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Abstract 

In this contribution, we propose a new method to au- 
tomatically learn the knowledge base of a Fuzzy Rule- 
Based Classification System (FRBCS) by selecting an 
adequate set of features and by finding an appropiate 
granularity for them. This process uses a multiobjec- 
tive genetic algorithm and considers a simple generation 
method to derive the fuzzy classification rules. 

1. Introduction 

An FRBCS learning p m s s  must solve different prob- 
lems to obtain a linguistic FRBCS with an accurate be- 
haviour, such as: 

1. Establish the granularity for the linguistic vari- 
ables, 

using a predefined number of labels per variable. The 
usual way to proceed involves choosing a number of lin- 
guistic terms for each linguistic variable, which is nor- 
mally the same for all of them. This operation mode 
makes the granularity and fuzzy set definitions have a 
significant influence on the FRBCS performance. In 
fact, some studies in Fuzzy Rule-Based Systems have 
shown that the system performance is much more sensi- 
tive to the choice of the semantics in the data base than 
to the composition of the rule base 173. 

The fifth problem, high dimensionality with a large 
number of features, can be tackled from a double per- 
spective: 

Via the compactness and reduction of the rule set, 
minimising the number of fuzzy rules included in 
it. Unnecessary rules can be eliminated with the 
aim of having a more co-operative rule set in order 
to obtain an FRBCS with better performance. 

2. Obtain a fuzzy rule set with an adequate co- 0 Via a feature selection process that reduces the 
operation level between the rules, number of features used by the FRBCS. 

3. Select the inference method, which determines the 
way of combining the information Provided by the 
fuzzy rules in the classification of the examples. 

guistic variables, and 

~~l~ duct ion  have been formdated using 
Neural Networks, clustering techniques, orthogonal 
transformation methods and similarity measures [223, 
as well as using GA-based rule selection processes to 
get a co-operative set of rules from a candidate rule set 
l15, 51). 

4. -if necessary- the fuzzy partitions for the 

5. Reduce the number of input variables in high di- 
mensional problems, in order to avoid an exponen- 
tial growth in the fuzzy rule set size. 

The problems 2, 3 and 4, related to the knowledge ex- 
traction process, have been solved by different learning 
processes based on iterative methods [4], Neural Net- 
works 1211 or Genetic Algorithms (GAS) [17, 5, 111, 
among others. 

With respect to the first problem, the majority of meth- 
od$ learn the fuzzy rule set from numerical information 
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Notice that, for high dimensional problems and prob- 
lems where a high number of instances is available, it is 
difficult for the latter approaches to get small rule sets, 
and therefore the system comprehensibility and inter- 
pretability may not be as good as desired. For high di- 
mensionality classification problems, a feature selection 
process, that determines the most relevant variables be- 
fore or during the FRBCS inductive learning process, 
must be considered [3, 203. It increases the efficiency 
and accuracy of the learning and classification stages. 

Our objective is to develop a feature selection and gran- 
ularity genetic learning process to obtain FRBCSs com- 
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posed of a compact set of comprehensible fuzzy rules 
with high classification ability. This method uses a mul- 
tiobjective GA [ 101 and considers a simple generation 
method to derive the rule base, the extension of Wang 
and Mendel's fuzzy rule generation method [24] for 
classification problems [4]. 

To carry out this task, this paper is organised as fol- 
lows. In Section 2, the FRBCS components will be in- 
troduced. Section 3 will describe the two main problems 
tackled by the learning method, the feature selection and 
granuhty learning. In Section 4 we will expose the 
characteristics of our proposal for the FRBCS design. 
The results obtained with Sonar data base will be shown 
in Section 5. In the last section, some conclusions will 
be pointed out. 

2. Fuzzy Rule-Based Classification 
System 

An FRBCS is an automatic classification system that 
uses fuzzy rules as knowledge representation tool. Ibo 
dfferent components are distinguished within it: 

The Knowledge Base (m), composed of: 

0 a Data Base (DB), which contains the fuzzy 
set definitions related to the linguistic terms 
used in the fuzzy rules, and 

0 a Rule Base (RBI, comprised by a set of fuzzy 
rules that in this work are considered to have 
the following structure: 

Rk : If XI is A;k and . . . and XN is A% 
then Y is Cj with rk 

where XI l .  . . , XN are features considered in 
the problem and Atl .  . . Ak are linguistic 
labels employed to represent the values of the 
variables. 
These kinds of fuzzy rules represent, in the 
antecedent part, a subspace of the complete 
search space by means of a linguistic label 
for each considered variable and, in the con- 
sequent part, a class label (C,) and a certainty 
degree (T'). This numerical value indicates 
the degree of certainty of the classification in 
that class for the examples belonging to the 
fuzzy subspace delimited by the antecedent 
Part. 

The Fuzzy Reasoning Method (FRM), an infer- 
ence procedure which, combining the information 
provided by the fuzzy rules related with the exam- 
ple to classify, determines the class to which it be- 
longs to. 

The majority of ERBCSs (see 14,111 among others) use 
the classical FRM that classifies a new example with the 
consequent of the fuzzy rule having the highest degree 
of association. Another family of FRhts that use the 
information provided by all the rules compatible with 
the example (or a subset of them) have been developed 
[4, 6, 161. In this work, we use two different FRMs: 
maximum and normalised sum. 

3. Feature Selection and Granular- 
ity Learning in an FRBCS design 
process 

As we mentioned before, our FRBCS learning method 
generates the KB by selecting an adequate feature set 
and by finding an appropiate granularity for each se- 
lected variable. In this section, we briefly describe these 
problems jointly solved in our proposal. 

3.1. Feature Selection Process 

The main objective of any feature selection process is to 
reduce the dimensionality of the problem for the super- 
vised inductive learning process. This fact implies that 
the feature selection algorithm must determine the best 
features for its design. 

There are two kinds of feature selection algorithms: 

Filter feature selection algorithms [ 191, which re- 
move the irrelevant characteristics without using a 
leaming algorithm (e.g. by means of class separa- 
bility measures). They are efficient processes but, 
on the other hand, the feature subsets obtained by 
them may not be the best ones for a specific leam- 
ing process because of the exclusion of the heuris- 
tic and the bias of the learning process in the selec- 
tion procedure [18]. 

Wrapper feature selection algorithms [18, 191. 
This kind of feature selection algorithms selects 
feature subsets by means of the evaluation of each 
candidate subset with the precision estimation ob- 
tained by the leaming algorithm. In this form, they 
obtain feature subsets with the best behaviour in 
the classifier design. Their problem is their ineffi- 
ciency since they must build the classifier for each 
evaluation of a candidate feature subset. 

In our proposal we will use a wrapper feature selec- 
tion algorithm which utilises the precision estimation 
provided by an efficient fuzzy rule generation process 
(Wang and Mendel's fuzzy rule generation process) and 
a GA as search algorithm. The granularity leaming will 
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provide us an additional way to select features when the 
number of linguistic labels assigned to a specific vari- 
able is only one (we will explain this in detail in the 
next section). 

3.2. Granularity Learning 

As previously said, the derivation of the DB highly in- 
fluences in the FRBCS performance. Some approaches 
have been proposed to improve the FRBCS behaviour 
by means of a tuning process once the RB has been 
derived [l, 51. However, these tuning processes only 
adjust the shapes of the membership functions and not 
the number of linguistic terms in each fuzzy partition, 
which remains fixed from the begining of the design 
process. 

The methods that try to leam an appropiate granularity 
level per variable usually work in collaboration with an 
RB derivation method. A DB generation process wraps 
an RB learning one working as follows: each time a DB 
has been obtained by the DB definition process. the RB 
generation method is used to derive the rules, and some 
type of error measure is used to validate the whole KB 
obtained. 

The works proposed in [7, 81 use Simulated Annealing 
and GAS to learn an appropiate fuzzy partition granular- 
ity for each variable in a Fuzzy Rule-Based System. 

On the other hand, the method proposed in [14] deals 
with a GA to design an FRBCS. The coding scheme 
generates binary chromosomes of fixed length, with a 
segment per variable. Each segment has a pre-defined 
length which determines its maximum granularity. In 
the chromosome, an 1 indicates the center of a triangular 
membership function, and both extremes of the neigh- 
bour membership functions. This representation im- 
poses several constraints in order to preserve the read- 
ability of the final FRBCS. Finally, a data covering al- 
gorithm is run to obtain the class associated to each an- 
tecedent combination. 

4. Genetic Algorithm for Feature Se- 
lection and Granularity Learn- 
ing 

In this section, we propose a new learning approach to 
automatically generate the KB of a FRBCS composed 
of two methods with different goals: 

0 A genetic learning process for the DB that allows 
us to define: 

- The relevant variables for the classification 

process (feature selection). 

ularity learning). 
- The number of labels for each variable (gran- 

Once the feature set and the granularity for each 
feature are determined. a uniform partition with tri- 
angular membership functions is considered due to 
its simplicity. 

A quick ad hoc data-driven method that derives 
the fuzzy classification rules considering the DB 
previously obtained. In this work we use the ex- 
tension of Wang and Mendel's fuzzy rule gener- 
ation method 1241 for classification problems [4], 
but other efficient generation methods can be con- 
sidered. 

We should note that the granularity learning allows us 
another way of feature selection: if a variable is as- 
signed only to one label, it has no influence in the RB, 
so it will not be considered as a relevant variable. A 
similar double-level feature selection process has been 
previously considered in genetic leaming processes of 
FRBCSs such as SLAVE [ 113. In [ 121, the authors pre- 
sented a GA encoding single fuzzy rules using two bi- 
nary strings with two differents information levels: the 
features involved in the rule (feature string) and the lin- 
guistic labels associated to each of them (value string). 
A feature is not considered when: i) it has a 0 bit in the 
first string, or ii) it has no label associated in the second. 
In that work, it is demonstrated that, although the fea- 
ture selection process can be performed by only consid- 
ering the value string (as in our case with the granularity 
string), it is more difficult for the learning algorithm to 
remove a feature working in this way and the considera- 
tion of the feature string helps it to achieve better results 
more quickly. 

On the other hand, the main purpose of our KB de- 
sign process is to obtain FRBCSs with good accuracy 
and high interpretability. Unfortunately, it is not easy 
to achieve these two objectives at the same time. Nor- 
mally, FRBCSs with good performance have a high 
number of selected variables and also a high number 
of rules, thus presenting a low degree of readability. On 
the other hand, the KB design methods sometimes lead 
to a certain overfitting to the training data set used for 
the learning process. 

To avoid these problems, our genetic process uses a 
multiobjective GA with two goals: 

0 Minimise the classification error percentage over 
the training data set. 

0 Design a compact and interpretable KB. This ob- 
jective is performed by penalising FRBCSs with a 
large number of selected features and high granu- 
larity. 
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The next four subsections describe the main compo- 
nents of the genetic learning process. 

4.1. Encoding the DB 

Each chromosome will be composed of two parts to en- 
code the relevant variables and the number of linguistic 
terms for variable (i.e. the granularity): 

0 Relevant variables (Cl): For a classification prob- 
lem with N variables, the selected features are 
stored in a binary coded array of length N .  In this 
array, an 1 indicates that the correspondent variable 
is selected for the FRBCS. 

0 Granularity level (C2): The number of labels per 
variable is stored in an integer array of length N. 
In this conuibution, the possible values considered 
are taken from the set (1,. . . ,5}. 

If vi is the bit that represents whether the variable i is se- 
lected and l i  is the granularity of variable i, a graphical 
representation of the chromosome is shown next: 

4.2. Initial Gene Pool 

The initial population is composed of four parts. The 
generation of the initial gene pool is described next: 

0 In the first group all the chromosomes select all 
the features, that is, C1 = ( l , l , l ,  ..., l), and 
each one of them has the same granularity in all its 
variables. This group is composed of #val chro- 
mosomes, with # v d  being the cardinality of the 
significant term set, in our case #val = 4, cone- 
sponding to the four possibilities for the number of 
labels, 2 .  . .5 ,  (one label is not considered because 
the variable would not be selected). For each num- 
ber of labels, one individual is created. 

0 The second part is composed of # v d  x 4 chromo- 
somes and each one of them has the same granu- 
larity in all it9 variables. For each possible number 
of labels, four individuals are created, each one of 
them with a different percentage of randomly se- 
lected variables (75%. 50%, 25% and 10%). 

0 The third group has five subgroups, each one of 
them with the different percentages for the selected 
variables considered in the previous groups (loo%, 
75%. 50%, 25% and lo%), and all of the chro- 
mosomes with a randomly selected granularity per 

variable. In the experiments all- of these five sub- 
groups have 10 chromosomes. 

The fourth part is composed for the remaining 
chromosomes, and all of their components are ran- 
domly selected. 

4.3. Evaluating the chromosome 

There are three steps that must be done to evaluate each 
chromosome: 

Generate the DB using the information contained 
in the chromosome. For all the selected variables 
(vi = 1 and Z i  > l), a uniform fuzzy partition is 
built considering the number of labels of the vari- 
able ( l i ) .  

Generate the RB by running a fuzzy rule learning 
method considering the DB obtained. 

Calculate the values of the evaluation function: 

- CPE: classification percentage error over 
the training set. 

- S V  + AL: with SV being the number of se- 
lected variables and AL being the granularity 
average of the selected variables. 

4.4. Genetic operators 

The following operators are considered. 

4.4.1 Selection 

We have used the selection mechanism of MOGA [SI, 
which is based on the definition of Pareto-optimality. 
It is said that a solution dominates another when the 
former achieves better or equal values than the latter in 
all but one objective, where the former outperforms the 
1atte.r. Hence, the pareto is composed of all the non- 
dominated solutions to the problem. 

Taking this idea as a base, MOGA assigns the same se- 
lection probability to all non-dominated solutions in the 
current population. The method involves dividing the 
population into several classes depending on the number 
of individuals dominating the members of each class. 

Therefore, the selection scheme of our multiobjective 
GA involves the following five steps: 

1. Each individual is assigned a rank equal to the 
number of individuals dominating it plus one 
(chromosomes encoding non-dominated solutions 
receive rank 1). 

i 

! 
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2. 

3. 

4. 

5.  

FRM SV 
60 

The population is increasingly sorted according to 
that rank. 

AL NR %tra %tst 
3 104 0.9 23.1 

Each individual is assigned a selection probabil- 
ity which depends on its ranking in the population, 
with lower ranking receiving lesser probabilities. 

I 

The selection probability of each equivalence class 
(group of chromosomes with the same rank, i.e., 
which are non-dominated among them) is aver- 
aged. 

The new population is created by following the 
Baker’s stochastic universal sampling [2]. 

2 4.0 19 I 23.1 24.0 
60 3 104 I 2.8 25.9 
6 4.5 101 1 0.9 15.3 

4.43 Crossover 

Normalised 
Sum 

The crossover works in the two parts of the chromosome 
at the same time. Therefore, an standard crossover oper- 
ator is applied over C1 and C2. This operator performs 
as follows: a crossover point p is randomly generated in 
Cl and the two parents are crossed at the p t h  variable 
in C1. The crossover is developed this way in the two 
chromosome parts, C1 and C2, thereby producing two 
meaningful descendents. 

5 4.6 97 1.9 14.4 
5 4.2 67 10.5 18.2 
4 4.5 66 11.5 19.2 
3 4.3 42 19.2 23.1 

4.43 Mutation 

Ttvo different operators are used, each one of them act- 
ing on different chromosome parts. A brief description 
of them is given below: 

Murarion on CI: As this part of the chromosome 
is binary coded, a simple binary mutation is devel- 
oped, flipping the value of the gene. 

0 Mufurion on C2: The mutation operator selected 
for C2 is similar to the one proposed by Thrift in 
[23]. A local modification is developed by chang- 
ing the number of labels of the variable to the im- 
mediately upper or lower value (the decision is 
made at random). When the value to be changed 
is the lowest (1) or highest one, the only possible 
change is developed. 

5. Experimentation 

We have applied the learning method to an example 
base with a high feature number, Sonar data set 1131, 
which has 208 instances of a sonar objective classi- 
fication problem. Each one of these instances is de- 
scribed by 60 features to discriminate between a sonar 
output corresponding to a cylindrical metal or an ap- 
proximately cylindrical rock. The training set contains 

104 elements and the test set contains 104 elements, ran- 
domly selected from the whole data set. 

Table 1 shows the parameter values considered for the 
experiments developed. 

Parameter Value 
Granularity values (1,. , . ,5}  

Population size 100 
Crossover probability 0.6 
Mutation probability 0.2 

Number of generations {100,500) 

Table 1. Parameter values 

The best results obtained by our genetic learning pro- 
cess for the two FRMs considered are shown in Table 
2. The best results found with the Wang and Mendel’s 
RB generation method considering all the features se- 
lected and the same number of labels for each one of 
them are also shown in the top line of each FRM. The 
table contains the following columns: 

0 FRM: Fuzzy Reasoning Method used. 

SV: Number of selected variables 

AL: Average of the number of labels considered 
for the selected variables. 

NR: The number of rules of the FW3CS RB. 

% tra: Classification percentage e m r  obtained in 
the training data set. 

% tst: Classification percentage error obtained in 
the test data set. 

1 I 

I 4 I 4.2 I 63 I 14.4 I 18.2 
3 I 3.6 I 24 I 25.0 I 18.2 

As it can be observed, the proposed method achieves a 
significant reduction in the number of variables selected 
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(about the 90% of the original number of features, or 
even more in some cases) even with an important in- 
crease of the classification rate. Besides, many solu- 
tions present also a significant decrease in the number 
of rules, reducing the complexity of the KB. Therefore, 
our multiobjective GA provides a wide set of solutions 
that permit an adequate choice depending on the main 
goal required: good performance or high degree of in- 
terpretability. 

6. Conclusions 

This contribution has proposed a multiobjective ge- 
netic process for jointly performing feature selection 
and granularity learning, which is combined with an 
efficient fuzzy classification rule generation method to 
obtain the complete KB for a descriptive FRBCS. Our 
method achieves an important reduction of the relevant 
variables selected for the final system and also adapts 
the granularity of each variable to the problem being 
solved. So, we can conclude that the proposed method 
allows us to significantly enhance the interpretability 
and accuracy of the FRBCSs generated. 
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