonstrated the usability of the method. 
High performance of the proposed method has been obtained, and the accuracy 
has increased by diversity among the base classification rules. 

1   Introduction 
Genetic programming is a representative technique in evolutionary computation, 
which has several distinguished characteristics [1]. Especially, interpretable rules 
obtained by genetic programming provide not only useful information on classifica-
tion but also many chances to combine with other approaches. Diversity that is im-
portant in ensemble might be directly estimated by comparing the rules [2]. 

Combining classifiers, known as ensemble, has received the attention to improve 
classification performance [3,4]. The ensemble classifier is obtained by combining 
the outputs of multiple classifiers, and the diversity among base classifiers is impor-
tant besides the accuracy. Diversity implies how differently classifiers are formed, 
while accuracy represents how correctly a classifier categorizes. Many researchers 
have studied ensemble techniques and diversity measures. Hansen and Salamon have 
provided the theoretical basis on ensemble [5], while Opitz and Maclin have per-
formed empirical ensemble experiments comprehensively [6]. Zhou et al. have ana-
lyzed the effect on the number of participating classifiers into ensemble in both theo-
retical and empirical studies [7]. Bagging and boosting have been actively 
investigated to generate the base classifiers as popular ensemble learning techniques, 
while various fusion strategies have also been studied for effective ensemble [3,4,8]. 
A survey on generating diverse classifiers for ensemble has been conducted by 
Brown [9]. A hybrid model for efficient ensemble was studied by Bakker and Heskes 
[10], while Tan and Gilbert applied ensemble to classifying gene expression data 
[11]. 

Since ensembling the same classifiers does not produce any elevation on perform-
ance [8], selecting diverse as well as accurate base classifiers is very important in 
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making a good ensemble classifier [9]. Simple ways to generate various classifiers are 
randomly initializing parameters or making a variation of training data. Bagging 
(bootstrap aggregating) introduced by Breimen generates individual classifiers by 
training with a randomly organized set of samples from the original data [12]. En-
semble classifiers with bagging aggregate the base classifiers based on a voting 
mechanism. Boosting, which is another popular ensemble learning method, is intro-
duced by Schapire to produce a series of classifiers [13]. A set of samples for training 
a classifier is chosen based on the performance of the previous classifiers in the se-
ries. Examples incorrectly classified by previous classifiers have more chances to be 
selected as training samples for the current one. Arching [14] and Ada-Boosting [13] 
are the representative boosting methods. 

Some researchers select diverse classifiers to combine for ensemble [3,8]. Diver-
sity among classifiers is estimated by some measures, and the most discriminating 
classifiers are selected to make an ensemble classifier. In general, the error patterns of 
classifiers are used to measure the diversity [9]. Bryll proposed a novel approach that 
employs different sets of features to generate different classifiers [4]. Most studies 
aim at generating distinct base classifiers, but they hardly provide explicit methods to 
measure diversity of classifiers and errors might be included into selecting classifiers. 
An explicit method estimating the diversity among classifiers might be helpful to 
minimize errors and to prepare a set of diverse base classifiers.  

The objective of this paper is to investigate an ensemble approach using genetic 
programming. Classification rules are generated by genetic programming, while the 
rules might be interpreted to explicitly measure diversity. A subset of rules is selected 
based on the diversity to construct an ensemble classifier in which they may be dis-
tinct as much as possible from the others. The proposed method is applied to classify-
ing gene expression profiles that is an important problem in bioinformatics. Section 2 
describes cancer classification using genetic programming as backgrounds. The pro-
posed method and results are presented in Sections 3 and 4. Conclusion and future 
work are finally summarized in Section 5. 

2   Cancer Classification Using Genetic Programming 

Cancer classification based on gene expression profiles is one of the major research 
topics both in the medical field and in machine learning. DNA microarray technology 
recently developed provides an opportunity to take a genome-wide approach to the 
correct prediction of cancers. It captures the expression levels of thousands of genes 
simultaneously which contain information on diseases [15]. Since finding an under-
standable classification rule is required beside the accuracy, discovering classification 
rules using genetic programming was studied in the previous work [16]. Even though 
the rule is quite simple, it shows a good performance in classifying cancers.  

An individual of genetic programming is represented as a tree that consists of the 
function set {+, −, ×, /} and the terminal set {f1, f2, �, fn, constant} where n is the 
number of features. The function set is designed to model the up and down regula-
tions of the gene expression. The grammars for the classification rule are: 
G={V={EXP, OP, VAR}, T={+, −, ×, /, f1, f2, �, fn, constant}, P, {EXP}}, where the 
rule set P is as the following. 
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EXP→EXP OP EXP | VAR  
OP→+|−|×|/  
VAR→ f1|f2|�|fn|constant 

The category of an instance is determined by evaluating it with the rule. An in-
stance will be classified into class 1 if the evaluated value is over 0, while it will be 
classified into class 2 if the value is under 0. Conventional genetic operators for ge-
netic programming are employed for evolution. Crossover randomly selects and 
changes sub-trees from two individuals, mutation changes a sub-tree into new one, 
and permutation exchanges two sub-trees of an individual. All genetic operations are 
conducted according to the predefined probabilities. 

3   Combining Classification Rules with Diversity 
The proposed method consists of 3 processes as shown in Figure 1: selecting features, 
discovering multiple rules, and selecting and combining the rules. Based on the pre-
vious work, Euclidean distance, cosine coefficient and signal-to-noise ratio are em-
ployed to score the degree of association of genes with cancers. With the selected 
genes, genetic programming works to generate multiple classification rules. Diversity 
among these rules is estimated by the tree edit distance, and a subset of diverse classi-
fication rules is used to construct an ensemble classifier. Contrary to conventional 
ensemble learning methods that simply combine the outputs of individual classifiers, 
the proposed method picks up some classification rules that maximize diversity. 

all features

GP1 GP2 GP3 GP4 GP5

selected features
Feature selection

Rule extraction with genetic 
programming

discovered rules

Selecting based on diversity

Final classification

GP7 GP9 GP2 GP3 GP4

GP6 GP7 GP8 GP9 GP10

Ensembling by a fusion method

 

Fig. 1. Overview of the proposed method 

3.1   Estimating Diversity in Genetic Programming 

Diversity is concerned with the levels and types of variety between individuals in 
genetic programming. Features such as fitness values and structures are employed to 
design diversity measures [2]. Moreover, diversity of the population can be controlled 
during evolution so as to generate diverse individuals. 
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In genetic programming, diversity often refers to structural differences. Two iden-
tical structures might produce the same result, but this does not imply that the two 
structures with the same results are identical. Even if two individuals with different 
structures have the same outputs, they should be regarded as different ones possess-
ing different potential characteristics. There are some representative methods for 
estimating diversity between two individuals such as edit distance, isolated-subtree 
distance, top-down distance, and alignment distance [17]. Edit distance, one of the 
most popular methods, measures the similarity between two individuals. It scores a 
distance of 1 if the nodes have different values, or 0. After scoring for all nodes in 
two trees, it sums up the distances and normalizes by dividing it by the size of the 
smaller tree. Sometimes a tree is interpreted as a string by a specific strategy, and the 
matching score between them is used to employ as the similarity of them. 

3.2   Selecting Features 

In general, microarrays include the expression information of thousands or even tens 
of thousands of genes, but only a small portion of them are related to the target can-
cer. A subset of informative genes should be selected by the feature selection process. 
Cutting down the number of features to a sufficient minimum is requisite to improve 
classification performance [18]. Two �ideal� marker gene expression profiles are 
designed as shown in Figure 2. The first one is a binary vector which is 1 among all 
the samples in class A and 0 among all the samples in class B, while the second one is 
another binary vector which is 0 among all the samples in class A and 1 among all the 
samples in class B. Three popular measures are employed such as Euclidean distance, 
cosine coefficient and signal-to-noise ratio. Fifty genes are selected by each feature 
selection method: the first 25 for ideal marker 1 and the rest for ideal marker 2. 

The similarity between an ideal marker ideal and a gene g can be regarded as a dis-
tance, while the distance presents how far they are located in. A gene is regarded as 
an informative gene if the distance is small, while the gene is regarded as an uncorre-
lated gene if the distance is large. Euclidean distance (ED) and cosine coefficient 
(CC), where n is the number of samples, estimate the distance as follows: 
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Given the mean � and standard deviation � from the distribution of gene expres-
sions within their classes, the signal to noise ratio of a gene g, SN, is defined as fol-
lows: 
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Fig. 2. Illustration of the feature selection 

3.3   Generating Multiple Classification Rules 

In order to generate multiple classification rules, genetic programming operates in 
parallel as shown in Figure 1. Each genetic programming obtains a classification rule 
that consists of a subset of features and arithmetic operators. Four fifths of the whole 
training data is randomly selected to construct a training set for evolving a rule. Gen-
erating a classification rule was described in Section 2. 

In evolution process, genetic programming evaluates individuals in classification 
accuracy, while it also considers the simplicity of rules. The concept of Occam�s 
razor also supports the introduction of simplicity [19]. The accuracy is estimated as 
correct classification rate for training samples, and the simplicity is measured as the 
number of nodes used in a rule. The following formula show the fitness function used 
in this paper, and the weights for each criterion are set as 0.9 and 0.1, respectively. 
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3.4   Selecting Diverse Rules 

Selecting a subset of attributes is also benefit for learning diverse classifiers as well as 
constructing a training set dynamically [4]. The classification rules obtained by ge-
netic programming have different structures and use different genes. It signifies that 
the parallel genetic programming might naturally generate diverse rules by selecting 
different sets of attributes and structures [20]. Before combining classification rules, 
diversity is measured by the edit distance of structures and the appearance of genes 
used. The edit distance between the structures of two rules ri and rj is estimated as 
follows: 
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The appearance of genes in rules is also compared with each other. The diversity 

decreases when there is the same gene, while it increases if different genes are used. 
A good ensemble can be made when base classifiers are distinct from one another, so 
some classification rules are selected to compose an ensemble classifier from 10 rules 
by the algorithm described in Figure 3. Since some fusion methods might result in a 
tie, 5 rules are selected for ensemble in this paper. 

R: A set of extracted rules {r1, r2, �, r10} 
S: A set of selected rules {s1, s2, �, s5} 

int calculate_diversity(ri, rj) { 
 cfij = common_feature_number(ri, rj); 
 dfij = different_feature_number(ri, rj); 
 edij = edit_distance(ri, rj); 
 return dfij � cfij + 0.5 × edij; 
} 
For i=1 to 10 { 
 For j=i+1 to 10 { 
 dij = calculate_diversity(ri, rj); 
}} 
Find a set S in which rules� diversity is maximized 
S = {s1, s2, �, s5} 

Fig. 3. An algorithm for selecting 5 diverse classification rules 

3.5   Combining Multiple Classification Rules 

Four fusion methods are used: Majority vote (MAJ), maximum (MAX), minimum 
(MIN) and average (AVG) [3]. They are described as the following formula, where 
mi is the margin of the classifier i. 

MAJ class2 : 1 class ?  class2 selecting sclassifier of #  1 class selecting sclassifier of # >  (4) 

MAX class2 : class1 ? 0  ) , , , ,ABS_MAX( 54321 >mmmmm  (5) 

MIN class2 : class1 ? 0  ) , , , ,ABS_MIN( 54321 >mmmmm  (6) 

AVG class2 : 1 class ?? 0  
5

1
>∑

=i
im  (7) 
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4   Experimental Results 

4.1   Experimental Environment 

Three popular gene expression datasets are used in this paper: Types of diffuse large 
B-cell lymphoma cancer dataset [21], lung cancer dataset [22], and ovarian cancer 
dataset [23]. All of them are normalized from 0 to 1 at first. 

Diffuse large B-cell lymphoma (DLBCL) is one disease, which is the common 
subtype of non-Hodgkin�s lymphoma [21]. There are various subtypes of lymphoma 
cancer needed different treatments, but it is not easy to distinguish them clinically. 
Hence, lymphoma cancer classification using gene expression profiles has been in-
vestigated [24,25]. The dataset consists of 47 samples: 24 samples of germinal centre 
B-like group and 23 samples of activated B-like group. Each sample has 4,026 gene 
expression levels. 

Lung cancer dataset has been exploited in classifying between malignant pleural 
mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung. There are 181 tis-
sues: 31 MPM tissues and 150 ADCA tissues. Each tissue has 12,533 gene expres-
sion levels [22]. 

Ovarian cancer dataset aims to identify proteomic pattern in serum so as to distin-
guish the ovarian cancer. It has 91 controls (normal) and 162 ovarian cancer tissues 
where each sample has 15,154 gene expression levels [23]. 

Since each dataset consists of few samples with many features, we conduct 5 folds 
cross-validation. One fifth of samples are evaluated as test data while the others are 
used as training data, and it is repeated 10 times for the average results, leading to 50 
(5×10) experiments in total. The parameters for genetic programming are set as 
shown in Table 1. We use roulette wheel selection with elite preserving strategy. 

Table 1. Experimental environments 

Parameter Value Parameter Value 
Population size 200 Mutation rate 0.1~0.3 

Maximum generation 3,000 Permutation rate 0.1 
Selection rate 0.6~0.8 Maximum depth of a tree 3~5 
Crossover rate 0.6~0.8 Elitism yes 

4.2   Classification Accuracy 

Table 2~4 summarize the predictive accuracy of the proposed method for each data-
set; the highlighted values represent the highest accuracy obtained. The result shows 
that the ensembling improves the performance of classification, while the proposed 
method that considers diversity obtains the highest accuracy in most cases against the 
combination of 10 classifiers and the combination of 5 classifiers. The ensemble that 
uses 10 rules was inferior to the ensemble that uses 5 rules, even though the former 
procedure includes more information than the latter. This implies that error is in-
creased with increasing numbers of base classifiers. Finally, the proposed approach 
not only supports the same degree of useful information with the ensemble that uses 
10 rules, but also minimizes the increment of the error.  
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Table 2. Test accuracy on lymphoma cancer dataset (%) 

Features Fusion 
method 

10 classifi-
ers 

5 classifiers 5 diverse 
classifiers 

Individual 
classifier 

MAJ 92.2 92.9 94.4 
MAX 96.8 95.7 100 
MIN 78.2 80.1 81.6 

ED 

AVG 96.8 95.4 98.9 

88.9 

MAJ 92.2 93.7 100 
MAX 96.7 95.5 100 
MIN 76.3 82.5 84.3 

CC 

AVG 95.6 94.9 100 

91.3 

MAJ 95.6 95.4 99.7 
MAX 97.8 96 99.1 
MIN 74.1 80 96.1 

S2N 

AVG 98.9 96.5 99.1 

89.7 

Table 3. Test accuracy on lung cancer dataset (%) 

Features 
Fusion 
method 

10 classi-
fiers 

5 classifi-
ers 

5 diverse 
classifiers 

Individual 
classifier 

MAJ 97.8 98.3 97.4 
MAX 99.2 98.9 99 
MIN 94.2 95.7 93.9 

ED 

AVG 99.4 98.8 98.2 

97.5 

MAJ 99.2 99.1 99.9 
MAX 98.9 98.9 99.4 
MIN 94.5 95.9 95.8 

CC 

AVG 99.4 99.2 99.9 

97.8 

MAJ 99.7 99.6 99.6 
MAX 99.4 99.5 99.4 
MIN 95.3 96.7 96.5 

S2N 

AVG 100 99.8 100 

99 

Table 4. Test accuracy on ovarian cancer dataset (%) 

Features 
Fusion 
method 

10 classi-
fiers 

5 classifi-
ers 

5 diverse 
classifiers 

Individual 
classifier 

MAJ 96.6 96.8 97.5 
MAX 97.6 97 97.3 
MIN 95.1 95.4 96.1 

ED 

AVG 97 96.8 97.3 

96.4 

MAJ 89.3 89.2 92.6 
MAX 90.3 90.1 91.5 
MIN 80.6 83.7 83.4 

CC 

AVG 89.7 89.8 92.6 

87.7 

MAJ 98.6 98.9 99.9 
MAX 99 99 99.9 
MIN 97.2 97.9 99.3 

S2N 

AVG 99.2 99 99.9 

98.5 
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Fig. 4. Test accuracy for diversity for lymphoma cancer (left: CC and right: S2N) 
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Fig. 5. Test accuracy for diversity for lung cancer (left: CC and right: S2N) 
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Fig. 6. Test accuracy for diversity for ovarian cancer (left: CC and right: S2N) 

4.3   Diversity Performance 

The relationship between diversity and performance is also analyzed and shown in 
Fig. 4-6. The results indicate that classification accuracy increases according to the 
increment of diversity in most cases. A decline in accuracy occasionally appears, 
because diversity is apt to increase when there is a peculiar rule. This can be solved 
by a non-pair-wise approach for estimating diversity in ensemble genetic program-
ming. MIN often selects poor rules among the diverse rules, while the others use 
mutually cooperative rules from the rule set. 
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5   Conclusion 
In this paper, we have proposed an effective ensemble method with genetic pro-
gramming. Since gene expression data is composed of a few samples having a num-
ber of features, feature selection is applied to reduce the dimensionality. Then, ge-
netic programming generates various classification rules with arithmetic operators 
based on the genes selected. The classification rules might be comprehensive so as to 
be possible to directly estimate diversity between them. Contrary to the conventional 
ensemble learning, the proposed method selects a set of base classification rules 
whose diversity is maximized. After all, a fusion method combines the diverse rules 
selected as shown in Figure 7. 

Fusion method

+

- -

F21 F19F12 F9

-

+ +

F4 F13F28 F7

+

- -

F17 F25F1 F11

-

- -

F18 F13F14 F24

-

+ +

F22 F10F18 F9

 

Fig. 7. An ensemble classifier obtained by the proposed method 

We have applied the proposed method to cancer classification using gene expres-
sion. Especially, 3 cancer datasets have been employed for the demonstration. The 
proposed ensemble method using genetic programming produces higher performance 
than the others as presented in the results. Moreover, the experiments show that the 
diversity calculated by directly matching representations of rules increases the per-
formance of ensembling. 

As the future work, we will compare the method with various conventional diver-
sity measures, and extend it by combining ensemble learning methods such as Arc-
ing, Ada-boosting, attribute bagging, etc. Other popular benchmark datasets in bioin-
formatics will be also investigated with the proposed method. 
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